Coupling Rivers and Estuaries with an Ocean Model: An Improved Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MOHID Water
2.3. Offline Upscaling by Discharge
2.4. Grid Communication
2.5. Automatic Running Tool
2.6. Model Setup
2.7. Validation Procedure
3. Results and Discussion
3.1. Comparison with In Situ Data
3.2. Surface Salinity Maps
3.3. SATELLITE SST Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, A.M.P.; Chícharo, A.; Dos Santos, A.; Moita, T.; Oliveira, P.B.; Peliz, Á.; Ré, P. Physical-biological interactions in the life history of small pelagic fish in the Western Iberia Upwelling Ecosystem. Prog. Oceanogr. 2007, 74, 192–209. [Google Scholar] [CrossRef]
- Santos, A.M.P.; Peliz, A.; Dubert, J.; Oliveira, P.B.; Angélico, M.M.; Ré, P. Impact of a winter upwelling event on the distribution and transport of sardine (Sardina pilchardus) eggs and larvae off western Iberia: A retention mechanism. Cont. Shelf Res. 2004, 24, 149–165. [Google Scholar] [CrossRef]
- Canuel, E.A.; Cammer, S.S.; McIntosh, H.A.; Pondell, C.R. Climate change impacts on the organic carbon cycle at the land-ocean interface. Annu. Rev. Earth Planet. Sci. 2012, 40, 685–711. [Google Scholar] [CrossRef]
- Ward, N.D.; Megonigal, J.P.; Bond-Lamberty, B.; Bailey, V.L.; Butman, D.; Canuel, E.A.; Diefenderfer, H.; Ganju, N.K.; Goñi, M.A.; Graham, E.B.; et al. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Salomons, W. Sediments in the catchment-coast continuum. J. Soils Sediments 2005, 5, 2–8. [Google Scholar] [CrossRef]
- Malara, G.; Zema, D.A.; Arena, F.; Bombino, G.; Zimbone, S.M. Coupling watershed—coast systems to study evolutionary trends: A review. Earth-Sci. Rev. 2020, 201, 103040. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, W.; Zhang, H.; Qiao, J.; Liu, J.; Shi, Z.; Gong, W. Evaluation of the total maximum allocated load of dissolved inorganic nitrogen using a watershed–coastal ocean coupled model. Sci. Total Environ. 2019, 673, 734–749. [Google Scholar] [CrossRef]
- Mishra, A.K.; Coulibaly, P. Developments in hydrometric network design: A review. Rev. Geophys. 2009, 1–24. [Google Scholar] [CrossRef]
- Brito, D.; Campuzano, F.J.; Sobrinho, J.; Fernandes, R.; Neves, R. Integrating operational watershed and coastal models for the Iberian Coast: Watershed model implementation—A first approach. Estuar. Coast. Shelf Sci. 2015, 167, 138–146. [Google Scholar] [CrossRef]
- Campuzano, F.; Brito, D.; Juliano, M.; Fernandes, R.; de Pablo, H.; Neves, R. Coupling watersheds, estuaries and regional ocean through numerical modelling for Western Iberia: A novel methodology. Ocean. Dyn. 2016, 66, 1745–1756. [Google Scholar] [CrossRef]
- Sotillo, M.G.; Campuzano, F.; Guihou, K.; Lorente, P.; Olmedo, E.; Matulka, A.; Santos, F.; Amo-Baladrón, M.A.; Novellino, A. River freshwater contribution in operational ocean models along the european atlantic façade: Impact of a new river discharge forcing data on the cmems ibi regional model solution. J. Mar. Sci. Eng. 2021, 9, 401. [Google Scholar] [CrossRef]
- Aznar, R.; Sotillo, M.G.; Cailleau, S.; Lorente, P.; Levier, B.; Amo-Baladrón, A.; Reffray, G.; Álvarez-Fanjul, E. Strengths and weaknesses of the CMEMS forecasted and reanalyzed solutions for the Iberia-Biscay-Ireland (IBI) waters. J. Mar. Syst. 2016, 159, 1–14. [Google Scholar] [CrossRef]
- Ruiz-Parrado, I.; Genua-Olmedo, A.; Reyes, E.; Mourre, B.; Rotllán, P.; Lorente, P.; García-Sotillo, M.; Tintoré, J. Coastal ocean variability related to the most extreme Ebro River discharge over the last 15 years. Section in Copernicus Marine Service Ocean State Report, Issue 4. J. Oper. Ocean. 2020, 13 (Suppl. 1), s160–s165. [Google Scholar]
- Sotillo, M.G.; Mourre, B.; Mestres, M.; Lorente, P.; Aznar, R.; García-León, M.; Liste, M.; Santana, A.; Espino, M.; Álvarez, E. Evaluation of the Operational CMEMS and Coastal Downstream Ocean Forecasting Services During the Storm Gloria (January 2020). Front. Mar. Sci. 2021, 8, 1–27. [Google Scholar] [CrossRef]
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villn, A. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 2017, 92, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Du, J.; Shen, J.; Park, K.; Wang, Y.P.; Yu, X. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Sci. Total Environ. 2018, 630, 707–717. [Google Scholar] [CrossRef]
- Desmit, X.; Thieu, V.; Billen, G.; Campuzano, F.; Dulière, V.; Garnier, J.; Lassaletta, L.; Ménesguen, A.; Neves, R.; Pinto, L.; et al. Reducing marine eutrophication may require a paradigmatic change. Sci. Total Environ. 2018, 635, 1444–1466. [Google Scholar] [CrossRef]
- Samaras, A.G.; Koutitas, C.G. An integrated approach to quantify the impact of watershed management on coastal morphology. Ocean. Coast. Manag. 2012, 69, 68–77. [Google Scholar] [CrossRef]
- Duong, T.M.; Ranasinghe, R.; Walstra, D.; Roelvink, D. Assessing climate change impacts on the stability of small tidal inlet systems: Why and how? Earth-Sci. Rev. 2016, 154, 369–380. [Google Scholar] [CrossRef]
- Liu, Q.; Anderson, E.J.; Zhang, Y.; Weinke, A.D.; Knapp, K.L.; Biddanda, B.A. Modeling reveals the role of coastal upwelling and hydrologic inputs on biologically distinct water exchanges in a Great Lakes estuary. Estuar. Coast. Shelf Sci. 2018, 209, 41–55. [Google Scholar] [CrossRef]
- Yin, Y.; Karunarathna, H.; Reeve, D.E. Numerical modelling of hydrodynamic and morphodynamic response of a meso-tidal estuary inlet to the impacts of global climate variabilities. Mar. Geol. 2019, 407, 229–247. [Google Scholar] [CrossRef] [Green Version]
- Franz, G.; Delpey, T.M.; Brito, D.; Neves, R.; Leitão, P.; Pinto, L. Modelling of sediment transport and morphological evolution under the combined action of waves and currents. Ocean. Sci. 2017, 13, 673–690. [Google Scholar] [CrossRef] [Green Version]
- Bruneau, N.; Fortunato, A.B.; Dodet, G.; Freire, P.; Oliveira, A.; Bertin, X. Future evolution of a tidal inlet due to changes in wave climate, Sea level and lagoon morphology (Óbidos lagoon, Portugal). Cont. Shelf Res. 2011, 31, 1915–1930. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Sousa, M.C.; Lencart, E.; Silva, J.D.; Dias, J.M. David and goliath revisited: Joint modelling of the Tagus and Sado Estuaries. J. Coast. Res. 2016, 1, 123–127. [Google Scholar] [CrossRef]
- Oliveira, V.H.; Sousa, M.C.; Picado, A.; Mendes, R.; Ribeiro, A.S.; Morgado, F.; Dias, J.M. Coupled modelling of the interaction between dissolved substances emitted by Minho and Lima estuarine outflows (Portugal). J. Mar. Syst. 2021, 222, 103601. [Google Scholar] [CrossRef]
- Samaras, A.G.; Koutitas, C.G. Comparison of three longshore sediment transport rate formulae in shoreline evolution modeling near stream mouths. Ocean. Eng. 2014, 92, 255–266. [Google Scholar] [CrossRef]
- Herzfeld, M. Methods for freshwater riverine input into regional ocean models. Ocean. Model. 2015, 90, 1–15. [Google Scholar] [CrossRef]
- Lacroix, G.; Ruddick, K.; Ozer, J.; Lancelot, C. Modelling the impact of the Scheldt and Rhine/Meuse plumes on the salinity distribution in Belgian waters (southern North Sea). J. Sea Res. 2004, 52, 149–163. [Google Scholar] [CrossRef]
- MacCready, P.; Banas, N.S.; Hickey, B.M.; Dever, E.P.; Liu, Y. A model study of tide- and wind-induced mixing in the Columbia River Estuary and plume. Cont. Shelf Res. 2009, 29, 278–291. [Google Scholar] [CrossRef]
- Liu, Y.; MacCready, P.; Hickey, B.M.; Dever, E.P.; Kosro, P.M.; Banas, N.S. Evaluation of a coastal ocean circulation model for the Columbia river plume in summer 2004. J. Geophys. Res. Ocean. 2009, 114, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Estournel, C.; Kondrachoff, V.; Marsaleix, P.; Vehil, R. The plume of the Rhone: Numerical simulation and remote sensing. Cont. Shelf Res. 1997, 17, 899–924. [Google Scholar] [CrossRef]
- Capet, A.; Fernández, V.; She, J.; Dabrowski, T.; Umgiesser, G.; Staneva, J.; Mészáros, L.; Campuzano, F.; Ursella, L.; Nolan, G.; et al. Operational Modeling Capacity in European Seas—An EuroGOOS Perspective and Recommendations for Improvement. Front. Mar. Sci. 2020, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mateus, M.; Riflet, G.; Chambel, P.; Fernandes, L.; Fernandes, R.; Juliano, M.; Campuzano, F.; de Pablo, H.; Neves, R. An operational model for the West Iberian coast: Products and services. Ocean. Sci. 2012, 8, 713–732. [Google Scholar] [CrossRef] [Green Version]
- Campuzano, F.J.; Fernandes, R.; Leitão, P.C.; Viegas, C.; de Pablo, H.; Neves, R. Implementing local operational models based on an offline downscaling technique: The Tagus estuary case. In Proceedings of the 2nd Jornadas Engenharia Hidrográfica, Lisbon, Portugal, 20–22 June 2012; pp. 105–108. [Google Scholar]
- Campuzano, F. Coupling Watersheds, Estuaries and Regional Seas through Numerical Modelling for Western Iberia. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2018. [Google Scholar]
- Campuzano, F.J.; Juliano, M.; Sobrinho, J.; de Pablo, H.; Brito, D.; Fernandes, R.; Neves, R. Coupling Watersheds, Estuaries and Regional Oceanography through Numerical Modelling in the Western Iberia: Thermohaline Flux Variability at the Ocean-Estuary Interface. Estuary 2018. [Google Scholar] [CrossRef] [Green Version]
- Ottersen, G.; Planque, B.; Belgrano, A.; Post, E.; Reid, P.C.; Stenseth, N.C. Ecological effects of the North Atlantic Oscillation. Oecologia 2001, 128, 1–14. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Dickson, R.R. Climate Variability Over the North Atlantic. In Marine Ecosystems and Climate Variation; Oxford University Press: Oxford, UK, 2005; ISBN 9780198507499. [Google Scholar]
- Fiúza, A.F. de G.; de Macedo, M.E.; Guerreiro, M.R. Climatological space and time variation of the Portuguese coastal upwelling Upwelling Portugal Coastal winds Sea surface temperature Sardine Upwelling Portugal Vents côtiers Température de surface de la mer Sardine. Oceanol. Acta 1982, 5, 31–40. [Google Scholar]
- Fiuza, A.F.G. Upwelling Patterns Off Portugal. NATO Conf. Ser. 4 Mar. Sci. 1983, 10 A, 85–98. [Google Scholar] [CrossRef]
- Ruiz-Villarreal, M. Hydrodynamic Model Study of the Ria de Pontevedra Under Estuarine Conditions. Estuar. Coast. Shelf Sci. 2002, 54, 101–113. [Google Scholar] [CrossRef]
- Ambar, I.; Fiúza, A.F.G. Some features of the Portugal current system: A poleward slope undercurrent, an upwelling-related summer southward flow and an autumn-winter poleward coastal surface current. Proc. Second Int. Conf. Air-Sea Interact. Meteorol. Oceanogr. Coast. Zo. 1994, 286–287. [Google Scholar]
- Peliz, Á.; Dubert, J.; Santos, A.M.P.; Oliveira, P.B.; Le Cann, B. Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: An overview. Deep. Res. Part. I Oceanogr. Res. Pap. 2005, 52, 621–646. [Google Scholar] [CrossRef]
- Frouin, R.; Fiúza, A.F.G.; Ambar, I.; Boyd, T.J. Observations of a poleward surface current off the coasts of Portugal and Spain during winter. J. Geophys. Res. Ocean. 1990, 95, 679–691. [Google Scholar] [CrossRef]
- Relvas, P.; Barton, E.D.; Dubert, J.; Oliveira, P.B.; Peliz, Á.; da Silva, J.C.B.; Santos, A.M.P. Physical oceanography of the western Iberia ecosystem: Latest views and challenges. Prog. Oceanogr. 2007, 74, 149–173. [Google Scholar] [CrossRef] [Green Version]
- Peliz, Á.; Rosa, T.L.; Santos, A.M.P.; Pissarra, J.L. Fronts, jets, and counter-flows in the Western Iberian upwelling system. J. Mar. Syst. 2002, 35, 61–77. [Google Scholar] [CrossRef]
- Santos, A.M.P.; Re, P.; Dos Santos, A.; Peliz, Á. Vertical distribution of the European sardine (Sardina pilchardus) larvae and its implications for their survival. J. Plankton Res. 2006, 28, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Leitão, P.; Coelho, H.; Santos, A.; Neves, R. Modelling the main features of the Algarve coastal circulation during July 2004: A downscaling approach. J. Atmos. Ocean. Sci. 2005, 10, 421–462. [Google Scholar] [CrossRef]
- Leitão, P. Integracção de Escalas e de Processos na Modelação do Ambiente Marinho; Universidade Técnica de Lisboa, Instituto Superior Técnico: Lisbon, Portugal, 2002. [Google Scholar]
- Martins, F.; Leitão, P.C.; Silva, A.; Neves, R. 3D modelling in the Sado estuary using a new generic vertical discretization approach. Oceanol. Acta 2001, 24, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.A.; Neves, R.J.; Leitão, P.C. A three-dimensional hydrodynamic model with generic vertical coordinate. Hydroinformatics 1998, 1403–1410. [Google Scholar]
- Braunschweig, F.; Leitao, P.C.; Fernandes, L.; Pina, P.; Neves, R.J.J. The object-oriented design of the integrated water modelling system MOHID. Dev. Water Sci. 2004, 55, 1079–1090. [Google Scholar] [CrossRef]
- Mateus, M. A Process-oriented Biogeochemical Model for Marine Ecosystems: Development, Numerical Study, and Application; Universidade Técnica de Lisboa—Instituto Superior Técnico: Lisbon, Portugal, 2006. [Google Scholar]
- Delpey, M. Etude de la Dispersion Horizontale en Zone Littorale sous l’Effet de la Circulation Tridimensionnelle Forcée par les Vagues—Application à la Baie de Saint Jean de Luz—Ciboure et au Littoral de Guéthary-Bidart: HAL Id. Ph.D. Thesis, Université de Bretagne Occidentale-Brest, Brest, France, 2013. [Google Scholar]
- Saraiva, S. Modelling Bivalves in Estuaries and Coastal Areas. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2014. [Google Scholar]
- Ascione, I. Development and Application of a Process-oriented Model for Benthic Marine Systems. Ph.D. Thesis, Lisbon University, Lisbon, Portugal, 2014; 214p. [Google Scholar]
- Franz, G. Numerical Modelling of Hydrodynamics and Sediment Transport in Coastal Systems. Ph.D. Thesis, Instituto Superior Técnico, Lisbon, Portugal, 2017; pp. 2–3. [Google Scholar] [CrossRef]
- Fernandes, R. Risk Management of Coastal Pollution from Oil Spills Supported by Operational Numerical Modelling. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2018. [Google Scholar]
- Abbott, M.B.; Damsgaard, A.; Rodenhuis, G.S. System 21, “Jupiter” (A design system for two-dimensional nearly-horizonal flows). J. Hydraul. Res. 1973, 11, 1–28. [Google Scholar] [CrossRef]
- Leendertse, J. Aspects of a Computational Model for Long Water Wave Propagation; The RAND Corporation: Santa Monica, CA, USA, 1967. [Google Scholar]
- Roe, P.L. Characteristic-Based Schemes for the Euler Equations. Annu. Rev. Fluid Mech. 2003, 18, 337–365. [Google Scholar] [CrossRef]
- Sobrinho, J.; de Pablo, H.; Pinto, L.; Neves, R. Improving 3D-MOHID water model with an upscaling algorithm. Environ. Model. Softw. 2021, 135, 104920. [Google Scholar] [CrossRef]
- Oey, L.Y.; Chen, P. A nested-grid ocean model: With application to the simulation of meanders and eddies in the Norwegian Coastal Current. J. Geophys. Res. 1992, 97, 20063–20086. [Google Scholar] [CrossRef]
- Spall, M.; Holland, W.R. A Nested Primitive Equation Model for Oceanic Applications. J. Phys. Oceanogr. 1991, 21, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Debreu, L.; Blayo, E. Two-way embedding algorithms: A review. Ocean. Dyn. 2008, 58, 415–428. [Google Scholar] [CrossRef]
- Debreu, L.; Marchesiello, P.; Penven, P.; Cambon, G. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean. Model. 2012, 49–50, 1–21. [Google Scholar] [CrossRef]
- Kenov, I.A.; Campuzano, F.; Franz, G. Advances in Modeling of Water Quality in Estuaries Chapter 10 Advances in Modeling of Water Quality in Estuaries. In Remote Sensing and Modeling; Springer: Cham, Switzerland, 2014; ISBN 9783319063263. [Google Scholar]
- Franz, G.; Femandes, R.; de Pablo, H.J.; Viegas, C.; Pinto, L.; Campuzano, F.; Ascione, I.; Leitão, P.; Neves, R. Tagus Estuary Hydro-biogeochemical Model: Inter-Annual Validation and Operational Model Update. 3.as Jornadas Engenharia Hidrográfica; Extended Abstracts: Lisbon, Portugal, 2014. [Google Scholar]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean. Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Lefèvre, F.; Lyard, F.H.; Le Provost, C.; Schrama, E.J.O. FES99: A global tide finite element solution assimilating tide gauge and altimetric information. J. Atmos. Ocean. Technol. 2002, 19, 1345–1356. [Google Scholar] [CrossRef]
- Flather, R.A. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sei. Liège 1976, 10, 141–164. [Google Scholar]
- Martinsen, A.E.; Engedahl, H. Implementation and testing of a lateral boundary scheme as an open boundary condition in a barotropic ocean model. Coast. Eng. 1987, 11, 603–627. [Google Scholar] [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, S.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Technical Note NCAR/TN-398+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 1994; p. 121. [Google Scholar] [CrossRef]
- Trancoso, A.R. Operational Modelling as a Tool in Wind Power Forecasts and Meteorological Warnings. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2012. [Google Scholar]
- Ruiz Villarreal, M.; Bolding, K.; Burchard, H.; Demirov, E. Coupling of the GOTM turbulence module to some three-dimensional ocean. In Marine Turbulence: Theories, Observations, and Models—Results of the CARTUM Project; Baumert, H.Z., Simpson, S., Sündermann, J., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 225–237. [Google Scholar]
- Autret, E.; Paul, F.; Tandéo, P.; Hackett, B. For. Level 3 and 4 ODYSSEA SST Products over the Global Ocean and North Western Shelves—SST _ GLO _ SST _ L3 _ NRT _ OBSERVATIONS _ 010 _ 010—SST _ NWS _ SST _ L4 _ NRT _ OBSERVATIONS _ 010 _ 003; EU Copernicus Marine Service–Public: Brussels, Belgium, 2017. [Google Scholar]
- Lambda Project. CMEMS Service Evolution Project. 2020. Available online: http//www.cmems-lambda.eu/ (accessed on 6 April 2021).
- de Pablo, H.; Sobrinho, J.; Garcia, M.; Campuzano, F.; Juliano, M.; Neves, R. Validation of the 3D-MOHID hydrodynamic model for the Tagus coastal area. Water 2019, 11, 1713. [Google Scholar] [CrossRef] [Green Version]
- Brewin, R.J.W.; de Mora, L.; Billson, O.; Jackson, T.; Russell, P.; Brewin, T.G.; Shutler, J.D.; Miller, P.I.; Taylor, B.H.; Smyth, T.J.; et al. Evaluating operational AVHRR sea surface temperature data at the coastline using surfers. Estuar. Coast. Shelf Sci. 2017, 196, 276–289. [Google Scholar] [CrossRef]
Model Domain | Dimensions | Horizontal Grid |
---|---|---|
Minho | 14 × 3 | 3.4 km × 630 m |
Douro | 15 × 3 | 1.9 km × 300 m |
Mondego | 14 × 3 | 3.8 km × 170 m |
Tagus | 14 × 3 | 4.3 km × 5.3 km |
Sado | 14 × 3 | 6.8 km × 2.2 km |
Guadiana | 3 × 14 | 300 m × 3.9 km |
Guadalquivir | 14 × 3 | 9.4 km × 520 m |
Settings | Level 1—West Iberia | Level 2—PCOMS | Schematic Rivers and Estuaries |
---|---|---|---|
Model characterization | 2D—Barotropic | 3D—Baroclinic | 3D—Baroclinic |
Grid corners | 33.50° N–49.90° N 1.00° W–13.50° W | 34.38° N–45.00° N 12.60° W–5.50° W | 38.16° N–39.21° N 10.02° W–8.90° W |
Cells dimension | 208 × 156 | 177 × 125 | a |
Bathymetry | EMODnet b Hydrography portal | EMODnet b Hydrography portal | [38] |
Horizontal Grid | Regular: (≈5.7 km) | Regular: (≈5.7 km) | a |
Vertical Grid | 1 layer | 7 Sigma Layer (0–8.68 m) 43 Cartesian layers | 7 Sigma Layer (0–8.68 m) 43 Cartesian layers |
Δt | 60 s | 60 s | 30 s |
Tides | FES2004 | From Level1 | From PCOMS |
OBC Water | … | From MercatorOcéan PSY2V4 (Releases 1–4) | From PCOMS |
Assimilation | … | Flow relaxation scheme of 10 cells with a time decay of 1 day at the open boundary and 109 s inside the domain | Flow relaxation scheme of 3 or 4 cells with a time decay of 900 s at the open boundary and 109 s inside the domain |
OBC Atmosphere | MM5 (9 km) | ||
Discharges | No | From schematic rivers and estuaries | Minho, Douro, Mondego, Tagus, Sado, Guadiana, Guadalquivir |
Turbulence | … | GOTM c | GOTM c |
Bottom | Rugosity: 0.0025 m2 s−1 | Rugosity: 0.0025 m2 s−1 | Rugosity: 0.0025 m2 s−1 |
Flow Time Series | Source |
---|---|
Watershed model | |
In situ (Crestuma dam) (https://snirh.apambiente.pt/) | |
In situ (Pte Coimbra) (https://snirh.apambiente.pt/) | |
In situ (Almourol) (https://snirh.apambiente.pt/) | |
Watershed model | |
Watershed model | |
In situ (Alcala) (https://www.emodnet-physics.eu/map/platinfo/piroosplot.aspx?platformid=974539) |
Comparison | Parameter | 1 January–1 May 2018 (n = 2876) | 18 March–1 May 2018 (n = 1053) | ||||||
---|---|---|---|---|---|---|---|---|---|
r | r2 | RMSD | BIAS | r | r2 | RMSD | BIAS | ||
Data-Detached | Sal | 0.752 | 0.565 | 0.982 | 0.013 | 0.863 | 0.745 | 0.454 | −0.522 |
Temp | 0.837 | 0.701 | 0.671 | 0.415 | 0.842 | 0.709 | 0.392 | 0.647 | |
Data-Integrated | Sal | 0.865 | 0.748 | 0.963 | 0.031 | 0.920 | 0.847 | 0.333 | −0.357 |
Temp | 0.845 | 0.714 | 0.653 | 0.394 | 0.856 | 0.733 | 0.404 | 0.660 | |
Data-No-Rivers | Sal | 0.227 | 0.052 | 1.047 | −0.111 | −0.712 | 0.507 | 0.693 | −0.833 |
Temp | 0.753 | 0.567 | 0.684 | 0.420 | −0.178 | 0.032 | 0.296 | 0.392 |
Comparison | Parameter | 1 January–1 May 2018 (n = 2876) | 18 March–1 May 2018 (n = 1053) | ||||||
---|---|---|---|---|---|---|---|---|---|
r | r2 | RMSD | BIAS | r | r2 | RMSD | BIAS | ||
Data-Detached | Sal | 0.487 | 0.237 | 0.162 | 0.025 | −0.267 | −0.071 | −0.267 | −0.015 |
Temp | 0.826 | 0.683 | 0.440 | 0.085 | 0.159 | 0.025 | 0.499 | 0.432 | |
Data-Integrated | Sal | 0.449 | 0.202 | 0.164 | 0.025 | −0.143 | 0.021 | 0.265 | −0.014 |
Temp | 0.827 | 0.684 | 0.417 | 0.066 | 0.192 | 0.037 | 0.464 | 0.393 | |
Data-No-Rivers | Sal | 0.371 | 0.138 | 0.166 | 0.020 | −0.454 | 0.206 | 0.268 | −0.023 |
Temp | 0.828 | 0.686 | 0.433 | 0.081 | 0.182 | 0.033 | 0.494 | 0.428 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobrinho, J.; de Pablo, H.; Campuzano, F.; Neves, R. Coupling Rivers and Estuaries with an Ocean Model: An Improved Methodology. Water 2021, 13, 2284. https://doi.org/10.3390/w13162284
Sobrinho J, de Pablo H, Campuzano F, Neves R. Coupling Rivers and Estuaries with an Ocean Model: An Improved Methodology. Water. 2021; 13(16):2284. https://doi.org/10.3390/w13162284
Chicago/Turabian StyleSobrinho, João, Hilda de Pablo, Francisco Campuzano, and Ramiro Neves. 2021. "Coupling Rivers and Estuaries with an Ocean Model: An Improved Methodology" Water 13, no. 16: 2284. https://doi.org/10.3390/w13162284
APA StyleSobrinho, J., de Pablo, H., Campuzano, F., & Neves, R. (2021). Coupling Rivers and Estuaries with an Ocean Model: An Improved Methodology. Water, 13(16), 2284. https://doi.org/10.3390/w13162284