Low Cost Activated Carbon for Removal of NOM and DBPs: Optimization and Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Activated Carbon
2.2. Metal Impregnation on AC
2.3. Reagents, Materials, and Instruments
2.4. Optimization
2.5. Characterization of AC and Methods
2.6. Water Sample Analysis
2.7. NOM Characterization
2.8. Equilibrium Adsorption Isotherms
2.9. Adsorption Kinetic Models
3. Results and Discussion
3.1. Characterization of Adsorbents
3.1.1. Effect of Nitric Acid
Fly Ash
Activated Carbon
3.1.2. Metal Coating on Activated Carbon
Optimization and Metal Leach
Characterization of Metal Coated Activated Carbon
3.2. Optimization of Dose
3.3. Equilibrium Adsorption Isotherms
3.4. Kinetic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, A.; Sarkar, A.; Sathya, J.; McCrate, F. Additional Burden of Cancers Due to Environmental Carcinogens in Newfoundland and Labrador: A Spatial Analysis. Environ. Health Rev. 2020, 63, 77–86. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mazumder, M.A.J.; Alhooshani, K.; Al-Suwaiyan, M.S. Reduction of DBPs in Synthetic Water by Indoor Techniques and Its Implications on Exposure and Health Risk. Sci. Total Environ. 2019, 691, 621–630. [Google Scholar] [CrossRef]
- EPA. 40 CFR Parts 9, 141, and 142 National Primary Drinking Water Regulations: Disinfectants and the Disinfection by-Products; Environmental Protection Agency: Washington, DC, USA, 2002; p. 351.
- Rodríguez-Murillo, J.; Zobrist, J.; Filella, M. Temporal Trends in Organic Carbon Content in the Main Swiss Rivers, 1974–2010. Sci. Total Environ. 2015, 502, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Worrall, F.; Burt, T.P. Time Series Analysis of Long-Term River Dissolved Organic Carbon Records. Hydrol. Process. 2004, 18, 893–911. [Google Scholar] [CrossRef]
- Evans, C.; Monteith, D.; Cooper, D. Long-Term Increases in Surface Water Dissolved Organic Carbon: Observations, Possible Causes and Environmental Impacts. Environ. Pollut. 2005, 137, 55–71. [Google Scholar] [CrossRef]
- A Molot, L.; Dillon, P.J. Long-Term Trends in Catchment Export and Lake Concentrations of Base Cations in the Dorset Study Area, Central Ontario. Can. J. Fish. Aquat. Sci. 2008, 65, 809–820. [Google Scholar] [CrossRef]
- O’Driscoll, C.; Ledesma, J.L.; Coll, J.; Murnane, J.; Nolan, P.; Mockler, E.M.; Futter, M.N.; Xiao, L.W. Minimal Climate Change Impacts on Natural Organic Matter Forecasted for a Potable Water Supply in Ireland. Sci. Total Environ. 2018, 630, 869–877. [Google Scholar] [CrossRef]
- Nkambule, T.T.; Krause, R.; Haarhoff, J.; Mamba, B. A Three Step Approach for Removing Organic Matter from South African Water Sources and Treatment Plants. Phys. Chem. Earth, Parts A/B/C 2012, 50–52, 132–139. [Google Scholar] [CrossRef]
- Hong, S.; Kim, S.; Bae, C. Efficiency of Enhanced Coagulation for Removal of NOM and for Adsorbability of NOM on GAC. Desalination Water Treat. 2009, 2, 90–95. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsalainen, M. Removal of Natural Organic Matter in Drinking Water Treatment by Coagulation: A Comprehensive Review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef]
- Särkkä, H.; Vepsalainen, M.; Sillanpää, M. Natural Organic Matter (NOM) Removal by Electrochemical Methods—A Review. J. Electroanal. Chem. 2015, 755, 100–108. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A. Advanced Oxidation Processes for the Removal of Natural Organic Matter from Drinking Water Sources: A Comprehensive Review. J. Environ. Manag. 2018, 208, 56–76. [Google Scholar] [CrossRef]
- Lidén, A.; Persson, K.M. Comparison between Ultrafiltration and Nanofiltration Hollow-Fiber Membranes for Removal of Natural Organic matter—A Pilot Study. J. Water Supply Res. Technol. 2015, 65, jws2015065. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Removal of Natural Organic Matter (NOM) and Its Constituents from Water by Adsorption—A Review. Chemosphere 2017, 166, 497–510. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An Overview of the Modification Methods of Activated Carbon for Its Water Treatment Applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Lompe, K.M.; Menard, D.; Barbeau, B. The Influence of Iron Oxide Nanoparticles upon the Adsorption of Organic Matter on Magnetic Powdered Activated Carbon. Water Res. 2017, 123, 30–39. [Google Scholar] [CrossRef]
- Shadbahr, J.; Husain, T. Affordable and Efficient Adsorbent for Arsenic Removal from Rural Water Supply Systems in Newfoundland. Sci. Total Environ. 2019, 660, 158–168. [Google Scholar] [CrossRef]
- Amaral, P.; Partlan, E.; Li, M.; Lapolli, F.; Mefford, O.; Karanfil, T.; Ladner, D.A. Superfine Powdered Activated Carbon (S-PAC) Coatings on Microfiltration Membranes: Effects of Milling Time on Contaminant Removal and Flux. Water Res. 2016, 100, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canales-Flores, R.; Prieto-García, F. Taguchi Optimization for Production of Activated Carbon from Phosphoric Acid Impregnated Agricultural Waste by Microwave Heating for the Removal of Methylene Blue. Diam. Relat. Mater. 2020, 109, 108027. [Google Scholar] [CrossRef]
- Ali, G.A.M.; Habeeb, O.A.; Algarni, H.; Chong, K.F. CaO Impregnated Highly Porous Honeycomb Activated Carbon from Agriculture Waste: Symmetrical Supercapacitor Study. J. Mater. Sci. 2018, 54, 683–692. [Google Scholar] [CrossRef]
- Isoda, N.; Rodrigues, R.; Silva, A.; Gonçalves, M.; Mandelli, D.; Figueiredo, F.; Carvalho, W. Optimization of Preparation Conditions of Activated Carbon from Agriculture Waste Utilizing Factorial Design. Powder Technol. 2014, 256, 175–181. [Google Scholar] [CrossRef]
- ElShafei, G.M.; ElSherbiny, I.M.; Darwish, A.S.; Philip, C.A. Silkworms’ Feces-Based Activated Carbons As Cheap Adsorbents for Removal of Cadmium and Methylene Blue from Aqueous Solutions. Chem. Eng. Res. Des. 2014, 92, 461–470. [Google Scholar] [CrossRef]
- Zeng, F.; Liao, X.; Pan, D.; Shi, H. Adsorption of Dissolved Organic Matter from Landfill Leachate Using Activated Carbon Prepared from Sewage Sludge and Cabbage by ZnCl2. Environ. Sci. Pollut. Res. 2019, 27, 4891–4904. [Google Scholar] [CrossRef] [PubMed]
- Zięzio, M.; Charmas, B.; Jedynak, K.; Hawryluk, M.; Kucio, K. Preparation and Characterization of Activated Carbons Obtained from the Waste Materials Impregnated With Phosphoric acid(V). Appl. Nanosci. 2020, 10, 4703–4716. [Google Scholar] [CrossRef]
- Husain, T.; Taghizadehgan, A. Granulation of Powdered Activated Carbon Generated from Corner Brook Pulp and Paper Mill Ash Waste; Memorial University of Newfoundland: St. John’s, NL, Canada, 2019. [Google Scholar]
- Zhang, H.; Husain, T.; Chen, Y. Corner Brook Pulp and Paper Mill Waste Management; Memorial University of Newfoundland: St. John’s, NL, Canada, 2017. [Google Scholar]
- Zhang, H.; Tafvizi, H.; Husain, T.; Chen, Y. Affordable Water Filtration Technology for Small Rural Communities; Memorial University of Newfoundland: St. John’s, NL, Canada, 2017. [Google Scholar]
- Department of Environment and Conservation. Study on Characteristics and Removal of Natural Organic Matter in Drink-Ing Water Systems in Newfoundland and Labrador; CBCL Limited: Halifax, NS, Canada, 2011.
- Golea, D.; Upton, A.; Jarvis, P.; Moore, G.; Sutherland, S.; Parsons, S.; Judd, S. THM and HAA Formation from NOM in Raw and Treated Surface Waters. Water Res. 2017, 112, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golea, D.; Jarvis, P.; Jefferson, B.; Moore, G.; Sutherland, S.; Parsons, S.; Judd, S. Influence of Granular Activated Carbon Media Properties on Natural Organic Matter and Disinfection by-Product Precursor Removal from Drinking Water. Water Res. 2020, 174, 115613. [Google Scholar] [CrossRef]
- Tanthapanichakoon, W.; Ariyadejwanich, P.; Japthong, P.; Nakagawa, K.; Mukai, S.; Tamon, H. Adsorption–desorption Characteristics of Phenol and Reactive Dyes from Aqueous Solution on Mesoporous Activated Carbon Prepared from Waste Tires. Water Res. 2005, 39, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Shawabkeh, R.; Aslam, Z.; Hussien, I.A. Thermochemical Treatment of Fly Ash for Synthesis of Mesoporous Activated Carbon. J. Therm. Anal. Calorim. 2015, 122, 1191–1201. [Google Scholar] [CrossRef]
- El-Hendawy, A.-N.A. Influence of HNO3 Oxidation on the Structure and Adsorptive Properties of Corncob-Based Activated Carbon. Carbon 2003, 41, 713–722. [Google Scholar] [CrossRef]
- Nagano, S.; Tamon, H.; Adzumi, T.; Nakagawa, K.; Suzuki, T. Activated Carbon from Municipal Waste. Carbon 2000, 38, 915–920. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Seo, G. Iron Oxide Nanoparticle-Impregnated Powder-Activated Carbon (IPAC) for NOM Removal in MF Membrane Water Treatment System. Desalination Water Treat. 2013, 51, 6392–6400. [Google Scholar] [CrossRef]
- Dastgheib, S.; Karanfil, T.; Cheng, W. Tailoring Activated Carbons for Enhanced Removal of Natural Organic Matter from Natural Waters. Carbon 2004, 42, 547–557. [Google Scholar] [CrossRef]
- Arampatzidou, A.; Voutsa, D.; Deliyanni, E. Removal of Bisphenol A by Fe-Impregnated Activated Carbons. Environ. Sci. Pollut. Res. 2018, 25, 25869–25879. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, M.; Ebrahimi, A.; Mahvi, A.H.; Fatehizadeh, A.; Karakani, F.; Azarpira, H. Experimental Data for Aluminum Removal from Aqueous Solution by Raw and Iron-Modified Granular Activated Carbon. Data Brief 2018, 17, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Sawood, G.M.; Mishra, A.; Gupta, S.K. Optimization of Arsenate Adsorption over Aluminum-Impregnated Tea Waste Biochar Using RSM–Central Composite Design and Adsorption Mechanism. J. Hazard. Toxic Radioact. Waste 2021, 25, 04020075. [Google Scholar] [CrossRef]
- Kazeem, T.S.; Lateef, S.A.; Ganiyu, S.A.; Qamaruddin, M.; Tanimu, A.; Sulaiman, K.O.; Jillani, S.M.S.; Alhooshani, K. Aluminium-Modified Activated Carbon As Efficient Adsorbent for Cleaning of Cationic Dye in Wastewater. J. Clean. Prod. 2018, 205, 303–312. [Google Scholar] [CrossRef]
- Tafvizi, H.; Husain, T. Enhanced Coagulation for Removal of Natural Organic Matter and Disinfection Byproducts: Multivariate Optimization. Environ. Eng. Sci. 2021, 1–13. [Google Scholar] [CrossRef]
- Chow, C.W.; van Leeuwen, J.A.; Fabris, R.; Drikas, M. Optimised Coagulation Using Aluminium Sulfate for the Removal of Dissolved Organic Carbon. Desalination 2009, 245, 120–134. [Google Scholar] [CrossRef]
- Kristiana, I.; Joll, C.; Heitz, A. Powdered Activated Carbon Coupled With Enhanced Coagulation for Natural Organic Matter Removal and Disinfection by-Product Control: Application in a Western Australian Water Treatment Plant. Chemosphere 2011, 83, 661–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, J.; Liang, H.; Cheng, X.; Yang, H.; Xu, D.; Gan, Z.; Luo, X.; Zhu, X.; Li, G. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment. Environ. Sci. Pollut. Res. 2019, 26, 33770–33780. [Google Scholar] [CrossRef]
- Szlachta, M.; Adamski, W. Effects of Natural Organic Matter Removal by Integrated Processes: Alum Coagulation and PAC-Adsorption. Water Sci. Technol. 2009, 59, 1951–1957. [Google Scholar] [CrossRef]
- Raposo, F.; de la Rubia, M.A.; Borja, R. Methylene Blue Number as Useful Indicator to Evaluate the Adsorptive Capacity of Granular Activated Carbon in Batch Mode: Influence of adsorbate/Adsorbent Mass Ratio and Particle Size. J. Hazard. Mater. 2009, 165, 291–299. [Google Scholar] [CrossRef]
- Hautman, D.P.; Munch, D.J. Development of U.S.; EPA: Washington, DC, USA, 1997.
- Pawlecki-Vonderheide, A.M.; Munch, D.J.; Munch, J.W. Research Associated With the Development of EPA Method 552.2. J. Chromatogr. Sci. 1997, 35, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C. Design and Analysis of Experiments, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1991; pp. 521–568. [Google Scholar]
- Chowdhury, S. Impact of Source Waters, Disinfectants, Seasons and Treatment Approaches on Trihalomethanes in Drinking Water: A Comparison Based on the Size of Municipal Systems. Water Environ. J. 2013, 27, 197–206. [Google Scholar] [CrossRef]
- ASTM D7573. Standard Test Method for Total Carbon and Organic Carbon in Water by High Temperature Catalytic Com-Bustion and Infrared Detection; ASTM International: Conshohocken, PA, USA, 2013; pp. 1–8. [Google Scholar]
- Chow, C.W.K.; Fabris, R.; Drikas, M. A Rapid Fractionation Technique to Characterise Natural Organic Matter for the Optimisation of Water Treatment Processes. J. Water Supply Res. Technol. 2004, 53, 85–92. [Google Scholar] [CrossRef]
- Vieira, R.F.; Berenguel, A.T.; Silva, M.A.; Vilaca, J.S.; Domingues, V.F.; Figueiredo, S.A. Natural Organic Matter Fractionation along the Treatment of Water for Human Consumption. Glob. NEST J. 2013, 14, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Kurushkin, M. Writing Reactions of Metals with Nitric Acid: A Mnemonic Device for Introductory Chemistry Students. J. Chem. Educ. 2015, 92, 1125–1126. [Google Scholar] [CrossRef]
- Swift, E.H.; Butler, E.A. Quantitative Measurements and Chemical Equilibria; W. H. Freeman & Company: New York, NY, USA, 1972. [Google Scholar]
- Nunes, C.A.; Guerreiro, M.C. Estimation of Surface Area and Pore Volume of Activated Carbons by Methylene Blue and Iodine Numbers. Química Nova 2011, 34, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Auta, M.; Hameed, B.H. Modified Mesoporous Clay Adsorbent for Adsorption Isotherm and Kinetics of Methylene Blue. Chem. Eng. J. 2012, 198–199, 219–227. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- EPA. 2018 Edition of the Drinking Water Standards and Health Advisories Tables; U.S. Environmental Protection Agency: Washington, DC, USA, 2018.
- Menya, E.; Olupot, P.W.; Storz, H.; Lubwama, M.; Kiros, Y. Production and Performance of Activated Carbon from Rice Husks for Removal of Natural Organic Matter from Water: A Review. Chem. Eng. Res. Des. 2018, 129, 271–296. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Zarei, A.; Mesdaghinia, A.; Nabizadeh, R.; Alimohammadi, M.; Afsharnia, M.; McKay, G. Production and Application of a Treated bentonite–chitosan Composite for the Efficient Removal of Humic Acid from Aqueous Solution. Chem. Eng. Res. Des. 2018, 140, 102–115. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Zarei, A.; Mesdaghinia, A.; Nabizadeh, R.; Alimohammadi, M.; Afsharnia, M. Response Surface Modeling, Isotherm, Thermodynamic and Optimization Study of Arsenic (V) Removal from Aqueous Solutions Using Modified Bentonite-Chitosan (MBC). Korean J. Chem. Eng. 2017, 34, 757–767. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Newcombe, G.; Morrison, J.; Hepplewhite, C.; Knappe, D. Simultaneous Adsorption of MIB and NOM onto Activated Carbon: II. Competitive Effects. Carbon 2002, 40, 2147–2156. [Google Scholar] [CrossRef]
- Parsons, S.; Goslan, E.; McGrath, S.; Jarvis, P.; Jefferson, B. Disinfection Byproduct Control. In Comprehensive Water Quality and Purification; Elsevier BV: Amsterdam, The Netherlands, 2013; pp. 120–147. [Google Scholar] [CrossRef]
- Park, H.-S.; Koduru, J.R.; Choo, K.-H.; Lee, B. Activated Carbons Impregnated With Iron Oxide Nanoparticles for Enhanced Removal of Bisphenol A and Natural Organic Matter. J. Hazard. Mater. 2015, 286, 315–324. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Camacho, F.P.; Sousa, V.S.; Bergamasco, R. Green Technologies for Cyanobacteria and Natural Organic Matter Water Treatment Using Natural Based Products. J. Clean. Prod. 2017, 162, 484–490. [Google Scholar] [CrossRef]
- Iriarte-Velasco, U.; Álvarez-Uriarte, J.I.; Chimeno-Alanís, N.; González-Velasco, J.R. Natural Organic Matter Adsorption onto Granular Activated Carbons: Implications in the Molecular Weight and Disinfection Byproducts Formation. Ind. Eng. Chem. Res. 2008, 47, 7868–7876. [Google Scholar] [CrossRef]
- Eustáquio, H.; Lopes, C.; Da Rocha, R.S.; Cardoso, B.D.; Pergher, S. Modification of Activated Carbon for the Adsorption of Humic Acid. Adsorpt. Sci. Technol. 2015, 33, 117–126. [Google Scholar] [CrossRef]
- Bouras, H.D.; Benturki, O.; Bouras, N.; Attou, M.; Donnot, A.; Merlin, A.; Addoun, F.; Holtz, M.D. The Use of an Agricultural Waste Material from Ziziphus Jujuba as a Novel Adsorbent for Humic Acid Removal from Aqueous Solutions. J. Mol. Liq. 2015, 211, 1039–1046. [Google Scholar] [CrossRef]
- Yang, K.; Fox, J.T. Adsorption of Humic Acid by Acid-Modified Granular Activated Carbon and Powder Activated Carbon. J. Environ. Eng. 2018, 144, 04018104. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Bekaroglu, S.S.K.; Yigit, N.O.; Harman, B.I.; Kitis, M. Hybrid Adsorptive and Oxidative Removal of Natural Organic Matter Using Iron Oxide-Coated Pumice Particles. J. Chem. 2016, 2016, 3108034. [Google Scholar] [CrossRef] [Green Version]
- Kitis, M.; Kaplan, S.; Karakaya, E.; Yigit, N.; Civelekoglu, G. Adsorption of Natural Organic Matter from Waters by Iron Coated Pumice. Chemosphere 2007, 66, 130–138. [Google Scholar] [CrossRef]
- Świetlik, J.; Laskowski, T.; Kozyatnyk, I. Adsorption of Natural Organic Matter onto the Products of Water-Pipe Corrosion. Water Air Soil Pollut. 2015, 226, 225. [Google Scholar] [CrossRef]
- Rahman, M.S.; Whalen, M.; Gagnon, G.A. Adsorption of Dissolved Organic Matter (DOM) onto the Synthetic Iron Pipe Corrosion Scales (goethite and magnetite): Effect of pH. Chem. Eng. J. 2013, 234, 149–157. [Google Scholar] [CrossRef]
Factors | Symbol | Levels | ||||
---|---|---|---|---|---|---|
(–α) | Lowest (–1) | Center (0) | Highest (+1) | (+α) | ||
Contact Time (h) | A | 0.50 | 5.26 | 12.25 | 19.23 | 24.00 |
Dosage (g/L) | B | 0.05 | 0.14 | 0.27 | 0.40 | 0.50 |
pH | C | 4.00 | 5.20 | 7.00 | 8.80 | 10.00 |
Sources | DOC (Mg L−1) | UV254 (C m−1) | THM4 (ppb) | HAA5 (ppb) | VHA (%) | SHA (%) | CHI (%) | NHI (%) |
---|---|---|---|---|---|---|---|---|
Natural | 5.22–10.31 | 0.237–0.557 | 1639.35–2485.10 | 327.69–2157.70 | 67.05–81.20 | 5.56–7.41 | 1.92–3.11 | 8.21–25.09 |
Synthetic | 9.05–9.42 | 1.063 | 1088.17 | 2213.49 | 100.00 | 0.00 | 0.00 | 0.00 |
Element | Metal Content (ppm) | Metal Removal (mol × 10−6) | |||||
---|---|---|---|---|---|---|---|
CBPP-A0 1 | CBPP-A5 1 | CBPP-A10 | A0 | A5 | A10 | Diff. | |
Iron | 784 | 175.19 | 121 | 0.00 | 10.90 | 11.87 | 0.97 |
Aluminum | 947 | 281.31 | 201 | 0.00 | 24.75 | 27.73 | 2.98 |
Magnesium | 511 | 185.33 | 86 | 0.00 | 13.40 | 17.49 | 4.09 |
Zinc | 11.72 | 9.07 | 6.75 | 0.00 | <1 | <1 | NA |
Copper | 7.28 | <2 | <2 | 0.00 | <1 | <1 | NA |
Calcium | 2656 | 1481 | 535 | 0.00 | 29.31 | 52.92 | 23.60 |
Water Sample | Metal Content (mg/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Al | Mg | Ca | Zn | Cu | As | Mn | Hg | |
Raw Water | 0.16 | 0.13 | 6.66 | 2.41 | 0.017 | <0.01 | <0.02 | 0.009 | <0.1 |
0.25% Al-AC 1 | 0.06 | 0.05 | 6.60 | 2.28 | 0.015 | 0.03 | <0.02 | 0.036 | <0.1 |
0.50% Al-AC 1 | 0.06 | 0.06 | 6.65 | 2.30 | 0.016 | <0.01 | <0.02 | 0.023 | <0.2 |
0.75% Al-AC 1 | 0.06 | 0.08 | 6.59 | 2.31 | 0.016 | 0.05 | <0.02 | 0.011 | <0.1 |
1.00% Al-AC 1 | 0.05 | 0.08 | 6.66 | 2.36 | 0.018 | 0.01 | <0.02 | 0.011 | <0.1 |
3.25% Al-AC 1 | 0.06 | 0.09 | 6.57 | 2.30 | 0.016 | <0.01 | <0.02 | 0.009 | <0.1 |
5.50% Al-AC 1 | 0.06 | 0.10 | 6.54 | 2.31 | 0.018 | 0.04 | <0.02 | 0.008 | <0.1 |
0.25% Fe-AC 1 | 0.06 | 0.04 | 6.63 | 2.48 | 0.017 | <0.01 | <0.02 | 0.053 | <0.1 |
0.50% Fe-AC 1 | 0.07 | 0.04 | 6.81 | 2.42 | 0.016 | <0.01 | <0.02 | 0.044 | <0.1 |
0.75% Fe-AC 1 | 0.07 | 0.04 | 6.63 | 2.34 | 0.012 | <0.01 | <0.02 | 0.037 | <0.1 |
1.00% Fe-AC 1 | 0.07 | 0.05 | 6.56 | 2.33 | 0.013 | 0.03 | <0.02 | 0.024 | <0.1 |
3.25% Fe-AC 1 | 0.07 | 0.04 | 6.62 | 2.30 | 0.012 | 0.06 | <0.02 | 0.009 | <0.1 |
5.50% Fe-AC 1 | 0.06 | 0.05 | 6.56 | 2.34 | 0.013 | 0.04 | <0.02 | 0.023 | <0.1 |
Sample | Surface Area (BET) (m2/g) | Micropore Volume (cm3/g) | Langmuir Surface Area (m2/g) | MBV (mg/g) | IN (mg/g) | pHpzc | Size (d.nm) * |
---|---|---|---|---|---|---|---|
AC-A10 | 808.29 | 0.21 | 995.65 | 265 | 1212 | 5.98 | 2039 |
1.00% Al-AC | 783.29 | 0.18 | 948.92 | 234 | 925 | 6.61 | 1976 |
0.75% Fe-AC | 709.89 | 0.19 | 888.09 | 226 | 931 | 6.43 | 2620 |
Responses | F-Valuemodel | p-Valuemodel | |||
---|---|---|---|---|---|
DOC removal | 0.95 | 0.93 | 0.87 | 46.10 | <0.0001 |
qe | 0.97 | 0.96 | 0.93 | 92.65 | <0.0001 |
Adsorbent | Source of Adsorbent | Surface Area (BET) (m2/g) | Water Sample | Target Adsorbate | Langmuir Constant (KL) | Qmax (mg/g) | Reference |
---|---|---|---|---|---|---|---|
AC-A10 | Fly ash | 808.29 | Natural | DOC | 0.2726 | 87.59 | This study |
1.00% Al-AC | Fly ash | 783.29 | Natural | DOC | 0.2598 | 118.30 | This study |
0.75% Fe-AC | Fly ash | 709.89 | Natural | DOC | 0.1248 | 126.40 | This study |
AC-A5 | Fly ash | 847.26 | Natural | DOC | N/A | 3.70 | [28] |
AC | Coconut palm | 715.50 | Synthesized | DOC | 0.489 | 51.81 | [68] |
AC | Coconut shell | 808 | Synthesized | DOC | 1.17 | 2.21 | [69] |
AC | Bituminous coal | 852 | Synthesized | DOC | 7.34 | 27.60 | [69] |
Non-modified GACs | 8 CAC | 809–1419 | Synthesized | DOC | N/A | 1.19 1–27.1 | [31] |
Non-modified | CAC | 659 | Synthesized | Humic Acid | N/A | 20.39 | [70] |
H3PO4 AC | CAC | 711 | Synthesized | Humic Acid | N/A | 25.64 | [70] |
H2SO4 AC | CAC | 724 | Synthesized | Humic Acid | N/A | 18.91 | [70] |
ZnCl2 AC | Agricultural waste | 970 | Synthesized | Humic Acid | 0.22 | 76.92 | [71] |
GAC | CAC | 1100 | Synthesized | Humic Acid | 0.004 | 16.66 | [72] |
HNO3 PAC | CAC | N/A | Synthesized | Humic Acid | 0.0086 | 76.92 | [72] |
Adsorbent | Water Sample | Model | Target Adsorbate | k2 and k1 | R2 |
---|---|---|---|---|---|
0.75% Fe-AC | Natural | PSO | DOC | 0.0014 | 0.9981 |
1.00% Al-AC | Natural | PSO | DOC | 0.0011 | 0.9983 |
AC-A10 | Natural | PSO | DOC | 0.0082 | 0.9992 |
0.75% Fe-AC | Natural | 30 min-PFO | DOC | 0.077 | 0.9971 |
1.00% Al-AC | Natural | 30 min-PFO | DOC | 0.086 | 0.9999 |
AC-A10 | Natural | 30 min-PFO | DOC | 0.048 | 0.9971 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafvizi, H.; Chowdhury, S.; Husain, T. Low Cost Activated Carbon for Removal of NOM and DBPs: Optimization and Comparison. Water 2021, 13, 2244. https://doi.org/10.3390/w13162244
Tafvizi H, Chowdhury S, Husain T. Low Cost Activated Carbon for Removal of NOM and DBPs: Optimization and Comparison. Water. 2021; 13(16):2244. https://doi.org/10.3390/w13162244
Chicago/Turabian StyleTafvizi, Hoda, Shakhawat Chowdhury, and Tahir Husain. 2021. "Low Cost Activated Carbon for Removal of NOM and DBPs: Optimization and Comparison" Water 13, no. 16: 2244. https://doi.org/10.3390/w13162244
APA StyleTafvizi, H., Chowdhury, S., & Husain, T. (2021). Low Cost Activated Carbon for Removal of NOM and DBPs: Optimization and Comparison. Water, 13(16), 2244. https://doi.org/10.3390/w13162244