A New Polyvinylidene Fluoride Membrane Synthesized by Integrating of Powdered Activated Carbon for Treatment of Stabilized Leachate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Leachate
2.2. Materials
2.3. Experiment’s Design and Optimization Process
2.4. PVDF-PAC Membrane Fabrication
2.4.1. Dope Preparation
2.4.2. Membrane Casting
2.5. Membrane Performance and Characterization
2.5.1. Treatment Efficiency
2.5.2. Productivity of Membrane
2.5.3. Antifouling Valuation
2.5.4. Morphological Characteristics
3. Results and Discussion
3.1. Landfill Leachate Characteristics
3.2. PAC Characterization
3.3. Membrane Filtration and Experimental Results
3.3.1. Removal Efficiency of Contaminants
3.3.2. Pure Flux and Transmembrane Pressure Studies
3.4. Fabricated Membrane Characterization
3.5. Membrane Treatment Optimization
3.6. Membrane Performance Comparison with Other Reported Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Chen, C.; Li, X.; Lin, J.; Liao, Y.; Jin, Z. Recovery of humic substances from leachate nanofiltration concentrate by a two-stage process of tight ultrafiltration membrane. J. Clean. Prod. 2017, 161, 84–94. [Google Scholar] [CrossRef]
- Bashir, M.J.K.; Jun, Y.Z.; Yi, L.J.; Abushammala, M.F.M.; Amr, S.S.A.; Pratt, L.M. Appraisal of student’s awareness and practices on waste management and recycling in the Malaysian University’s student hostel area. J. Mater. Cycles Waste Manag. 2020, 22, 916–927. [Google Scholar] [CrossRef]
- Abuabdou, S.M.A.; Ahmad, W.; Aun, N.C.; Bashir, M.J.K. A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated landfill leachate and biogas production: Effectiveness, limitations and future perspectives. J. Clean. Prod. 2020, 255, 120215. [Google Scholar] [CrossRef]
- Azmi, N.B.; Bashir, M.J.K.; Sethupathi, S.; Ng, C.A. Anaerobic stabilized landfill leachate treatment using chemically activated sugarcane bagasse activated carbon: Kinetic and equilibrium study. Desalin. Water Treat. 2016, 57, 3916–3927. [Google Scholar] [CrossRef]
- Abuabdou, S.M.A.; Teng, O.W.; Bashir, M.J.K.; Aun, N.C.; Sethupathi, S.; Pratt, L.M. Treatment of tropical stabilised landfill leachate using palm oil fuel ashisothermal and kinetic studies. Desalin. Water Treat. 2019, 144, 201–210. [Google Scholar] [CrossRef]
- Banch, T.J.H.; Hanafiah, M.M.; Alkarkhi, A.F.M.; Abu Amr, S.S. Factorial Design and Optimization of Landfill Leachate Treatment Using Tannin-Based Natural Coagulant. Polymers 2019, 11, 1349. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Siracusa, G.; Di Gregorio, S.; Yuan, Q. COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs). Process. Saf. Environ. Prot. 2018, 120, 278–285. [Google Scholar] [CrossRef]
- Guvenc, S.Y.; Dincer, K.; Varank, G. Performance of electrocoagulation and electro-Fenton processes for treatment of nano fi ltration concentrate of biologically stabilized landfill leachate. J. Water Process Eng. 2019, 31, 100863–100875. [Google Scholar] [CrossRef]
- Abu Amr, S.S.; Zakaria, S.N.F.; Aziz, H.A. Performance of combined ozone and zirconium tetrachloride in stabilized landfill leachate treatment. J. Mater. Cycles Waste Manag. 2016, 19, 1384–1390. [Google Scholar] [CrossRef]
- Zielinska, M.; Kulikowska, D.; Stanczak, M. Adsorption—Membrane process for treatment of stabilized municipal landfill leachate. Waste Manag. 2020, 114, 174–182. [Google Scholar] [CrossRef]
- Abuabdou, S.M.A.; Bashir, M.J.K.; Aun, N.C.; Sethupathi, S. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012033–012042. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Q.; Yin, Q.; Cui, Z.; Li, W.; Xing, W. Fabrication and characterization of amphiphilic PVDF copolymer ultra fi ltration membrane with high anti-fouling property. J. Memb. Sci. 2017, 521, 95–103. [Google Scholar] [CrossRef]
- Ng, C.A.; Wong, L.Y.; Bashir, M.J.K.; Ng, S.L. Development of Hybrid Polymeric Polyerthersulfone (PES) Membrane Incorporated with Powdered Activated Carbon (PAC) for Palm Oil Mill Effluent (POME) Treatment. Int. J. Integr. Eng. Spec. Issue Civ. Environ. Eng. 2018, 10, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Memb. Sci. 2017, 527, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Shehzad, A.; Bashir, M.J.K.; Sethupathi, S.; Lim, J. Simultaneous Removal of Organic and Inorganic Pollutants From Landfill Leachate Using Sea Mango Derived Activated Carbon via Microwave Induced Activation. Int. J. Chem. React. Eng. 2016, 14, 991–1001. [Google Scholar] [CrossRef]
- Miller, D.J.; Paul, D.R.; Freeman, B.D. An improved method for surface modification of porous water purification membranes. Polymer 2014, 55, 1375–1383. [Google Scholar] [CrossRef]
- Jankhah, S.; Bérubé, P.R. Pulse bubble sparging for fouling control. Sep. Purif. Technol. 2014, 134, 58–65. [Google Scholar] [CrossRef]
- Venkataganesh, B.; Maiti, A.; Bhattacharjee, S.; De, S. Electric field assisted cross flow micellar enhanced ultrafiltration for removal of naphthenic acid. Sep. Purif. Technol. 2012, 98, 36–45. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. MWH’s Water Treatment: Principles and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Ismail, N.H.; Salleh, W.N.W.; Ismail, A.F.; Hasbullah, H.; Yusof, N.; Aziz, F.; Jaafar, J. Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Sep. Purif. Technol. 2020, 233, 116007. [Google Scholar] [CrossRef]
- Nawi, N.I.M.; Bilad, M.R.; Nordin, N.A.H.M.; Mavukkandy, M.O.; Putra, Z.A.; Wirzal, M.D.H.; Jaafar, J.; Khan, A.L. Exploiting the interplay between liquid-liquid demixing and crystallization of the PVDF membrane for membrane distillation. Int. J. Polym. Sci. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Liu, F.; Hashim, N.A.; Abed, M.R.M.; Li, K. Reactive & Functional Polymers Poly (vinylidene fluoride) (PVDF) membranes for fluid separation. React. Funct. Polym. 2015, 86, 134–153. [Google Scholar] [CrossRef]
- Bashir, M.J.K.; Xian, T.M.; Shehzad, A.; Sethupahi, S.; Aun, N.C.; Amr, S.A. Sequential treatment for landfill leachate by applying coagulation-adsorption process. Geosystem Eng. 2017, 20, 9–20. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, G.; Zhang, H.; Zhao, C.; Yang, F. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Appl. Surf. Sci. 2018, 440, 1091–1100. [Google Scholar] [CrossRef]
- Mokhtar, N.M.; Lau, W.J.; Ng, B.C.; Ismail, A.F.; Veerasamy, D. Preparation and characterization of PVDF membranes incorporated with different additives for dyeing solution treatment using membrane distillation. Desalin. Water Treat. 2015, 56, 1999–2012. [Google Scholar] [CrossRef]
- Zhou, A.; Jia, R.; Wang, Y.; Sun, S.; Xin, X.; Wang, M.; Zhao, Q.; Zhu, H. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Sep. Purif. Technol. 2020, 234. [Google Scholar] [CrossRef]
- Jhaveri, J.H.; Murthy, Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379, 137–154. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wang, Z.; Zhu, C.; Wu, Z. Modification of poly (vinylidene fluoride)/polyethersulfone blend membrane with polyvinyl alcohol for improving antifouling ability. J. Memb. Sci. 2014, 466, 293–301. [Google Scholar] [CrossRef]
- Wong, L.Y.; Ng, C.A.; Bashir, M.J.K.; Cheah, C.K.; Leong, K. Desalination and Water Treatment Membrane bioreactor performance improvement by adding adsorbent and coagulant: A comparative study. Desalin. Water Treat. 2015, 37–41. [Google Scholar] [CrossRef]
- Wong, S.; Ngadi, N.; Inuwa, I.M.; Hassan, O. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. J. Clean. Prod. 2018, 175, 361–375. [Google Scholar] [CrossRef]
- Bashir, M.J.K.; Wong, J.W.; Sethupathi, S.; Aun, N.C.; Wei, L.J. Preparation of Palm Oil Mill Effluent Sludge Biochar for the Treatment of Landfill Leachate. MATEC Web Conf. 2017, 103, 1–8. [Google Scholar] [CrossRef] [Green Version]
- APHA Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Abuabdou, S.M.A.; Bashir, M.J.K.; Aun, N.C.; Sethupathi, S.; Yong, W.L. Development of a novel polyvinylidene fluoride membrane integrated with palm oil fuel ash for stabilized landfill leachate treatment. J. Clean. Prod. 2021, 311, 127677. [Google Scholar] [CrossRef]
- Mertens, M.; Van Dyck, T.; Van Goethem, C.; Gebreyohannes, A.Y.; Vankelecom, I.F.J. Development of a polyvinylidene di fluoride membrane for nano filtration. J. Memb. Sci. 2018, 557, 24–29. [Google Scholar] [CrossRef]
- Tan, S.T.; Ho, W.S.; Hashim, H.; Lee, C.T.; Taib, M.R.; Ho, C.S. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers. Manag. 2015, 102, 111–120. [Google Scholar] [CrossRef]
- Abu Amr, S.S.; Aziz, H.A.; Bashir, M.J.K. Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone. Appl. Water Sci. 2014, 4, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Stat-Ease Inc. Multifactor RSM Tutorial. Available online: https://www.statease.com/ (accessed on 30 July 2021).
- Naragintia, S.; Yua, Y.-Y.; Fanga, Z.; Yong, Y.-C. Novel tetrahedral Ag3PO4@N-rGO for photocatalytic detoxification of sulfamethoxazole: Process optimization, transformation pathways and biotoxicity assessment. Chem. Eng. J. 2019, 375, 122035. [Google Scholar] [CrossRef]
- Ghani, Z.A.; Suffian, M.; Qamaruz, N.; Faiz, M.; Ahmad, M. Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate. Waste Manag. 2017, 62, 177–187. [Google Scholar] [CrossRef]
- Ike, I.A.; Dumée, L.F.; Groth, A.; Orbell, J.D.; Duke, M. Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure PVDF mixed matrix membranes. J. Memb. Sci. 2017, 540, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Nejati, S.; Boo, C.; Osuji, C.O.; Elimelech, M. Engineering flat sheet microporous PVDF films for membrane distillation. J. Memb. Sci. 2015, 492, 355–363. [Google Scholar] [CrossRef]
- Fan, H.; Peng, Y. Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes. Chem. Eng. Sci. 2012, 79, 94–102. [Google Scholar] [CrossRef]
- Aziz, H.A.; Mojiri, A. Wastewater Engineering: Advanced Wastewater Treatment Systems, 1st ed.; IJSR Publications: Raipur, India, 2014; ISBN 2322-4657. [Google Scholar]
- Chidambaram, T.; Oren, Y.; Noel, M. Fouling of nanofiltration membranes by dyes during brine recovery from textile dye bath wastewater. Chem. Eng. J. 2015, 262, 156–168. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, W.; Tang, B.; Ding, J.; Zheng, Y.; Zhang, Z. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning. Bioresour. Technol. 2018, 250, 398–405. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Zhao, L.; Bi, S.; Han, P.; Chen, L. Temperature- and pH-responsive properties of poly(vinylidene fluoride) membranes functionalized by blending microgels. RSC Adv. 2014, 4, 29933–29945. [Google Scholar] [CrossRef]
- Environmental Requirements: A Guide for Investors, Department of Environment; Ministry of Natural Resources and Environment: Kuala Lumpur, Malaysia, 2010.
- Kemal, A.; Siraj, K.; Michael, W.H. Adsorption of Cu (II) and Cd (II) onto Activated Carbon Prepared from Pumpkin Seed Shell. J. Environ. Sci. Pollut. Res. 2019, 5, 328–333. [Google Scholar] [CrossRef]
- Aslam, M.; Ahmad, R.; Kim, J. Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep. Purif. Technol. 2018, 206, 297–315. [Google Scholar] [CrossRef]
- Ali, I.; Bamaga, O.A.; Gzara, L.; Bassyouni, M. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition. J. Membr. 2018, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunst, R.F.; Stein, R.; Hatcher, L.; Heckler, C.E.; Adams, B.M.; Kit, T.S.; Fink, A.; Lawson, J. Response Surface Methodology: Process and Product Optimization Using Designed Experiments Book Reviews; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Abuabdou, S.M.A.; Teng, O.W.; Bashir, M.J.K.; Aun, N.C.; Sethupathi, S. Adsorptive treatment of stabilized landfill leachate using activated palm oil fuel ash (POFA). AIP Conf. Proc. 2019, 2157, 20002–20008. [Google Scholar] [CrossRef]
- Khadijah, S.; Ha, M.; Othman, D.; Harun, Z.; Ismail, A.F.; Iwamoto, Y.; Honda, S.; Rahman, M.A.; Jaafar, J.; Gani, P.; et al. Effect of fabrication parameters on physical properties of metakaolin-based ceramic hollow fi bre membrane (CHFM). Ceram. Int. 2016, 42, 15547–15558. [Google Scholar] [CrossRef]
- Fumoto, E.; Sato, S.; Takanohashi, T. Determination of Carbonyl Functional Groups in Heavy Oil Using Infrared Spectroscopy. Energy Fuels 2020, 34, 5231–5235. [Google Scholar] [CrossRef]
- Gurkan, B.E.; de la Fuente, J.C.; Mindrup, E.M.; Ficke, L.E.; Goodrich, B.F.; Price, E.A.; Schneider, W.F.; Brennecke, A.J.F. Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids. J. Am. Chem. Soc. 2010, 132, 2116–2117. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Xiao, Y.; Li, T.; Zhou, Q.; Shen, L.; Li, R.; Xu, Y.; Lin, H. Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: Mussel-inspired layer-by-layer self-assembly. J. Colloid Interface Sci. 2020, 560, 273–283. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Wang, Q.; Ma, J.; Cao, J.; Hu, W.; Wu, Z. Relationship between polymers compatibility and casting solution stability in fabricating PVDF/PVA membranes. J. Memb. Sci. 2017, 537, 263–271. [Google Scholar] [CrossRef]
- Kunst, B.; Sourirajan, S. An approach to the development of cellulose acetate ultrafiltration membranes. J. Appl. Polym. Sci. 1974, 18, 3423–3434. [Google Scholar] [CrossRef]
- Tae, J.; Kim, J.F.; Hyun, H.; Drioli, E.; Moo, Y. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Memb. Sci. 2016, 514, 250–263. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Ayyaru, S.; Ahn, Y.H. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes. J. Memb. Sci. 2017, 525, 210–219. [Google Scholar] [CrossRef]
- Penboon, L.; Khrueakham, A.; Sairiam, S. TiO2 coated on PVDF membrane for dye wastewater treatment by a photocatalytic membrane. Water Sci. Technol. 2019, 79, 958–966. [Google Scholar] [CrossRef]
- Tai, C.Y.; Abuabdou, S.M.A.; Ng, C.A.; Gan, C.H.; Bashir, M.J.K. Performance of hybrid anaerobic membrane bioreactors ( AnMBRs ) augmented with activated carbon in treating palm oil mill effluent (POME). Desalin. Water Treat. 2020, 26156, 1–8. [Google Scholar] [CrossRef]
- Schumann, P.; Andrade, J.A.O.; Jekel, M.; Ruhl, A.S. Packing granular activated carbon into a submerged gravity-driven fl at sheet membrane module for decentralized water treatment. J. Water Process Eng. 2020, 38, 101517. [Google Scholar] [CrossRef]
- Li, J.; Guo, S.; Xu, Z.; Li, J.; Pan, Z.; Du, Z.; Cheng, F. Preparation of omniphobic PVDF membranes with silica nanoparticles for treating coking wastewater using direct contact membrane distillation: Electrostatic adsorption vs. chemical bonding. J. Memb. Sci. 2019, 574, 349–357. [Google Scholar] [CrossRef]
- Abdel-karim, A.; Luque-alled, J.M.; Leaper, S.; Alberto, M.; Fan, X.; Vijayaraghavan, A.; Gad-allah, T.A.; El-kalliny, A.S.; Szekely, G.; Ahmed, S.I.A.; et al. PVDF membranes containing reduced graphene oxide: Effect of degree of reduction on membrane distillation performance. Desalination 2019, 452, 196–207. [Google Scholar] [CrossRef]
Parameter | Unit | Value Range | Average | Malaysia Discharge Standards |
---|---|---|---|---|
DO | mg/L | 2.43–5.19 | 3.81 | - |
COD | mg/L | 846–1530 | 1188 | 400 |
BOD5 | mg/L | 55–122 | 89 | 20 |
BOD5/COD | - | 0.065–0.080 | 0.074 | 0.05 |
Colour | PtCo/L | 1040–1680 | 1360 | 100 |
NH3-N | mg/L | 164–462 | 313 | 5 |
Suspended Solids | mg/L | 75.0–80.0 | 77.5 | 50 |
pH | - | 7.97–8.68 | 8.33 | 6.0–9.0 |
Turbidity | NTU | 15.9–70.2 | 43.1 | - |
Electrical Conductivity | mS | 13.22–22.77 | 18.00 | - |
Temperature | °C | 27–30 | 28 | 40 |
Factors | Responses | ||||||
---|---|---|---|---|---|---|---|
Run Order | PVDF (wt.%) | PAC (wt.%) | Removal Efficiency (%) * | Pure Water Flux ** (L/m2·h) | Max. TMP (bar) | ||
COD | Colour | NH3-N | |||||
1 | 10.00 | 0.00 | 14.8 | 15.1 | 10.9 | 90.2 | 0.46 |
2 | 10.00 | 2.00 | 29.1 | 42.3 | 7.5 | 127.7 | 0.42 |
3 | 12.00 | 1.00 | 32.2 | 44.6 | 18.3 | 89.3 | 0.48 |
4 | 14.00 | 0.50 | 28.2 | 39.6 | 19.6 | 64.0 | 0.66 |
5 | 14.00 | 1.00 | 37.2 | 56.3 | 23.8 | 79.9 | 0.67 |
6 | 14.00 | 1.00 | 35.5 | 50.3 | 19.3 | 72.9 | 0.63 |
7 | 14.00 | 1.00 | 35.5 | 56.2 | 21.3 | 72.2 | 0.62 |
8 | 14.00 | 1.00 | 35.7 | 51.1 | 21.5 | 70.3 | 0.61 |
9 | 14.00 | 1.00 | 32.2 | 51.5 | 19.9 | 69.9 | 0.60 |
10 | 14.00 | 1.50 | 33.2 | 52.7 | 19.2 | 83.1 | 0.55 |
11 | 16.00 | 1.00 | 37.1 | 41.0 | 22.5 | 31.8 | 0.68 |
12 | 18.00 | 0.00 | 29.1 | 26.7 | 21.2 | 26.2 | 1.00 |
13 | 18.00 | 2.00 | 20.9 | 15.6 | 17.3 | 32.9 | 0.78 |
Source | COD Removal (%) | Colour Removal (%) | NH3-N Removal (%) | |||
---|---|---|---|---|---|---|
F-Value | Prob > F | F-Value | Prob > F | F-Value | Prob > F | |
Model | 25.62 | 0.0002 (S) a | 31.93 | <0.0001 (S) a | 24.34 | 0.0003 (S) a |
A-PVDF (wt.%) | 4.34 | 0.0759 | 3.89 | 0.0840 | 55.81 | 0.0001 |
B-PAC (wt.%) | 4.19 | 0.0800 | 5.69 | 0.0441 | 6.37 | 0.0396 |
AB | 32.25 | 0.0008 | 21.10 | 0.0018 | 0.032 | 0.8634 |
A2 | 0.42 | 0.5375 | 97.03 | <0.0001 | 0.24 | 0.6372 |
B2 | 12.18 | 0.0101 | - | - | 3.62 | 0.0988 |
Lack of Fit | 1.39 | 0.3665 (NS) b | 3.27 | 0.1386 (NS) b | 0.17 | 0.9088 (NS) b |
Std. Dev. | 1.98 | Std. Dev. | 4.28 | Std. Dev. | 1.40 | |
Mean | 30.85 | Mean | 41.69 | Mean | 18.64 | |
R2 | 0.9482 | R2 | 0.9411 | R2 | 0.9456 | |
Adj R2 | 0.9112 | Adj R2 | 0.9116 | Adj R2 | 0.9067 | |
C.V. % | 6.42 | C.V. % | 10.26 | C.V. % | 7.52 |
Source | Pure Flux (L/m2·h) | Max. TMP (bar) | ||
---|---|---|---|---|
F-Value | Prob > F | F-Value | Prob > F | |
Model | 53.56 | <0.0001 (S) a | 49.62 | <0.0001 (S) a |
A-PVDF (wt.%) | 144.45 | <0.0001 | 131.07 | <0.0001 |
B-PAC (wt.%) | 11.86 | 0.0073 | 13.01 | 0.0057 |
AB | 4.38 | 0.0658 | 4.78 | 0.0566 |
A2 | - | - | - | - |
B2 | - | - | - | - |
Lack of Fit | 5.18 | 0.0681 (NS) b | 3.38 | 0.1307 (NS) b |
Std. Dev. | 7.36 | Std. Dev. | 0.041 | |
Mean | 70.03 | Mean | 0.63 | |
R2 | 0.9470 | R2 | 0.9430 | |
Adj R2 | 0.9293 | Adj R2 | 0.9240 | |
C.V. % | 10.50 | C.V. % | 6.56 | |
Model equation coded, (wt.%) | +70.03 −41.68 * A +11.94 * B −7.70 * A * B | +0.63 +0.22 * A −0.070 * B −0.045 * A * B |
Sample | Composition (wt.%) | Elements Weight (%) | ||||
---|---|---|---|---|---|---|
PVDF | PAC | C | F | AL | Total | |
FM1 | 10.0 | 0.0 | 61.69 | 38.31 | 0.00 | 100.00 |
FM2 | 10.0 | 2.0 | 60.85 | 38.11 | 1.04 | 100.00 |
FM3 | 14.0 | 1.0 | 61.04 | 38.17 | 0.79 | 100.00 |
FM4 | 18.0 | 0.0 | 60.63 | 39.37 | 0.00 | 100.00 |
Membrane | Composition | Porosity | Average Pore Size | |
---|---|---|---|---|
PVDF | PAC | (%) a | (µm) a | |
FM1 | 10.0 | 0.0 | 57.25 ± 0.18 | 15.34 ± 0.05 |
FM2 | 10.0 | 2.0 | 77.48 ± 0.50 | 24.43 ± 0.15 |
FM3 | 14.0 | 1.0 | 72.86 ± 0.20 | 21.27 ± 0.07 |
FM4 | 18.0 | 0.0 | 48.38 ± 0.62 | 12.15 ± 0.24 |
Operating Conditions | Desirability | Optimum Conditions | ||
PVDF (wt.%) | PAC (wt.%) | |||
14.90 | 1.00 | 0.870 | Selected | |
Response | Predicted Result | Experimental Result | Error (%) | |
Removal of COD (%) * | 35.34 | 36.63 | 3.65 | |
Removal of colour (%) * | 48.71 | 49.50 | 1.62 | |
Removal of NH3-N (%) * | 22.00 | 23.84 | 8.36 | |
Pure water flux (L/m2·h) | 61.00 | 61.10 | 0.16 | |
Max. TMP (bar) | 0.67 | 0.64 | 4.48 |
Modification Agent | Pure Water Flux (L/m2·h) | Feed Type & Feeding Rate (L/min) | Removal Rate Avg. (%) | Roughness (nm) | Reference |
---|---|---|---|---|---|
Titanium dioxide (TiO2) | 143.24 | Wastewater FR = 0.850 | 86.1 | - | [62] |
Granular activated carbon (GAC) | 13.90 | Berlin tap water (Gravity driven) | 88.0 | - | [64] |
Silica nanoparticles (SiO2) | - | Cooking wastewater FR = 48.96 | 66.7 | Ra = 174 | [65] |
Reduced graphene oxide (rGO) | - | NaCl solution FR = 0.385 | 58.0 | Ra = 84 | [66] |
Powdered activated carbon (PAC) | 61.00 | SLF leachate FR = 0.20 | 35.35 | Ra = 36.39 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuabdou, S.M.A.; Jaffari, Z.H.; Ng, C.-A.; Ho, Y.-C.; Bashir, M.J.K. A New Polyvinylidene Fluoride Membrane Synthesized by Integrating of Powdered Activated Carbon for Treatment of Stabilized Leachate. Water 2021, 13, 2282. https://doi.org/10.3390/w13162282
Abuabdou SMA, Jaffari ZH, Ng C-A, Ho Y-C, Bashir MJK. A New Polyvinylidene Fluoride Membrane Synthesized by Integrating of Powdered Activated Carbon for Treatment of Stabilized Leachate. Water. 2021; 13(16):2282. https://doi.org/10.3390/w13162282
Chicago/Turabian StyleAbuabdou, Salahaldin M. A., Zeeshan Haider Jaffari, Choon-Aun Ng, Yeek-Chia Ho, and Mohammed J. K. Bashir. 2021. "A New Polyvinylidene Fluoride Membrane Synthesized by Integrating of Powdered Activated Carbon for Treatment of Stabilized Leachate" Water 13, no. 16: 2282. https://doi.org/10.3390/w13162282
APA StyleAbuabdou, S. M. A., Jaffari, Z. H., Ng, C. -A., Ho, Y. -C., & Bashir, M. J. K. (2021). A New Polyvinylidene Fluoride Membrane Synthesized by Integrating of Powdered Activated Carbon for Treatment of Stabilized Leachate. Water, 13(16), 2282. https://doi.org/10.3390/w13162282