Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion
Abstract
:1. Introduction
- (i)
- summarize the data published in the scientific literature relating to MPs ingestion, entanglement in the gills, and translocation to other organs, in wild freshwater;
- (ii)
- outline potential factors that can trigger MPs ingestion;
- (iii)
- describe the effects on health status that have been reported examining freshwater fish wild catches.
2. Methods
3. Freshwater Fish Species in the Literature
4. MPs Ingestion
Species | Freshwater Environment | MPs Occurrence (%) | MPs Abundance (Particles/Fish) | Polymers | Type | Ref. |
---|---|---|---|---|---|---|
Perca fluviatilis (80 specimens) | Lake Maggiore, L. Garda, L. Como and L. Orta, Italy | 86 (75–95) | 1.24 ± 1.04–5.59 ± 2.61 (range of the different environments) | PE (32%), PA (32%), PET (15%), PC (15%), PS (6%) | Fragments, films, beads (fibers were not considered) | [112] |
Oreochromis niloticus (farmed fish, 18 specimens), Prochilodus magdalenae, and Pimelodus grosskopfii (natural fish, 6 specimens each) | Magdalena River, Bache River, and aquaculture farms, Colombia | 44 O. niloticus (farmed) 75 Prochilodus sp. (natural source) | 2.1 ± 1.26 (considering only the fish with MPs) | PET (30.56%), PES (22.22%), PE (8.33%) | Mainly fragments | [104] |
Oreochromis niloticus (15 specimens) | Reservoir of the Atoyac River basin, Mexico | 53.67 | 24 | PA, PES, syntheticCP, | Fibers (100%) | [109] |
Cyprinus carpio, Pelteobagrus fulvidraco, Mystus macropterus, Pelteobagrus vachelli (84 specimens in total) | Lijiang River, China | 81 | 0.6 ± 0.6 | PET | Flakes, fibers | [113] |
Micropterus salmoides, Oreochromis mossambicus (21 specimens in total) | Aquaculture ponds, China | 100 | 6.14 ± 3.80 O. mossambicus 39.64 ± 23.38 M. salmoides | cellulose, PP, PE | Fibers | [91] |
Oncorhynchus clarkii bouvieri, Salvelinus namaycush (10 specimens in total) | Yellowstone Lake, USA | 33 * | n.a. | Polysulfide rubber, cellulose | n.a. | [114] |
19 species (218 specimens in total) | Paraiba do Sul River basin, Brazil | 2.75 | n.a. | PE, PP | n.a. | [102] |
Periophthalmus waltoni (14 specimens) | Mangrove forests, Iran | 57 | n.a. | PS, PP, PET, LD-PE, PA § | n.a. | [115] |
Aplocheilus sp. (60 specimens) | Ciliwung Estuary, Indonesia | 75 | 1.97 | PE (33.3%), PP (30%), PS (23.3), PES (10%), CA (3.3%) | Fibers (46.61%), fragments (39.83%) | [105] |
Neogobius melanostomus (417 specimens) | Rhine River, France | 0.24 * | - | resin | - | [116] |
Salmo trutta (58 specimens) | River Slaney catchment, Ireland | 66 | 1.88 ± 1.53 | PS (20%), PEUU (15%) | Fibers (67%), fragments (25%) | [106] |
Piaractus brachypomus (32 specimens) | Vembanad estuary, India | 26 | n.a. | PP, Nylon 6 | Fragments (30.43%), fibers 52.17%, foams 17.39% | [100] |
Clarias gariepinus, Cyprinus carpio, Carassius carassius, Oreochromis niloticus (180 specimens in total) | Lake Ziway, Ethiopia | 35 | 4 (median) (range 1–26) | PP, PE and alkyd-varnish | n.a. | [117] |
Monopterus albus (48 specimens) | Aquaculture ponds, China | n.a. | 2.4 ± 0.8 | PE (91%), PP (7.8%) | Films, fibers | [118] |
Cyprinus carpio, Carassius auratus, Pseudogobio esocinus, Micropterus salmoides, and Zacco platypus (14 specimens in total) | Han River (in the vicinity of a WWTP), Korea | 93 | 9.9 ± 13.4 (7.3 ± 7.3 upstream and 12.4 ± 17.9 downstream the WWTP) | PE (49%), PP (18%) | Fragments (97%) | [93] |
Oreochromis niloticus, Bagrus bayad (43 specimens in total) | Nile River, Egypt | 75.9 O. niloticus 78.6 B. bayad | 7.5 ± 4.9 O. niloticus 4.7 ± 1.7 B. bayad | PE, PET, PP | Fibers (65%), films (26.5%), fragments (8.5%) | [119] |
Hemiculter leucisculus, Hypophthalmichthys molitrix, Carassius auratus, Cyprinus carpio (126 specimens in total) | Rivers 30 km north of Yuyao, China Plastic City | n.a. | 1.9–6.1 | PL, PP | Fibers (86%), fragments (14%) | [120] |
Leiognathus equulus, Pomadasys argenteus, Oreochromis niloticus (27 specimens in total) | Fengshan River, Taiwan | n.a. | 14–94 | PP, PA, PE | Fibers (~50%), fragments (~50%) | [110] |
Cyrinus carpio, Carassius cuvieri, Lepomis macrochirus, Micropterus salmoides, Silurus asotus, Channa argus (6 specimens in total) | Han River, Korea | 100 | 22.0 ± 16.0 | PFTE, PE and rayon | Fragments (>94%), fibers (~6%) | [92] |
Chanos chanos (3 specimens in each location, 18 in total) | Aquaculture pons, Indonesia | n.a. | 2.666 ± 2.233–1.333 ± 0.577 (range of the different ponds, both gut and gills were considered together) | PP and PE | Fragments | [121] |
Leiognathus sp., Ambassis ambassis, Clarias batrachus (38 specimens in total) | Cochin estuary, India | 21 | n.a. | nylon, CP, PE blends § | n.a. | [122] |
Cynoglossus trigrammus, Glossogobius giuris, Boleophthalmus pectinirostris, Acanthogobius flavimanus, Muraenesox cinereus, Bostrychus sinensis, Taenioides anguillaris, Mugil cephalus, Polydactylus sexfilis, Coilia mystus, Leiognathus ruconius (152 specimens in total) | Pearl River Estuary, China | n.a. | 0.2–0.88 (range of the different species) | PET (38.2%), PP-PE copolymer (27.3%), CP (25.5%), poly (acrylonitrile) (3.6%), PP (1.8%), PE (1.8%) § | Fibers (93.45%), fragments (5.95%), films (0.60%) § | [108] |
14 species (154 specimens in total) | Pozas Ustria and Navío mangrove ecosystems, Colombia | 7 | n.a. | Nylon, EVA, latex | Filaments (55%) Fragments (23%) Films (19%) Foams (3%) § | [123] |
14 species (45 specimens in total) | Zhanjiang mangrove wetland, China | 100 | 0.6–6.5 (range of the different species) | PE (35%), PET, PP, PS, PU, PA CP | Fibers (70%), Fragments (18%) Film (9%) Pellet (3%) § | [124] |
Ambassis dussumieri, Oreochromis mossambicus, Terapon jarbua (174 specimens in total) | St. Lucia, Umgeni, Durban Harbour and Isipingo esturaines, South Africa | 52 § | 0.787 ± 1.00 § | rayon (70.4%), PE (10.4%), nylon (5.2%) PVC (3.0%) § | Fibers (68%) Fragments (21%) § | [107] |
Gambusia holbrooki (180 specimens) | Greater Melburne Area Rivers, Australia | 3.3–38.3 | 0.18 ± 0.84–1.13 ± 1.57 | PL, Rayon | Mainly fibers | [33] |
Monopterus albus, Misgurnus anguillicaudatus (66 specimens in total) | Agricultural ponds (Rice-fish co-culture plants), China | n.a. | 0.0 ± 0.0–4.7 ± 0.9 | PE, PP | Mainly fibers | [125] |
Prochilodus lineatus (21 specimens) | Paraná River, Argentina | 100 | 9.9 | n.a. | Mainly fibers | [94] |
Gobio gobio (78 specimens) | Flemish River, Belgium | 9 | n.a. | EVA, PP, PET, PVC, PVA, PA | Fibers, foams, films | [103] |
Serrasalmidae, 16 species (172 specimens in total) | Xingu River, Brazil | 26.7 | n.a. | PE, PVC, PA, PP, PMM, RY, PET | Filaments (53.1%), fragments (46.9%) | [97] |
Hypophthalmichthys molitrix, Ctenopharyngodon idella, Megalobrama hoffmanni, Squaliobarbus curriculus, Cirrhinus molitorella, Cyprinus carpio, Carassius gibelio, Coptodon zillii, Channa maculata (279 specimens in total) | Pearl River Catchment, China | 15.8 to 75.0 | 7.0 ± 23.8 | PET (37.2%), PE (23.1%), ethylene-propylene copolymer (21.7%), PP (10.5%) | Fibers (49.2%), fragments (37.5%), films (11.2%), spheres (2.1%) | [126] |
Carassius auratus (11 specimens) | Poyang Lake, China | 90.9 | 9.37 ± 5.37 | PP, PE, nylon, PVC | Fibers, fragments, films | [95] |
Salvelinus fontinalis, Oncorhynchus mykiss, Micropterus dolomieu (10 specimens each) | Huron, Ontario and Eire lakes, USA | 30 S. fontinalis 40 O. mykiss 50 M. dolomieu | 0.40 ± 0.70–0.70 ± 0.82 (range of the different species) | PE, SAN, PS, nylon, PET | PET fibers (44%), PE fragments (19%), Nylon fibers (19%), SAN (13%), PS fragments (6%) | [127] |
Caquetaia kraussii, Eugerres plumieri (75 specimens in total) | Ciénaga Grande de Santa Marta, estuary, Colombia | 8.6 C. kraussii 5.0 E. plumieri | n.a. | PS, PP | Fibers (89.5%), fragments (10.5%) | [128] |
Lateolabrax maculatus, Coilia nasus, Coilia mystus, Hemibarbus maculatus, Synechogobius ommaturus (Acanthogobius ommaturus), Planiliza haematocheilus (Liza haematocheila), Boleophthalmus pectinirostris (97 specimen in total) | Hangzhou Bay and Yangtze estuary, China | 22–100% (range of different species and sampling point) | 0.3 ± 0.5–5.3 ± 2.4 (range of the different species and sampling point) | PE, PP, PET | n.a. | [129] |
Dorosoma cepedianum, Catostomus commersonii, Pimephales promelas, Carpoides cyprinus, Notropis stramineus, Notropis hudsonius, Fundulus diaphanous, Micropterus sp., Notropis atherinoides, Neogobius melanostomus, Cyprinella spiloptera (74 specimens in total) | Lake Michigan tributaries, USA | 85 | 10 ± 2.3–13 ± 1.6 | n.a. | Mainly fibers | [111] |
Gymnocypris przewalskii (10 specimens) | Qinghai Lake, China | 100 | 5.4 ± 3.6 (2–15) | PE, PS, nylon, and PP. | Fibers, films | [130] |
Rutilus rutilus (64 specimens) | Thames River, UK | 33 | 0.69 ± 1.25 | PP, PE, PL | Fibers (75%), fragments (22.7%), films (2.3%) | [131] |
Squalius cephalus (60 specimens) | Seine and Marne River, France | 15 | n.a. | PET, PP, PEVA | Fibers (83%) | [99] |
Dicentrarchus labrax, Platichthys flesus (40 specimens each species) | Mondego estuary, Portugal | 23 D. labrax 13 P. flesus | 0.30 ± 0.61 D. labrax 0.18 ± 0.55 P. flesus | PE (31%), PP (14%), polyacrylonitrile (14%), PE (6%), nylon (5%), rayon (30%) | Fibers (96%), fragments (4%) | [132] |
Colomesus psittacus (2 specimens) | Amazon River estuarine, Brazil | 0 | 0 | - | - | [133] |
Cyprinus carpio, Carassius auratus, Hypophthalmichthys molitrix, Pseudorasbora parva, Megalobrama amblycephala, Hemiculter bleekeri (18 specimens each) | Taihu lake, China | 95.70 | 1.8 ± 1.7–3.8 ± 2.0 | CP, PET, PL | Fibers (90.3–100%), fragments (15%), films (1.1–5.9%) | [96] |
Salmo trutta (62 specimens) | Coastal water, Sweden | 68 | n.a. | PE, alkyd resin, PS, polymethyl methacrylate | n.a. | [134] |
Culter alburnus, Culter dabryi, Culter mongolicus, Culter oxycephaloides, Cyprinus carpio, Pelteobagrus nitidus, Pelteobagrus fulvidraco, Pelteobaggrus vachelli, Pseudobagrus ussuriensis, Siniperca chuatsi, Sinibrama wui, Squalidus argentatus (35 specimens in total) | Xiangxi River, China | 25.7 | 0–1.5 ± 1.38 | PE, nylon | Lines, Sheets | [135] |
Platichthys flesus, Osmerus eperlanus (76 specimens in total) | Thames River, UK | 20–90% | 0.2 ± 0.42–0.85 ± 1.17 | PA, nylon, PE, PET | Fibers (100%) | [136] |
Lates niloticus, Oreochromis niloticus (20 specimens each) | Lake Vittoria, Tanzania | 20% | n.a. | PE, polyurethane, PES, PE/PP copolymer, silicone rubber | n.a. | [98] |
Alburnus alburnus, Rutilus rutilus, Perca fluviatilis, Leuciscus leuciscus (10 specimens each) | Lake Geneva, Switzerland | 7.5% | n.a. | n.a. | Fibers, fragments | [101] |
5. MPs Trapped in the Gills
6. MPs Translocation to Other Organs
7. Predicting MPs Ingestion
8. Effects of MPs Ingestion in Wild Catches
9. Conclusions and Research Needs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PlasticEurope. Plastics–the Facts 2020; PlasticEurope: Brussels, Belgium, 2020; pp. 1–64. Available online: https://www.plasticseurope.org/application/files/5716/0752/4286/AF_Plastics_the_facts-WEB-2020-ING_FINAL.pdf (accessed on 24 June 2021).
- Carpenter, E.J.; Smith, K.L. Plastics on the Sargasso sea surface. Science 1972, 175, 1240–1241. [Google Scholar] [CrossRef]
- Carpenter, E.J.; Anderson, S.J.; Harvey, G.R.; Miklas, H.P.; Peck, B.B. Polystyrene spherules in coastal waters. Science 1972, 178, 749–750. [Google Scholar] [CrossRef]
- Colton, J.B.; Knapp, F.D.; Burns, B.R. Plastic particles in surface waters of the Northwestern Atlantic. Science 1974, 185, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- de Sá, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef]
- Blettler, M.C.M.; Abrial, E.; Khan, F.R.; Sivri, N.; Espinola, L.A. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Res. 2018, 143, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Can-Güven, E. Microplastics as emerging atmospheric pollutants: A review and bibliometric analysis. Air Qual. Atmos. Health 2021, 14, 203–215. [Google Scholar] [CrossRef]
- EU Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off. J. Eur. Community 2008, L164, 1–40.
- EU Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Off. J. Eur. Community 2000, L327, 1–73.
- Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.; Reifferscheid, G.; Uricchio, V.F. Microplastics and their possible sources: The example of Ofanto river in southeast Italy. Environ. Pollut. 2020, 258, 113284. [Google Scholar] [CrossRef]
- Hurt, R.; O’Reilly, C.M.; Perry, W.L. Microplastic prevalence in two fish species in two U.S. reservoirs. Limnol. Oceanogr. Lett. 2020, 5, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Büks, F.; Kaupenjohann, M. Global concentrations of microplastic in soils, a review. SOIL Discuss. 2020, 1–26. [Google Scholar] [CrossRef]
- Campanale, C.; Dierkes, G.; Massarelli, C.; Bagnuolo, G.; Uricchio, V.F. A Relevant Screening of Organic Contaminants Present on Freshwater and Pre-Production Microplastics. Toxics 2020, 8, 100. [Google Scholar] [CrossRef]
- Jeppesen, E.; Mehner, T.; Winfield, I.J.; Kangur, K.; Sarvala, J.; Gerdeaux, D.; Rask, M.; Malmquist, H.J.; Holmgren, K.; Volta, P.; et al. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 2012, 694, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Poikane, S.; Ritterbusch, D.; Argillier, C.; Białokoz, W.; Blabolil, P.; Breine, J.; Jaarsma, N.G.; Krause, T.; Kubečka, J.; Lauridsen, T.L.; et al. Response of fish communities to multiple pressures: Development of a total anthropogenic pressure intensity index. Sci. Total Environ. 2017, 586, 502–511. [Google Scholar] [CrossRef]
- Volta, P.; Tremolada, P.; Neri, M.C.; Giussani, G.; Galassi, S. Age-dependent bioaccumulation of organochlorine compounds in fish and their selective biotransformation in top predators from lake maggiore (Italy). Water Air Soil Pollut. 2009, 197, 193–209. [Google Scholar] [CrossRef]
- Volta, P.; Oggioni, A.; Bettinetti, R.; Jeppesen, E. Assessing lake typologies and indicator fish species for Italian natural lakes using past fish richness and assemblages. Hydrobiologia 2011, 671, 227–240. [Google Scholar] [CrossRef]
- Guzzella, L.M.; Novati, S.; Casatta, N.; Roscioli, C.; Valsecchi, L.; Binelli, A.; Parolini, M.; Solcà, N.; Bettinetti, R.; Manca, M.; et al. Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian-Swiss water bodies): Contamination in sediments and biota. Hydrobiologia 2018, 824, 271–290. [Google Scholar] [CrossRef]
- Mazzoni, M.; Buffo, A.; Cappelli, F.; Pascariello, S.; Polesello, S.; Valsecchi, S.; Volta, P.; Bettinetti, R. Perfluoroalkyl acids in fish of Italian deep lakes: Environmental and human risk assessment. Sci. Total Environ. 2019, 653, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Karr, J.R. Assessment of Biotic Integrity Using Fish Communities. Fisheries 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Whittier, T.R. Development of IBI metrics for lakes in Southern New England. In Assessing the Sustainability and Biological Integrity of Water Resource Quality Using Fish Communities; Simon, T.P., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 563–584. [Google Scholar]
- Argillier, C.; Caussé, S.; Gevrey, M.; Pédron, S.; De Bortoli, J.; Brucet, S.; Emmrich, M.; Jeppesen, E.; Lauridsen, T.; Mehner, T.; et al. Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia 2013, 704, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Ritterbusch, D.; Blabolil, P.; Erős, T.; Breine, J.; Mehner, T.; Olin, M.; Peirson, G.; Volta, P.; Poikane, S. European fish-based assessment reveals high diversity of systems for determining ecological status of lakes. Sci. Total Environ. 2021, 149620. [Google Scholar] [CrossRef]
- Birk, S.; Bonne, W.; Borja, A.; Brucet, S.; Courrat, A.; Poikane, S.; Solimini, A.; Van De Bund, W.; Zampoukas, N.; Hering, D. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 2012, 18, 31–41. [Google Scholar] [CrossRef]
- Miranda, D.A.; de Carvalho-Souza, G.F. Are we eating plastic-ingesting fish? Mar. Pollut. Bull. 2016, 103, 109–114. [Google Scholar] [CrossRef]
- Wesch, C.; Bredimus, K.; Paulus, M.; Klein, R. Towards the suitable monitoring of ingestion of microplastics by marine biota: A review. Environ. Pollut. 2016, 218, 1200–1208. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Sun, D.; Pan, Z.; Zhou, A.; Xie, S.; Wang, J.; Zou, J. Microplastic pollution in surface water from east coastal areas of Guangdong, South China and preliminary study on microplastics biomonitoring using two marine fish. Chemosphere 2020, 256, 127202. [Google Scholar] [CrossRef]
- Tsangaris, C.; Digka, N.; Valente, T.; Aguilar, A.; Borrell, A.; de Lucia, G.A.; Gambaiani, D.; Garcia-Garin, O.; Kaberi, H.; Martin, J.; et al. Using Boops boops (osteichthyes) to assess microplastic ingestion in the Mediterranean Sea. Mar. Pollut. Bull. 2020, 158, 111397. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Vighi, M.; Aguilar, A.; Tsangaris, C.; Digka, N.; Kaberi, H.; Borrell, A. Boops boops as a bioindicator of microplastic pollution along the Spanish Catalan coast. Mar. Pollut. Bull. 2019, 149, 110648. [Google Scholar] [CrossRef]
- Palazzo, L.; Coppa, S.; Camedda, A.; Cocca, M.; De Falco, F.; Vianello, A.; Massaro, G.; de Lucia, G.A. A novel approach based on multiple fish species and water column compartments in assessing vertical microlitter distribution and composition. Environ. Pollut. 2021, 272, 116419. [Google Scholar] [CrossRef]
- Bray, L.; Digka, N.; Tsangaris, C.; Camedda, A.; Gambaiani, D.; de Lucia, G.A.; Matiddi, M.; Miaud, C.; Palazzo, L.; Pérez-del-Olmo, A.; et al. Determining suitable fish to monitor plastic ingestion trends in the Mediterranean Sea. Environ. Pollut. 2019, 247, 1071–1077. [Google Scholar] [CrossRef]
- Su, L.; Nan, B.; Hassell, K.L.; Craig, N.J.; Pettigrove, V. Microplastics biomonitoring in Australian urban wetlands using a common noxious fish (Gambusia holbrooki). Chemosphere 2019, 228, 65–74. [Google Scholar] [CrossRef]
- Bonanno, G.; Orlando-Bonaca, M. Perspectives on using marine species as bioindicators of plastic pollution. Mar. Pollut. Bull. 2018, 137, 209–221. [Google Scholar] [CrossRef]
- Jacob, H.; Besson, M.; Swarzenski, P.W.; Lecchini, D.; Metian, M. Effects of Virgin Micro- and Nanoplastics on Fish: Trends, Meta-Analysis, and Perspectives. Environ. Sci. Technol. 2020, 54, 4733–4745. [Google Scholar] [CrossRef]
- Karami, A. Gaps in aquatic toxicological studies of microplastics. Chemosphere 2017, 184, 841–848. [Google Scholar] [CrossRef]
- Cunningham, E.M.; Sigwart, J.D. Environmentally accurate microplastic levels and their absence from exposure studies. Integr. Comp. Biol. 2019, 59, 1485–1496. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chisada, S.; Yoshida, M.; Karita, K. Ingestion of polyethylene microbeads affects the growth and reproduction of medaka, Oryzias latipes. Environ. Pollut. 2019, 254, 113094. [Google Scholar] [CrossRef]
- Sathicq, M.B.; Sabatino, R.; Corno, G.; Di Cesare, A. Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? Environ. Pollut. 2021, 279, 116896. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Wang, P.; Hou, J.; Yao, Y.; Liu, Z.; Liu, S.; Li, T. Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci. Total Environ. 2019, 650, 2395–2402. [Google Scholar] [CrossRef] [PubMed]
- Binelli, A.; Pietrelli, L.; Di Vito, S.; Coscia, L.; Sighicelli, M.; Torre, C.D.; Parenti, C.C.; Magni, S. Hazard evaluation of plastic mixtures from four Italian subalpine great lakes on the basis of laboratory exposures of zebra mussels. Sci. Total Environ. 2020, 699, 134366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magni, S.; Nigro, L.; Della Torre, C.; Binelli, A. Characterization of plastics and their ecotoxicological effects in the Lambro River (N. Italy). J. Hazard. Mater. 2021, 412, 125204. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, I.F.; Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Worldwide contamination of fish with microplastics: A brief global overview. Mar. Pollut. Bull. 2020, 160, 111681. [Google Scholar] [CrossRef]
- Markic, A.; Gaertner, J.C.; Gaertner-Mazouni, N.; Koelmans, A.A. Plastic ingestion by marine fish in the wild. Crit. Rev. Environ. Sci. Technol. 2020, 50, 657–697. [Google Scholar] [CrossRef]
- Fytianos, G.; Ioannidou, E.; Thysiadou, A.; Mitropoulos, A.C.; Kyzas, G.Z. Microplastics in Mediterranean Coastal Countries: A Recent Overview. J. Mar. Sci. Eng. 2021, 9, 98. [Google Scholar] [CrossRef]
- Shaikh, I.V.; Shaikh, V.A.E. A comprehensive review on assessment of plastic debris in aquatic environment and its prevalence in fishes and other aquatic animals in India. Sci. Total Environ. 2021, 779, 146421. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X. Progress on microplastics research in the Yellow Sea, China. Anthr. Coasts 2020, 3, 43–52. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [Google Scholar] [CrossRef]
- Gamarro, E.G.; Ryder, J.; Elvevoll, E.O.; Olsen, R.L. Microplastics in Fish and Shellfish–A Threat to Seafood Safety? J. Aquat. Food Prod. Technol. 2020, 29, 417–425. [Google Scholar] [CrossRef]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E.; Saluveer, M.; Sidaoui-Haddad, G. Microplastics in fish and fishmeal: An emerging environmental challenge? Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicol. Environ. Saf. 2020, 189, 109913. [Google Scholar] [CrossRef]
- Salerno, M.; Berlino, M.; Mangano, M.C.; Sarà, G. Microplastics and the functional traits of fishes: A global meta-analysis. Glob. Chang. Biol. 2021, 27, 2645–2655. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, Y.; Shi, Z.; Li, Z.; Liang, X. Ecotoxicoproteomic assessment of microplastics and plastic additives in aquatic organisms: A review. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 36, 100713. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, C.; Oliveira, U.; Vieira, N.R. Occurrence and Impacts of Microplastics in Freshwater Fish. J. Aquac. Mar. Biol. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Collard, F.; Gasperi, J.; Gabrielsen, G.W.; Tassin, B. Plastic Particle Ingestion by Wild Freshwater Fish: A Critical Review. Environ. Sci. Technol. 2019, 53, 12974–12988. [Google Scholar] [CrossRef]
- Boerger, C.M.; Lattin, G.L.; Moore, S.L.; Moore, C.J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 2010, 60, 2275–2278. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Sanchez, W.; Bender, C.; Porcher, J.M. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: Preliminary study and first evidence. Environ. Res. 2014, 128, 98–100. [Google Scholar] [CrossRef]
- Parker, B.; Andreou, D.; Green, I.D.; Britton, J.R. Microplastics in freshwater fishes: Occurrence, impacts and future perspectives. Fish Fish. 2021, 22, 467–488. [Google Scholar] [CrossRef]
- Adeogun, A.O.; Ibor, O.R.; Khan, E.A.; Chukwuka, A.V.; Omogbemi, E.D.; Arukwe, A. Detection and occurrence of microplastics in the stomach of commercial fish species from a municipal water supply lake in southwestern Nigeria. Environ. Sci. Pollut. Res. 2020, 27, 31035–31045. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.K.; Spanjer, A.R.; Rosen, M.R.; Thom, T. Microplastics in Lake Mead National Recreation Area, USA: Occurrence and biological uptake. PLoS ONE 2020, 15, e0228896. [Google Scholar] [CrossRef]
- Kasamesiri, P.; Thaimuangphol, W. Microplastics ingestion by freshwater fish in the Chi River, Thailand. Int. J. Geomate 2020, 18, 114–119. [Google Scholar] [CrossRef]
- Kuśmierek, N.; Popiołek, M. Microplastics in freshwater fish from Central European lowland river (Widawa R., SW Poland). Environ. Sci. Pollut. Res. 2020, 27, 11438–11442. [Google Scholar] [CrossRef] [Green Version]
- Frank, Y.A.; Vorobiev, E.D.; Babkina, I.B.; Antsiferov, D.V.; Vorobiev, D.S. Microplastics in fish gut, first records from the Tom River in West Siberia, Russia. Tomsk State Univ. J. Biol. 2020, 130–139. [Google Scholar] [CrossRef]
- Urbanski, B.Q.; Denadai, A.C.; Azevedo-Santos, V.M.; Nogueira, M.G. First record of plastic ingestion by an important commercial native fish (Prochilodus lineatus) in the middle Tietê River basin, Southeast Brazil. Biota Neotrop. 2020, 20. [Google Scholar] [CrossRef]
- Roch, S.; Walter, T.; Ittner, L.D.; Friedrich, C.; Brinker, A. A systematic study of the microplastic burden in freshwater fishes of south-western Germany—Are we searching at the right scale? Sci. Total Environ. 2019, 689, 1001–1011. [Google Scholar] [CrossRef]
- Ryan, M.; Watkins, L.; Walter, M. Hudson River juvenile Blueback herring avoid ingesting microplastics. Mar. Pollut. Bull. 2019, 146, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Pazos, R.S.; Maiztegui, T.; Colautti, D.C.; Paracampo, A.H.; Gómez, N. Microplastics in gut contents of coastal freshwater fish from Río de la Plata estuary. Mar. Pollut. Bull. 2017, 122, 85–90. [Google Scholar] [CrossRef]
- Campbell, S.H.; Williamson, P.R.; Hall, B.D. Microplastics in the gastrointestinal tracts of fish and the water from an urban prairie creek. Facets 2017, 2, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Garcia, F.; De Carvalho, A.R.; Riem-Galliano, L.; Tudesque, L.; Albignac, M.; Ter Halle, A.; Cucherousset, J. Stable Isotope Insights into Microplastic Contamination within Freshwater Food Webs. Environ. Sci. Technol. 2021, 55, 1024–1035. [Google Scholar] [CrossRef]
- Silva-Cavalcanti, J.S.; Silva, J.D.B.; de França, E.J.; de Araújo, M.C.B.; Gusmão, F. Microplastics ingestion by a common tropical freshwater fishing resource. Environ. Pollut. 2017, 221, 218–226. [Google Scholar] [CrossRef]
- Peters, C.A.; Bratton, S.P. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environ. Pollut. 2016, 210, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Faure, F.; Corbaz, M.; Baecher, H.; De Alencastro, L.F. Pollution due to plastics and microplastics in lake Geneva and in the Mediterranean sea. Arch. Sci. 2012, 65, 157–164. [Google Scholar] [CrossRef]
- de Oliveira, J.C.D.; de Oliveira, J.F.; de Oliveira Marques, A.; Peretti, D.; da Costa, R.S.; Novaes, J.L.C. Trophic ecology of detritivorous fish along a reservoir cascade in a tropical semi-arid region. Ecol. Freshw. Fish 2021, 30, 234–243. [Google Scholar] [CrossRef]
- Taghizadeh Rahmat Abadi, Z.; Abtahi, B.; Grossart, H.-P.; Khodabandeh, S. Microplastic content of Kutum fish, Rutilus frisii kutum in the southern Caspian Sea. Sci. Total Environ. 2021, 752, 141542. [Google Scholar] [CrossRef]
- Talley, T.S.; Venuti, N.; Whelan, R. Natural history matters: Plastics in estuarine fish and sediments at the mouth of an urban watershed. PLoS ONE 2020, 15, e0229777. [Google Scholar] [CrossRef]
- Ferreira, G.V.B.; Barletta, M.; Lima, A.R.A. Use of estuarine resources by top predator fishes. How do ecological patterns affect rates of contamination by microplastics? Sci. Total Environ. 2019, 655, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.D.B.; Barletta, M.; Lima, A.R.A.; Ferreira, G.V.B. Use of resources and microplastic contamination throughout the life cycle of grunts (Haemulidae) in a tropical estuary. Environ. Pollut. 2018, 242, 1010–1021. [Google Scholar] [CrossRef]
- Ferreira, G.V.B.; Barletta, M.; Lima, A.R.A.; Dantas, D.V.; Justino, A.K.S.; Costa, M.F. Plastic debris contamination in the life cycle of Acoupa weakfish (Cynoscion acoupa) in a tropical estuary. ICES J. Mar. Sci. 2016, 73, 2695–2707. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, T.; Smit, A.J.; Glassom, D. Plastic ingestion by estuarine mullet Mugil cephalus (Mugilidae) in an urban harbour, KwaZulu-Natal, South Africa. Afr. J. Mar. Sci. 2016, 38, 145–149. [Google Scholar] [CrossRef]
- Kasamesiri, P.; Meksumpun, C.; Meksumpun, S.; Ruengsorn, C. Assessment on microplastics contamination in freshwater fish: A case study of the Ubolratana Reservoir, Thailand. Int. J. Geomate 2021, 20, 62–68. [Google Scholar] [CrossRef]
- Ramos, J.A.A.; Barletta, M.; Costa, M.F. Ingestion of nylon threads by Gerreidae while using a tropical estuary as foraging grounds. Aquat. Biol. 2012, 17, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Possatto, F.E.; Barletta, M.; Costa, M.F.; Ivar do Sul, J.A.; Dantas, D.V. Plastic debris ingestion by marine catfish: An unexpected fisheries impact. Mar. Pollut. Bull. 2011, 62, 1098–1102. [Google Scholar] [CrossRef]
- Sun, D.; Wang, J.; Xie, S.; Tang, H.; Zhang, C.; Xu, G.; Zou, J.; Zhou, A. Characterization and spatial distribution of microplastics in two wild captured economic freshwater fish from north and west rivers of Guangdong province. Ecotoxicol. Environ. Saf. 2021, 207, 111555. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Brasil, D.R.G.; Torres, N.R.; Picanço, A.B.; Sousa, D.S.; Ribeiro, V.S.; Brasil, L.S.; de Assis Montag, L.F. Contamination of stream fish by plastic waste in the Brazilian Amazon. Environ. Pollut. 2020, 266, 115241. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, C.; Pan, Z.; Sun, D.; Zhou, A.; Xie, S.; Wang, J.; Zou, J. Microplastics in wild freshwater fish of different feeding habits from Beijiang and Pearl River Delta regions, south China. Chemosphere 2020, 258, 127345. [Google Scholar] [CrossRef]
- Rodríguez-Sierra, C.M.; Antón-Pardo, M.; Quintana, X.D.; Armengol, X. Microplastics ingestion by the exotic fish Gambusia holbrooki in two Mediterranean coastal lagoons. Ecosistemas 2020, 29, 2097. [Google Scholar] [CrossRef]
- Adu-Boahen, K.; Dadson, I.Y.; Mensah, D.K.D.; Kyeremeh, S. Mapping ecological impact of microplastics on freshwater habitat in the central region of Ghana: A case study of River Akora. GeoJournal 2020. [Google Scholar] [CrossRef]
- Garcia, T.D.; Cardozo, A.L.P.; Quirino, B.A.; Yofukuji, K.Y.; Ganassin, M.J.M.; dos Santos, N.C.L.; Fugi, R. Ingestion of Microplastic by Fish of Different Feeding Habits in Urbanized and Non-urbanized Streams in Southern Brazil. Water Air Soil Pollut. 2020, 231, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Chen, G.; Xu, K.; Huang, K.; Wang, J. Microplastics environmental effect and risk assessment on the aquaculture systems from South China. Int. J. Environ. Res. Public Health 2021, 18, 1869. [Google Scholar] [CrossRef]
- Park, T.-J.; Lee, S.-H.; Lee, M.-S.; Lee, J.-K.; Lee, S.-H.; Zoh, K.-D. Occurrence of microplastics in the Han River and riverine fish in South Korea. Sci. Total Environ. 2020, 708, 134535. [Google Scholar] [CrossRef]
- Park, T.-J.; Lee, S.-H.; Lee, M.-S.; Lee, J.-K.; Park, J.-H.; Zoh, K.-D. Distributions of microplastics in surface water, fish, and sediment in the vicinity of a sewage treatment plant. Water 2020, 12, 3333. [Google Scholar] [CrossRef]
- Blettler, M.C.M.; Garello, N.; Ginon, L.; Abrial, E.; Espinola, L.A.; Wantzen, K.M. Massive plastic pollution in a mega-river of a developing country: Sediment deposition and ingestion by fish (Prochilodus lineatus). Environ. Pollut. 2019, 255, 113348. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Liu, X.; Wang, W.; Di, M.; Wang, J. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicol. Environ. Saf. 2019, 170, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, K.; Su, L.; Li, J.; Yang, D.; Tong, C.; Mu, J.; Shi, H. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 2017, 221, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.C.; Winemiller, K.O.; Barbosa, P.S.; Fortunati, A.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T. First account of plastic pollution impacting freshwater fishes in the Amazon: Ingestion of plastic debris by piranhas and other serrasalmids with diverse feeding habits. Environ. Pollut. 2019, 244, 766–773. [Google Scholar] [CrossRef]
- Biginagwa, F.J.; Mayoma, B.S.; Shashoua, Y.; Syberg, K.; Khan, F.R. First evidence of microplastics in the African Great Lakes: Recovery from Lake Victoria Nile perch and Nile tilapia. J. Great Lakes Res. 2016, 42, 146–149. [Google Scholar] [CrossRef]
- Collard, F.; Gasperi, J.; Gilbert, B.; Eppe, G.; Azimi, S.; Rocher, V.; Tassin, B. Anthropogenic particles in the stomach contents and liver of the freshwater fish Squalius cephalus. Sci. Total Environ. 2018, 643, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.S.; Sreedevi, A.V.; Kumar, A.B. First report of microplastic ingestion by the alien fish Pirapitinga (Piaractus brachypomus) in the Ramsar site Vembanad Lake, south India. Mar. Pollut. Bull. 2020, 160, 111637. [Google Scholar] [CrossRef] [PubMed]
- Faure, F.; Demars, C.; Wieser, O.; Kunz, M.; De Alencastro, L.F. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants. Environ. Chem. 2015, 12, 582–591. [Google Scholar] [CrossRef]
- Lima, F.P.; Azevedo-Santos, V.M.; Santos, V.M.R.; Vidotto-Magnoni, A.P.; Soares, C.L.; Manzano, F.V.; Nobile, A.B. Plastic Ingestion by Commercial and Non-Commercial Fishes from a Neotropical River Basin. Water Air Soil Pollut. 2021, 232, 29. [Google Scholar] [CrossRef]
- Slootmaekers, B.; Catarci Carteny, C.; Belpaire, C.; Saverwyns, S.; Fremout, W.; Blust, R.; Bervoets, L. Microplastic contamination in gudgeons (Gobio gobio) from Flemish rivers (Belgium). Environ. Pollut. 2019, 244, 675–684. [Google Scholar] [CrossRef]
- Garcia, A.G.; Suárez, D.C.; Li, J.; Rotchell, J.M. A comparison of microplastic contamination in freshwater fish from natural and farmed sources. Environ. Sci. Pollut. Res. 2021, 28, 14488–14497. [Google Scholar] [CrossRef] [PubMed]
- Cordova, M.R.; Riani, E.; Shiomoto, A. Microplastics ingestion by blue panchax fish (Aplocheilus sp.) from Ciliwung Estuary, Jakarta, Indonesia. Mar. Pollut. Bull. 2020, 161, 111763. [Google Scholar] [CrossRef]
- O’Connor, J.D.; Mahon, A.M.; Ramsperger, A.F.R.M.; Trotter, B.; Redondo-Hasselerharm, P.E.; Koelmans, A.A.; Lally, H.T.; Murphy, S. Microplastics in Freshwater Biota: A Critical Review of Isolation, Characterization, and Assessment Methods. Glob. Chall. 2020, 4, 1800118. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, T.; Sershen; Thompson, R.C.; Rajkaran, A. Quantification and characterisation of microplastics ingested by selected juvenile fish species associated with mangroves in KwaZulu-Natal, South Africa. Environ. Pollut. 2020, 257, 113635. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Ma, L.S.; Li, H.X.; Pan, Y.F.; Liu, S.; Zhang, L.; Peng, J.P.; Fok, L.; Xu, X.R.; He, W.H. Low level of microplastic contamination in wild fish from an urban estuary. Mar. Pollut. Bull. 2020, 160, 111650. [Google Scholar] [CrossRef]
- Martinez-Tavera, E.; Duarte-Moro, A.M.; Sujitha, S.B.; Rodriguez-Espinosa, P.F.; Rosano-Ortega, G.; Expósito, N. Microplastics and metal burdens in freshwater Tilapia (Oreochromis niloticus) of a metropolitan reservoir in Central Mexico: Potential threats for human health. Chemosphere 2021, 266, 128968. [Google Scholar] [CrossRef] [PubMed]
- Tien, C.J.; Wang, Z.X.; Chen, C.S. Microplastics in water, sediment and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish. Environ. Pollut. 2020, 265, 114962. [Google Scholar] [CrossRef]
- McNeish, R.E.; Kim, L.H.; Barrett, H.A.; Mason, S.A.; Kelly, J.J.; Hoellein, T.J. Microplastic in riverine fish is connected to species traits. Sci. Rep. 2018, 8, 11639. [Google Scholar] [CrossRef] [Green Version]
- Galafassi, S.; Sighicelli, M.; Pusceddu, A.; Bettinetti, R.; Cau, A.; Temperini, M.E.; Gillibert, R.; Ortolani, M.; Pietrelli, L.; Zaupa, S.; et al. Microplastic pollution in perch (Perca fluviatilis, Linnaeus 1758) from Italian south-alpine lakes. Environ. Pollut. 2021, 288, 117782. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, Y.; Zhong, S.; Liu, J.; Qin, Y.; Gao, P. Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, Southwest China. Sci. Total Environ. 2021, 755, 142428. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, S.C.; Glassic, H.C.; Guy, C.S.; Koel, T.M. Presence of microplastics in the food web of the largest high-elevation lake in North America. Water 2021, 13, 264. [Google Scholar] [CrossRef]
- Maghsodian, Z.; Sanati, A.M.; Ramavandi, B.; Ghasemi, A.; Sorial, G.A. Microplastics accumulation in sediments and Periophthalmus waltoni fish, mangrove forests in southern Iran. Chemosphere 2021, 264, 128543. [Google Scholar] [CrossRef]
- Bosshart, S.; Erni-Cassola, G.; Burkhardt-Holm, P. Independence of microplastic ingestion from environmental load in the round goby (Neogobius melanostomus) from the Rhine river using high quality standards. Environ. Pollut. 2020, 267, 115664. [Google Scholar] [CrossRef] [PubMed]
- Merga, L.B.; Redondo-Hasselerharm, P.E.; Van den Brink, P.J.; Koelmans, A.A. Distribution of microplastic and small macroplastic particles across four fish species and sediment in an African lake. Sci. Total Environ. 2020, 741, 140527. [Google Scholar] [CrossRef]
- Lv, W.; Yuan, Q.; He, D.; Lv, W.; Zhou, W. Microplastic contamination caused by different rearing modes of Asian swamp eel (Monopterus albus). Aquac. Res. 2020, 51, 5084–5095. [Google Scholar] [CrossRef]
- Khan, F.R.; Shashoua, Y.; Crawford, A.; Drury, A.; Sheppard, K.; Stewart, K.; Sculthorp, T. ‘The Plastic Nile’: First Evidence of Microplastic Contamination in Fish from the Nile River (Cairo, Egypt). Toxics 2020, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Su, L.; Zhang, H.; Deng, H.; Chen, Q.; Shi, H. Microplastics in fishes and their living environments surrounding a plastic production area. Sci. Total Environ. 2020, 727, 138662. [Google Scholar] [CrossRef]
- Sembiring, E.; Fareza, A.A.; Suendo, V.; Reza, M. The Presence of Microplastics in Water, Sediment, and Milkfish (Chanos chanos) at the Downstream Area of Citarum River, Indonesia. Water Air Soil Pollut. 2020, 231, 1–14. [Google Scholar] [CrossRef]
- Suresh, A.; Vijayaraghavan, G.; Saranya, K.S.; Neethu, K.V.; Aneesh, B.; Bijoy Nandan, S. Microplastics distribution and contamination from the Cochin coastal zone, India. Reg. Stud. Mar. Sci. 2020, 40, 101533. [Google Scholar] [CrossRef]
- Garcés-Ordóñez, O.; Mejía-Esquivia, K.A.; Sierra-Labastidas, T.; Patiño, A.; Blandón, L.M.; Espinosa Díaz, L.F. Prevalence of microplastic contamination in the digestive tract of fishes from mangrove ecosystem in Cispata, Colombian Caribbean. Mar. Pollut. Bull. 2020, 154, 111085. [Google Scholar] [CrossRef]
- Huang, J.S.; Koongolla, J.B.; Li, H.X.; Lin, L.; Pan, Y.F.; Liu, S.; He, W.H.; Maharana, D.; Xu, X.R. Microplastic accumulation in fish from Zhanjiang mangrove wetland, South China. Sci. Total Environ. 2020, 708, 134839. [Google Scholar] [CrossRef]
- Lv, W.; Zhou, W.; Lu, S.; Huang, W.; Yuan, Q.; Tian, M.; Lv, W.; He, D. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China. Sci. Total Environ. 2019, 652, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Fan, Y.; Zhu, Z.; Chen, G.; Tang, C.; Peng, X. Occurrence and Species-Specific Distribution of Plastic Debris in Wild Freshwater Fish from the Pearl River Catchment, China. Environ. Toxicol. Chem. 2019, 38, 1504–1513. [Google Scholar] [CrossRef]
- Wagner, J.; Wang, Z.-M.; Ghosal, S.; Murphy, M.; Wall, S.; Cook, A.-M.; Robberson, W.; Allen, H. Nondestructive Extraction and Identification of Microplastics from Freshwater Sport Fish Stomachs. Environ. Sci. Technol. 2019, 53, 14496–14506. [Google Scholar] [CrossRef] [PubMed]
- Calderon, E.A.; Hansen, P.; Rodríguez, A.; Blettler, M.C.M.; Syberg, K.; Khan, F.R. Microplastics in the Digestive Tracts of Four Fish Species from the Ciénaga Grande de Santa Marta Estuary in Colombia. Water Air Soil Pollut. 2019, 230, 257. [Google Scholar] [CrossRef]
- Su, L.; Deng, H.; Li, B.; Chen, Q.; Pettigrove, V.; Wu, C.; Shi, H. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. J. Hazard. Mater. 2019, 365, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Zhang, K.; Chen, X.; Shi, H.; Luo, Z.; Wu, C. Sources and distribution of microplastics in China’s largest inland lake–Qinghai Lake. Environ. Pollut. 2018, 235, 899–906. [Google Scholar] [CrossRef]
- Horton, A.A.; Jürgens, M.D.; Lahive, E.; van Bodegom, P.M.; Vijver, M.G. The influence of exposure and physiology on microplastic ingestion by the freshwater fish Rutilus rutilus (roach) in the River Thames, UK. Environ. Pollut. 2018, 236, 188–194. [Google Scholar] [CrossRef]
- Bessa, F.; Barría, P.; Neto, J.M.; Frias, J.P.G.L.; Otero, V.; Sobral, P.; Marques, J.C. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 2018, 128, 575–584. [Google Scholar] [CrossRef]
- Pegado, S.; de Souza, T.; Schmid, K.; Winemiller, K.O.; Chelazzi, D.; Cincinelli, A.; Dei, L.; Giarrizzo, T. First evidence of microplastic ingestion by fishes from the Amazon River estuary. Mar. Pollut. Bull. 2018, 133, 814–821. [Google Scholar] [CrossRef]
- Karlsson, T.M.; Vethaak, A.D.; Almroth, B.C.; Ariese, F.; van Velzen, M.; Hassellöv, M.; Leslie, H.A. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Mar. Pollut. Bull. 2017, 122, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xiong, X.; Hu, H.; Wu, C.; Bi, Y.; Wu, Y.; Zhou, B.; Lam, P.K.S.; Liu, J. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environ. Sci. Technol. 2017, 51, 3794–3801. [Google Scholar] [CrossRef]
- Mcgoran, A.R.; Clark, P.F.; Morritt, D. Presence of microplastic in the digestive tracts of European flounder, Platichthys flesus, and European smelt, Osmerus eperlanus, from the River Thames. Environ. Pollut. 2017, 220, 744–751. [Google Scholar] [CrossRef] [Green Version]
- Romeo, T.; Pietro, B.; Pedà, C.; Consoli, P.; Andaloro, F.; Fossi, M.C. First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean Sea. Mar. Pollut. Bull. 2015, 95, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Cannon, S.M.E.; Lavers, J.L.; Figueiredo, B. Plastic ingestion by fish in the Southern Hemisphere: A baseline study and review of methods. Mar. Pollut. Bull. 2016, 107, 286–291. [Google Scholar] [CrossRef]
- Jovanović, B. Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr. Environ. Assess. Manag. 2017, 13, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Soltani, N.; Keshavarzi, B.; Moore, F.; Turner, A.; Hassanaghaei, M. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere 2018, 205, 80–87. [Google Scholar] [CrossRef]
- Kim, S.W.; Chae, Y.; Kim, D.; An, Y.J. Zebrafish can recognize microplastics as inedible materials: Quantitative evidence of ingestion behavior. Sci. Total Environ. 2019, 649, 156–162. [Google Scholar] [CrossRef]
- Khosrovyan, A.; Gabrielyan, B.; Kahru, A. Ingestion and effects of virgin polyamide microplastics on Chironomus riparius adult larvae and adult zebrafish Danio rerio. Chemosphere 2020, 259, 127456. [Google Scholar] [CrossRef]
- de Sá, L.C.; Luís, L.G.; Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 2015, 196, 359–362. [Google Scholar] [CrossRef]
- Lusher, A.L.; McHugh, M.; Thompson, R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef]
- Miranda, T.; Vieira, L.R.; Guilhermino, L. Neurotoxicity, behavior, and lethal effects of cadmium, microplastics, and their mixtures on Pomatoschistus microps juveniles from two wild populations exposed under laboratory conditions—implications to environmental and human risk assessment. Int. J. Environ. Res. Public Health 2019, 16, 2857. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Chen, B.; Xia, B.; Shi, X.; Qu, K. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J. Hazard. Mater. 2018, 360, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 2018, 235, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, K.; Ekvall, M.T.; Hansson, L.A.; Linse, S.; Malmendal, A.; Cedervall, T. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ. Sci. Technol. 2015, 49, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Greven, A.C.; Merk, T.; Karagöz, F.; Mohr, K.; Klapper, M.; Jovanović, B.; Palić, D. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 2016, 35, 3093–3100. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galafassi, S.; Campanale, C.; Massarelli, C.; Uricchio, V.F.; Volta, P. Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion. Water 2021, 13, 2214. https://doi.org/10.3390/w13162214
Galafassi S, Campanale C, Massarelli C, Uricchio VF, Volta P. Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion. Water. 2021; 13(16):2214. https://doi.org/10.3390/w13162214
Chicago/Turabian StyleGalafassi, Silvia, Claudia Campanale, Carmine Massarelli, Vito Felice Uricchio, and Pietro Volta. 2021. "Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion" Water 13, no. 16: 2214. https://doi.org/10.3390/w13162214
APA StyleGalafassi, S., Campanale, C., Massarelli, C., Uricchio, V. F., & Volta, P. (2021). Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion. Water, 13(16), 2214. https://doi.org/10.3390/w13162214