Can Managed Aquifer Recharge Overcome Multiple Droughts?
Abstract
:1. Introduction
2. Study Area
2.1. Yakima River Basin Description
2.2. Historical Droughts
3. Methods
3.1. Integrated System Structure
3.1.1. Integrated Water Systems
3.1.2. Hydropower Water Supply
3.1.3. Irrigation Scheduling
3.1.4. Surface Water Rights and Groundwater Rights
3.1.5. Managed Aquifer Recharge and Regional Adoption
3.2. Model Comparison
3.2.1. Data Sources
3.2.2. Capture Behaviors during Drought Events
3.2.3. Model Comparison to Observed Data
3.3. Scenario Analysis Design
3.3.1. MAR Scenario for Single Drought
3.3.2. MAR Scenario for Multi-Year Droughts
4. Results and Discussions
4.1. Model Results
4.2. Drought Impact
4.3. MAR Scenario Analysis
4.3.1. How Effective Is MAR to Mitigate a Single Drought?
4.3.2. Can MAR Mitigate Multi-Year Droughts?
4.4. Exogenous Drivers and Endogenous Dynamics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Adoption Rate
Appendix A.2. Water Conflicts during Drought
Appendix A.3. Infiltration
Appendix A.4. Model Structure
Appendix A.5. Climate and Hydrologic Data
References
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J.; Henrichs, T. Critical Regions: A Model-Based Estimation of World Water Resources Sensitive to Global Changes. Aquat. Sci. 2002, 64, 352–362. [Google Scholar] [CrossRef]
- Falkenmark, M. Growing Water Scarcity in Agriculture: Future Challenge to Global Water Security. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A Systematic Review of Methods for Nexus Assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Alexander, L.V.; Hegerl, G.C.; Knutson, T.R.; Kossin, J.P.; Naveau, P.; Nicholls, N.; Schär, C.; Seneviratne, S.I.; Zhang, X. Climate extremes: Challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. In Climate Science for Serving Society; Asrar, G.R., Hurrell, J.W., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 339–389. ISBN 978-94-007-6691-4. [Google Scholar]
- Wuebbles, D.; Meehl, G.; Hayhoe, K.; Karl, T.R.; Kunkel, K.; Santer, B.; Wehner, M.; Colle, B.; Fischer, E.M.; Fu, R.; et al. CMIP5 Climate Model Analyses: Climate Extremes in the United States. Bull. Am. Meteor. Soc. 2013, 95, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Pal, I.; Anderson, B.T.; Salvucci, G.D.; Gianotti, D.J. Shifting Seasonality and Increasing Frequency of Precipitation in Wet and Dry Seasons across the U.S. Geophys. Res. Lett. 2013, 40, 4030–4035. [Google Scholar] [CrossRef]
- Scheierling, S.M.; Cardon, G.E.; Young, R.A. Impact of Irrigation Timing on Simulated Water-Crop Production Functions. Irrig. Sci. 1997, 18, 23–31. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Savenije, H.H.G.; van der Zaag, P. Water as an Economic Good and Demand Management Paradigms with Pitfalls. Water Int. 2002, 27, 98–104. [Google Scholar] [CrossRef]
- Kurian, M. The Water-Energy-Food Nexus: Trade-Offs, Thresholds and Transdiciplinary Approaches to Sustainable Development. Environ. Sci. Policy 2017, 68, 97–106. [Google Scholar] [CrossRef]
- Distefano, T.; Kelly, S. Are We in Deep Water? Water Scarcity and Its Limits to Economic Growth. Ecol. Econ. 2017, 142, 130–147. [Google Scholar] [CrossRef]
- Lele, S.M. (Ed.) Rethinking Environmentalism: Linking Justice, Sustainability, and Diversity; Strüngmann Forum Reports; The MIT Press: Cambridge, MA, USA, 2018; ISBN 978-0-262-03896-6. [Google Scholar]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation Management under Water Scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Ulibarri, N.; Garcia, N.E.; Nelson, R.L.; Cravens, A.E.; McCarty, R.J. Assessing the Feasibility of Managed Aquifer Recharge in California. Water Res. 2021. [Google Scholar] [CrossRef]
- Jager, H.I.; Smith, B.T. Sustainable Reservoir Operation: Can We Generate Hydropower and Preserve Ecosystem Values? River Res. Appl. 2008, 24, 340–352. [Google Scholar] [CrossRef]
- U.S. Bureau of Reclamation; Washington State Department of Ecology. Yakima River Basin Integrated Water Resource Management Plan: Final Programmatic Environmental Impact Statement; U.S. Bureau of Reclamation and Washington State Department of Ecology: Yakima, WA, USA, 2012.
- Yoder, J.; Adam, J.; Brady, M.; Cook, J.; Katz, S.; Johnston, S.; Malek, K.; McMillan, J.; Yang, Q. Benefit-Cost Analysis of Integrated Water Resource Management: Accounting for Interdependence in the Yakima Basin Integrated Plan. J. Am. Water Resour. Assoc. 2017, 53, 456–477. [Google Scholar] [CrossRef]
- Wendt, D.E.; Van Loon, A.F.; Scanlon, B.R.; Hannah, D.M. Managed Aquifer Recharge as a Drought Mitigation Strategy in Heavily-Stressed Aquifers. Environ. Res. Lett. 2021, 16, 014046. [Google Scholar] [CrossRef]
- Washington State Department of Ecology. Technical Report on Groundwater Storage Alternatives for Yakima River Basin Storage Assessment; Washington State Department of Ecology: Olympia, WA, USA, 2008.
- Gibson, M.T.; Campana, M.E. Groundwater Storage Potential in the Yakima River Basin: A Spatial Assessment of Shallow Aquifer Recharge and Aquifer Storage and Recovery; Washington State Department of Ecology: Olympia, WA, USA, 2018.
- De Graaf, I.E.M.; Gleeson, T.; (Rens) van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P. Environmental Flow Limits to Global Groundwater Pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef]
- Ringleb, J.; Sallwey, J.; Stefan, C. Assessment of Managed Aquifer Recharge through Modeling—A Review. Water 2016, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- O’Geen, A.; Saal, M.; Dahlke, H.; Doll, D.; Elkins, R.; Fulton, A.; Fogg, G.; Harter, T.; Hopmans, J.; Ingels, C.; et al. Soil Suitability Index Identifies Potential Areas for Groundwater Banking on Agricultural Lands. Calif. Agric. 2015, 69, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Gibson, M.; Campana, M.; Nazy, D. Estimating Aquifer Storage and Recovery (ASR) Regional and Local Suitability: A Case Study in Washington State, USA. Hydrology 2018, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Lawford, R.; Bogardi, J.; Marx, S.; Jain, S.; Wostl, C.P.; Knüppe, K.; Ringler, C.; Lansigan, F.; Meza, F. Basin Perspectives on the Water–Energy–Food Security Nexus. Curr. Opin. Environ. Sustain. 2013, 5, 607–616. [Google Scholar] [CrossRef]
- Walker, B.; Abel, N.; Anderies, J.; Ryan, P. Resilience, Adaptability, and Transformability in the Goulburn-Broken Catchment, Australia. Ecol. Soc. 2009, 14, 12. [Google Scholar] [CrossRef]
- Gupta, H.V.; Clark, M.P.; Vrugt, J.A.; Abramowitz, G.; Ye, M. Towards a Comprehensive Assessment of Model Structural Adequacy. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s Unsustainable Environmental Footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef]
- Forrester, J.W.; Mass, N.J.; Ryan, C.J. The System Dynamics National Model: Understanding Socio-Economic Behavior and Policy Alternatives. Technol. Forecast. Soc. Chang. 1976, 9, 51–68. [Google Scholar] [CrossRef]
- Beall, A.; Fiedler, F.; Boll, J.; Cosens, B. Sustainable Water Resource Management and Participatory System Dynamics. Case Study: Developing the Palouse Basin Participatory Model. Sustainability 2011, 3, 720–742. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Contor, B.; Johnson, G.; Allen, R.; Tracy, J. System Dynamics to Sustainablew Ater Resources Management in the Eastern Snake Plain Aquifer under Water Supply Uncertainty. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 1204–1220. [Google Scholar] [CrossRef]
- Sterman, J.D. System Dynamics Modeling: Tools for Learning in a Complex World. Calif. Manag. Rev. 2001, 43, 8–25. [Google Scholar] [CrossRef]
- Ahmad, S.; Prashar, D. Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model. Water Resour. Manag. 2010, 24, 3371–3395. [Google Scholar] [CrossRef]
- Morrison, R.R.; Stone, M.C. Evaluating the Impacts of Environmental Flow Alternatives on Reservoir and Recreational Operations Using System Dynamics Modeling. J. Am. Water Resour. Assoc. 2015, 51, 33–46. [Google Scholar] [CrossRef]
- Uehara, T.; Nagase, Y.; Wakeland, W. Integrating Economics and System Dynamics Approaches for Modelling an Ecological–Economic System. Syst. Res. Behav. Sci. 2016, 33, 515–531. [Google Scholar] [CrossRef]
- Elsawah, S.; Pierce, S.A.; Hamilton, S.H.; van Delden, H.; Haase, D.; Elmahdi, A.; Jakeman, A.J. An Overview of the System Dynamics Process for Integrated Modelling of Socio-Ecological Systems: Lessons on Good Modelling Practice from Five Case Studies. Environ. Model. Softw. 2017, 93, 127–145. [Google Scholar] [CrossRef]
- Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex World; McGraw-Hill Education: New York, NY, USA, 2000. [Google Scholar]
- Macal, C.M.; North, M.J. Tutorial on Agent-Based Modeling and Simulation. In Proceedings of the Winter Simulation Conference, Orlando, FL, USA, 4 December 2005; IEEE: Orlando, FL, USA, 2005; pp. 2–15. [Google Scholar]
- Winz, I.; Brierley, G.; Trowsdale, S. The Use of System Dynamics Simulation in Water Resources Management. Water Resour. Manag. 2009, 23, 1301–1323. [Google Scholar] [CrossRef]
- Kelly (Letcher), R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E.; et al. Selecting among Five Common Modelling Approaches for Integrated Environmental Assessment and Management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Sahin, O.; Siems, R.S.; Stewart, R.A.; Porter, M.G. Paradigm Shift to Enhanced Water Supply Planning through Augmented Grids, Scarcity Pricing and Adaptive Factory Water: A System Dynamics Approach. Environ. Model. Softw. 2016, 75, 348–361. [Google Scholar] [CrossRef] [Green Version]
- Bieber, N.; Ker, J.H.; Wang, X.; Triantafyllidis, C.; van Dam, K.H.; Koppelaar, R.H.E.M.; Shah, N. Sustainable Planning of the Energy-Water-Food Nexus Using Decision Making Tools. Energy Policy 2018, 113, 584–607. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-Energy-Food Nexus: Concepts, Questions and Methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Niazi, A.; Prasher, S.; Adamowski, J.; Gleeson, T. A System Dynamics Model to Conserve Arid Region Water Resources through Aquifer Storage and Recovery in Conjunction with a Dam. Water 2014, 6, 2300–2321. [Google Scholar] [CrossRef] [Green Version]
- Rahmandad, H.; Repenning, N.; Sterman, J. Effects of Feedback Delay on Learning. Syst. Dyn. Rev. 2009, 25, 309–338. [Google Scholar] [CrossRef]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A Review of the Current State of Research on the Water, Energy, and Food Nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Malek, K.; Stöckle, C.; Chinnayakanahalli, K.; Nelson, R.; Liu, M.; Rajagopalan, K.; Barik, M.; Adam, J.C. VIC–CropSyst-v2: A Regional-Scale Modeling Platform to Simulate the Nexus of Climate, Hydrology, Cropping Systems, and Human Decisions. Geosci. Model Dev. 2017, 10, 3059–3084. [Google Scholar] [CrossRef] [Green Version]
- U.S. Bureau of Reclamation. Yakima River Basin Water Storage Feasibility Study: Final Planning Report/Environmental Impact Statement; U.S. Bureau of Reclamation: Yakima, WA, USA, 2008.
- Jones, M.A.; Vaccaro, J.J.; Watkins, A.M. Hydrogeologic Framework of Sedimentary Deposits in Six Structural Basins, Yakima River Basin, Washington; U.S. Geological Survey: Reston, VA, USA, 2006.
- U.S. Bureau of Reclamation. Yakima River Basin Water Resources Technical Memorandum; U.S. Bureau of Reclamation: Yakima, WA, USA, 2011.
- U.S. Bureau of Reclamation. Interim Comprehensive Basin Operating Plan for the Yakima Project, Washington; U.S. Bureau of Reclamation: Yakima, WA, USA, 2002.
- U.S. Bureau of Reclamation. Roza and Chandler Power Plants Subordination and Power Usage Evaluation; U.S. Bureau of Reclamation: Yakima, WA, USA, 2011.
- Qiu, J.; Yang, Q.; Zhang, X.; Huang, M.; Adam, J.C.; Malek, K. Implications of Water Management Representations for Watershed Hydrologic Modeling in the Yakima River Basin. Hydrol. Earth Syst. Sci. 2019, 23, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, J.J.; Olsen, T.D. Estimates of Ground-Water Recharge to the Yakima River Basin Aquifer System, Washington, for Predevelopment and Current Land-Use and Land-Cover Conditions; U.S. Geological Survey: Reston, VA, USA, 2009.
- Vaccaro, J.J.; Sumioka, S.S. Estimates of Ground-Water Pumpage from the Yakima River Basin Aquifer System, Washington, 1960–2000; US Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2006.
- Loon, A.F.V. Hydrological Drought Explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Yevjevich, V.M. Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. Hydrol. Pap. Colo. State Univ. 1967, 7, 353. [Google Scholar] [CrossRef] [Green Version]
- Beyene, B.S.; Van Loon, A.F.; Van Lanen, H.A.J.; Torfs, P.J.J.F. Investigation of Variable Threshold Level Approaches for Hydrological Drought Identification. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 12765–12797. [Google Scholar] [CrossRef]
- U.S. Bureau of Reclamation Reservoir Storage Content. Available online: https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html (accessed on 4 August 2020).
- Bumbaco, K.A.; Mote, P.W. Three Recent Flavors of Drought in the Pacific Northwest. J. Appl. Meteorol. Climatol. 2010, 49, 2058–2068. [Google Scholar] [CrossRef]
- U.S. Bureau of Reclamation Average Daily Computed Natural Flow. Available online: https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html (accessed on 1 June 2020).
- Marlier, M.E.; Xiao, M.; Engel, R.; Livneh, B.; Abatzoglou, J.T.; Lettenmaier, D.P. The 2015 Drought in Washington State: A Harbinger of Things to Come? Environ. Res. Lett. 2017, 12, 114008. [Google Scholar] [CrossRef]
- U.S. Bureau of Reclamation. Yakima River Basin Integrated Water Resource Management Plan, Draft Programmatic Environmental Impact Statement; U.S. Bureau of Reclamation: Yakima, WA, USA, 2012; p. 577.
- U.S. Bureau of Reclamation. Water Needs for Out-of-Stream Uses Technical Memorandum; U.S. Bureau of Reclamation: Yakima, WA, USA, 2010.
- Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington; Scientific Investigations Report 2009–5102; U.S. Geological Survey: Reston, VA, USA, 2009.
- Soil Survey Staff Soil Survey Geographic (SSURGO) Database. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 15 June 2021).
- McCarthy, K.A.; Johnson, H.M. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington; U.S. Geological Survey: Reston, VA, USA, 2009.
- Huang, X.; Wang, D.; Han, P.; Wang, W.; Li, Q.; Zhang, X.; Ma, M.; Li, B.; Han, S. Spatial Patterns in Baseflow Mean Response Time across a Watershed in the Loess Plateau: Linkage with Land-Use Types. For. Sci. 2020, 66, 382–391. [Google Scholar] [CrossRef]
- Bernardo, D.J.; Whittlesey, N.K.; Saxton, K.E.; Bassett, D.L. An Irrigation Model for Management of Limited Water Supplies. West. J. Agric. Econ. 1987, 164–173. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Repenning, N.P. A Simulation-Based Approach to Understanding the Dynamics of Innovation Implementation. Organ. Sci. 2002, 13, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T. Development of Gridded Surface Meteorological Data for Ecological Applications and Modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, Resiliency, and Vulnerability Criteria for Water Resource System Performance Evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Kindler, J. Multiple Criteria for Evaluation of Reliability Aspects of Water Resource Systems. IAHS Publ.-Ser. Proc. Rep.-Intern Assoc. Hydrol. Sci. 1995, 231, 9. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Cooper, M.G.; Nolin, A.W.; Safeeq, M. Testing the Recent Snow Drought as an Analog for Climate Warming Sensitivity of Cascades Snowpacks. Environ. Res. Lett. 2016, 11, 084009. [Google Scholar] [CrossRef] [Green Version]
MAR Scenario | Infiltration Area at Full Adoption (km2) | Infiltration Rate (m/day) | Vertical Hydraulic Conductivity (m/day) |
---|---|---|---|
Baseline | N/A | 0.43 | 1.52 |
Site A | 2.4 | 0.21 | 1.52 |
Site B | 1.2 | 0.43 | 1.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Boll, J.; Adam, J.C.; Beall King, A. Can Managed Aquifer Recharge Overcome Multiple Droughts? Water 2021, 13, 2278. https://doi.org/10.3390/w13162278
Zhao M, Boll J, Adam JC, Beall King A. Can Managed Aquifer Recharge Overcome Multiple Droughts? Water. 2021; 13(16):2278. https://doi.org/10.3390/w13162278
Chicago/Turabian StyleZhao, Mengqi, Jan Boll, Jennifer C. Adam, and Allyson Beall King. 2021. "Can Managed Aquifer Recharge Overcome Multiple Droughts?" Water 13, no. 16: 2278. https://doi.org/10.3390/w13162278
APA StyleZhao, M., Boll, J., Adam, J. C., & Beall King, A. (2021). Can Managed Aquifer Recharge Overcome Multiple Droughts? Water, 13(16), 2278. https://doi.org/10.3390/w13162278