Monitoring Land Use Changes and Their Future Prospects Using GIS and ANN-CA for Perak River Basin, Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisitions and Preparation
2.3. Classification
2.4. Change Detection
2.5. Artificial Neural Network–Cellular Automata Modeling
3. Results and Discussions
3.1. Land Use Change and Accuracy Assessment
3.2. Land Use Changes in Perak River Basin
3.3. Prediction of Land Use Changes Using ANN-CA
3.3.1. Transition Potential Modeling Using ANN
3.3.2. Validation of ANN-CA Simulation
3.3.3. Prediction Maps of Year 2030, 2040, and 2050
3.3.4. Land Use Transition Matrix of Simulated Outcomes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote. Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. The worldwide extent of land-use change. Bioscience 1994, 44, 305–313. [Google Scholar] [CrossRef]
- Hathout, S. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. J. Environ. Manag. 2002, 66, 229–238. [Google Scholar] [CrossRef]
- Fei, L.; Shuwen, Z.; Jiuchun, Y.; Liping, C.; Haijuan, Y.; Kun, B. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar] [CrossRef]
- Guzha, A.; Rufino, M.C. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Guerra, F.; Puig, H.; Chaume, R. The forest-savanna dynamics from multi-date Landsat-TM data in Sierra Parima, Venezuela. Int. J. Remote. Sens. 1998, 19, 2061–2075. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote. Sensing 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Roy, A.; Inamdar, A.B. Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon 2019, 5, e01478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmer, E.H.; Brown, S.; Cohen, W.B. Mapping montane tropical forest successional stage and land use with multi-date Landsat imagery. Int. J. Remote. Sens. 2000, 21, 2163–2183. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote. Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Singh, Y.; Ferrazzoli, P.; Rahmoune, R. Flood monitoring using microwave passive remote sensing (AMSR-E) in part of the Brahmaputra basin, India. Int. J. Remote. Sens. 2013, 34, 4967–4985. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Agapiou, A.; Tzouvaras, M.; Themistocleous, K.; Neocleous, K.; Michaelides, S.; Hadjimitsis, D. Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: The case study of Paphos area in Cyprus. Nat. Hazards 2013, 72, 119–141. [Google Scholar] [CrossRef]
- Yatoo, S.A.; Sahu, P.; Kalubarme, M.H.; Kansara, B.B. Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India. GeoJournal 2020, 85, 1–22. [Google Scholar] [CrossRef]
- Vibhute, A.D.; Gawali, B.W. Analysis and modeling of agricultural land use using remote sensing and geographic information system: A review. Int. J. Eng. Res. Appl. 2013, 3, 81–91. [Google Scholar]
- Rahman, A.; Kumar, S.; Fazal, S.; Siddiqui, M.A. Assessment of land use/land cover change in the north-west district of Delhi using remote sensing and GIS techniques. J. Indian Soc. Remote. Sens. 2012, 40, 689–697. [Google Scholar] [CrossRef]
- Attri, P.; Chaudhry, S.; Sharma, S. Remote sensing & GIS based approaches for LULC change detection—A review. Int. J. Curr. Eng. Technol. 2015, 5, 3126–3137. [Google Scholar]
- Jiang, X.; Lu, D.; Moran, E.; Calvi, M.F.; Dutra, L.V.; Li, G. Examining impacts of the Belo Monte hydroelectric dam construction on land-cover changes using multitemporal Landsat imagery. Appl. Geogr. 2018, 97, 35–47. [Google Scholar] [CrossRef]
- Hazarika, N.; Das, A.K.; Borah, S.B. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt. J. Remote Sens. Space Sci. 2015, 18, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Granados, E.; Mendoza, M.E.; Gonzalez, D.I. Linking geomorphologic knowledge, RS and GIS techniques for analyzing land cover and land use change: A multitemporal study in the Cointzio watershed, Mexico. Rev. Ambiente Agua 2013, 8, 18–37. [Google Scholar]
- Lambin, E.F.; Geist, H.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Serra, P.; Pons, X.; Sauri, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Chowdhury, M.; Hasan, M.E.; Al Mamun, M.M.A. Land use/land cover change assessment of Halda watershed using remote sensing and GIS. Egypt. J. Remote. Sens. Space Sci. 2018, 23, 63–75. [Google Scholar] [CrossRef]
- Mohamed, M.A. Monitoring of temporal and spatial changes of land use and land cover in metropolitan regions through remote sensing and GIS. Nat. Resour. 2017, 8, 353–369. [Google Scholar] [CrossRef] [Green Version]
- El Gammal, E.A.; Salem, S.M.; El Gammal, A.E.A. Change detection studies on the world’s biggest artificial lake (Lake Nasser, Egypt). Egypt. J. Remote Sens. Space Sci. 2010, 13, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, F.O. Land change in the central Albertine rift: Insights from analysis and mapping of land use-land cover change in north-western Rwanda. Appl. Geogr. 2017, 87, 127–138. [Google Scholar] [CrossRef]
- Cheruto, M.C.; Kauti, M.K.; Kisangau, P.D.; Kariuki, P. Assessment of land use and land cover change using gis and remote sensing techniques: A case study of Makueni County, Kenya. J. Remote. Sens. GIS 2016, 05, 1000175. [Google Scholar] [CrossRef]
- Yusof, F.M.; Jamil, N.R.; Laew, N.I.C.; Aini, N.; Manaf, L.A. Land use change and soil loss risk assessment by using geographical information system (GIS): A case study of lower part of Perak River. IOP Conf. Ser. Earth Environ. Sci. 2016, 37, 12065. [Google Scholar] [CrossRef] [Green Version]
- Noh, N.S.M.; Sidek, L.M.; Wayayok, A.; Abdullah, A.F.; Basri, H.; Farhan, S.A.; Sulaiman, T.; Ariffin, A.B. Erosion and sediment control best management practices in agricultural farms for effective reservoir sedimentation management at Cameron Highlands. Int. J. Recent Technol. Eng. 2019, 8, 6198–6205. [Google Scholar] [CrossRef]
- Hanif, M.F.; ul Mustafa, M.R.; Hashim, A.M.; Yusof, K.W. Spatio-temporal change analysis of perak river basin using remote sensing and GIS. In Proceeding of the 2015 International Conference on Space Science and Communication, Lakawi, Malaysia, 10–12 August 2015. [Google Scholar]
- Wang, C.; Lei, S.; Elmore, A.J.; Jia, D.; Mu, S. Integrating temporal evolution with cellular automata for simulating land cover change. Remote. Sens. 2019, 11, 301. [Google Scholar] [CrossRef] [Green Version]
- Arsanjani, J.J. Characterizing, monitoring, and simulating land cover dynamics using GlobeLand30: A case study from 2000 to 2030. J. Environ. Manag. 2018, 214, 66–75. [Google Scholar] [CrossRef]
- Brown, D.; Band, L.E.; Green, K.O.; Irwin, E.G.; Jain, A.; Lambin, E.F.; Pontius, R.G.; Seto, K.C.; Turner, B.L., II; Verburg, P.H. Advancing Land Change Modeling: Opportunities and Research Requirements; The National Research Council Press: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Jiang, X.; Lin, M.; Zhao, J. Woodland cover change assessment using decision trees, support vector machines and artificial neural networks classification algorithms. In Proceedings of the 2011 Fourth International Conference on Intelligent Computation Technology and Automation, Shenzhen, China, 28–29 March 2011. [Google Scholar]
- Zhang, P.; Gong, M.; Su, L.; Liu, J.; Li, Z. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 116, 24–41. [Google Scholar] [CrossRef]
- Sivakumar, V. Urban mapping and growth prediction using remote sensing and GIS techniques, Pune, India. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2014, XL-8, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Sharma, L.K.; Nathawat, M.S. Improved land-use/land-cover classification of semi-arid deciduous forest land-scape using thermal remote sensing. Egypt. J. Remote Sens. Space Sci. 2015, 18, 217–233. [Google Scholar]
- Subedi, P.; Subedi, K.; Thapa, B. Application of a hybrid cellular automaton—Markov (CA-Markov) model in land-use change prediction: A case study of Saddle Creek Drainage Basin, Florida. Appl. Ecol. Environ. Sci. 2013, 1, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Sohlberg, R.; Townshend, J.; DiMiceli, C.; Carroll, M.; Eastman, J.; Hansen, M.; DeFries, R. Detection of land cover changes using MODIS 250 m data. Remote. Sens. Environ. 2002, 83, 336–350. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, G.; Zhan, F. Modeling spatial land use pattern using autologistic regression. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 115–119. [Google Scholar]
- Schneider, L.C.; Pontius, R.G., Jr. Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 83–94. [Google Scholar] [CrossRef]
- Harun, N.; Yaacob, W.Z.W.; Simon, N. Potential areas for the near surface disposal of radioactive waste in Pahang. AIP Conf. Proc. 2016, 1784, 060021. [Google Scholar] [CrossRef] [Green Version]
- Omar, M.N.; Rahaman, Z.A.; Hashim, M. the development of a soil erosion risk map for Perak, Malaysia. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 1108–1123. [Google Scholar] [CrossRef]
- USGS. United States Geological Survey. Available online: https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products (accessed on 27 February 2021).
- Sun, Y.; Ren, H.; Zhang, T.; Zhang, C.; Qin, Q. Crop leaf area index retrieval based on inverted difference vegetation index and NDVI. IEEE Geosci. Remote. Sens. Lett. 2018, 15, 1662–1666. [Google Scholar] [CrossRef]
- McFeeters, S.K. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote. Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote. Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Delbart, N.; Kergoat, L.; Le Toan, T.; Lhermitte, J.; Picard, G. Determination of phenological dates in boreal regions using normalized difference water index. Remote. Sens. Environ. 2005, 97, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Mas, J.F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote. Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Karakuş, C.B. The Impact of Land Use/Land Cover (LULC) changes on land surface temperature in sivas city center and its surroundings and assessment of urban heat island. Asia-Pac. J. Atmos. Sci. 2019, 55, 669–684. [Google Scholar] [CrossRef]
- Ibrahim, F.U.; Rasul, G. Urban land use land cover changes and their effect on land surface temperature: Case study using Dohuk City in the Kurdistan Region of Iraq. Climate 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 9–16. [Google Scholar] [CrossRef]
- Bolstad, P.T.M. Rapid maximum likelihood classification. Photogramm. Eng. Remote Sens. 1991, 57, 67–74. [Google Scholar]
- El-Tantawi, A.M.; Bao, A.; Chang, C.; Liu, Y. Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, Xinjiang-China (1990–2030). Environ. Monit. Assess. 2019, 191, 480. [Google Scholar] [CrossRef]
- Tallón-Ballesteros, A.J.; Riquelme, J.C. Data mining methods applied to a digital forensics task for supervised machine learning. In Computational Intelligence in Digital Forensics: Forensic Investigation and Applications; Springer: Berlin/Heidelberg, Germany, 2014; Chapter 17; pp. 413–428. [Google Scholar]
- Zhang, J.; Goodchild, M.F. Uncertainty in Geographical Information; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Kumar, M.; Mondal, I.; Pham, Q.B. Monitoring forest landcover changes in the Eastern Sundarban of Bangladesh from 1989 to 2019. Acta Geophys. 2021, 69, 561–577. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Song, J. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef] [Green Version]
- MOLUSCE. Modules for Land Use Change Evaluation. Available online: https://wiki.gis-lab.info/w/Landscape_change_analysis_with_MOLUSCE_-_methods_and_algorithms (accessed on 21 March 2021).
- Al-Rubkhi, M.N.A.G. Land Use Change Analysis and Modeling Using Open Source (QGis)-Case Study: Boasher Willayat. Ph.D. Thesis, College of Arts and Social Science, Department of Geography, Sultan Qaboos University, Muscat, Oman, 2017. [Google Scholar]
- Gasarovic, M.; Jogun, T. The effect of fusing Sentinel-2 bands on land-cover classification. Int. J. Remote Sens. 2018, 39, 822–841. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Brown, D.; A Shellito, B.; A Manik, G. Using neural networks and GIS to forecast land use changes: A Land Transformation Model. Comput. Environ. Urban Syst. 2002, 26, 553–575. [Google Scholar] [CrossRef]
- Rumelhart, D.; Hinton, G.; Williams, R. Learning Internal Representations by Error Propagation; California University of San Diego, La Jolla Institute for Cognitive Science: San Diego, CA, USA, 1985. [Google Scholar]
- Lau, K.H.; Kam, B.H. A cellular automata model for urban land-use simulation. Environ. Plan. B Plan. Des. 2005, 32, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Lantman, J.v.S.; Verburg, P.H.; Bregt, A.; Geertman, S. Core principles and concepts in land-use modelling: A literature review. In Land-Use Modelling in Planning Practice; Koomen, E., Borsboom-van, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 35–57. [Google Scholar] [CrossRef] [Green Version]
- Jogun, T.; Lukić, A.; Gašparović, M. Simulation model of land cover changes in a post-socialist peripheral rural area: Pozga-Slavonia County, Croatia. Croat. Geogr. Bull. 2019, 81, 31–59. [Google Scholar] [CrossRef] [Green Version]
- GIS-Lab. Landscape Change Analysis with Methods of Land Use Change Evaluation (MOLUSCE) Methods and Algorithms 2018. Available online: https://wiki.gislab.info/w/Landscape_change_analysis_with_MOLUSCE_methods_and_algorithms (accessed on 8 March 2021).
- Pontius, R.G.; Huffaker, D.; Denman, K. Useful techniques of validation for spatially explicit land-change models. Ecol. Model. 2004, 179, 445–461. [Google Scholar] [CrossRef]
- Wright, J.; Lillesand, T.M.; Kiefer, R.W. Remote sensing and image interpretation. Geogr. J. 1980, 146, 448. [Google Scholar] [CrossRef]
- Jakovljevic, G.; Govedarica, M.; Álvarez-Taboada, F. Waterbody mapping: A comparison of remotely sensed and GIS open data sources. Int. J. Remote. Sens. 2018, 40, 2936–2964. [Google Scholar] [CrossRef]
- Ali, T.; Shahbaz, B.; Suleri, A. Analysis of myths and realities of deforestation in Northwest Pakistan: Implications for forestry extension. Int. J. Agric. Biol. 2006, 8, 107–110. [Google Scholar]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using remote sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar]
- Pakistan, I.U.C.N. Rapid Environmental Appraisal of Developments in and Around Murree Hills; Technical Report; IUCN: Karachi, Pakistan, 2005. [Google Scholar]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Al-Faraj, F.A.; Scholz, M. Impact of upstream anthropogenic river regulation on downstream water availability in transboundary river watersheds. Int. J. Water Resour. Dev. 2014, 31, 28–49. [Google Scholar] [CrossRef]
- Drieschova, A.; Giordano, M.; Fischhendler, I. Governance mechanisms to address flow variability in water treaties. Glob. Environ. Chang. 2008, 18, 285–295. [Google Scholar] [CrossRef]
- Veldkamp, T.; Wada, Y.; Aerts, J.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 2017, 8, 15697. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Baeck, M.L.; Sturdevant-Rees, P.; Krajewski, W.F. Radar analyses of extreme rainfall and flooding in urban drainage basins. J. Hydrol. 2010, 381, 266–286. [Google Scholar] [CrossRef]
- Bronstert, A. Floods and climate change: Interactions and impacts. Risk Anal. 2003, 23, 545–557. [Google Scholar] [CrossRef]
- Saputra, M.H.; Lee, H.S. Prediction of land use and land cover changes for North Sumatra, Indonesia, using an artificial-neural-network-based cellular automaton. Sustainability 2019, 11, 3024. [Google Scholar] [CrossRef] [Green Version]
- Memarian, H.; Balasundram, S.K.; Bin Talib, J.; Sung, C.T.B.; Sood, A.M.; Abbaspour, K. Validation of CA-Markov for Simulation of land use and cover change in the Langat Basin, Malaysia. J. Geogr. Inf. Syst. 2012, 04, 542–554. [Google Scholar] [CrossRef] [Green Version]
Year | Landsat Scene ID | Path | Date Acquired | Resolution (m) | Row | Earth-Sun Distance |
---|---|---|---|---|---|---|
2000 | LT51270562000237BKT00 | 127 | 24 August 2000 | 30 | 56 | 1.0109543 |
LT51270572000237BKT00 | 127 | 24 August 2000 | 30 | 57 | 1.0109543 | |
LT51280562000020DKI00 | 128 | 20 January 2000 | 30 | 56 | 0.9839503 | |
LT51280572000148BKT01 | 128 | 27 May 2000 | 30 | 57 | 1.0132773 | |
2010 | LT51270562010056BKT00 | 127 | 25 February 2010 | 30 | 56 | 0.9898357 |
LT51270572010360BKT00 | 127 | 26 December 2010 | 30 | 57 | 0.9834906 | |
LT51280562010047BKT00 | 128 | 16 February 2010 | 30 | 56 | 0.9878930 | |
LT51280572010047BKT00 | 128 | 16 February 2010 | 30 | 57 | 0.9878930 | |
2020 | LC81270562020228LGN00 | 127 | 15 August 2020 | 30 | 56 | 1.0128081 |
LC81270572020228LGN00 | 127 | 15 August 2020 | 30 | 57 | 1.0128080 | |
LC81280562020315LGN00 | 128 | 10 November 2020 | 30 | 56 | 0.9902608 | |
LC81280572020267LGN00 | 128 | 23 September 2020 | 30 | 57 | 1.0034227 |
Class | Description |
---|---|
Waterbodies | Rivers, open water, lakes, ponds, and reservoirs. |
Barren and urban lands | Land areas of exposed soil and barren areas influenced by humans. |
Dense forests | Continuous stands of trees, many of which may attain a height of 50 m, including natural forest, mangrove, and plantation forest. |
Agricultural lands | Mainly composed of grass, vegetation, crop plants, cultivated lands, and shrub lands. |
2000 | AL | W | BL | DF | Total | UA (%) |
AL | 36 | 0 | 1 | 3 | 40 | 90 |
W | 0 | 47 | 1 | 1 | 49 | 96 |
BL | 1 | 2 | 49 | 4 | 56 | 87 |
DF | 3 | 0 | 2 | 39 | 44 | 89 |
Total | 40 | 49 | 54 | 47 | 189 | |
PA (%) | 90 | 95 | 91 | 83 | ||
OA (%) | 90 | |||||
K | 0.86 | |||||
2010 | AL | W | BL | DF | Total | UA (%) |
AL | 55 | 0 | 1 | 3 | 59 | 93 |
W | 0 | 42 | 1 | 1 | 44 | 95 |
BL | 4 | 2 | 57 | 1 | 64 | 89 |
DF | 3 | 0 | 0 | 32 | 35 | 91 |
Total | 62 | 44 | 59 | 37 | 202 | |
PA (%) | 89 | 94 | 97 | 86 | ||
OA (%) | 92 | |||||
K | 0.88 | |||||
2020 | AL | W | BL | DF | Total | UA (%) |
AL | 61 | 0 | 0 | 2 | 63 | 97 |
W | 0 | 45 | 0 | 0 | 45 | 100 |
BL | 3 | 0 | 27 | 0 | 30 | 90 |
DF | 2 | 0 | 1 | 36 | 39 | 92 |
Total | 66 | 45 | 28 | 38 | 177 | |
PA (%) | 92 | 100 | 96 | 95 | ||
OA (%) | 95 | |||||
K | 0.91 |
Years | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
LULC (Area) | Area (km2) | % | Area (km2) | % | Area (km2) | % |
Dense Forests | 12,512.30 | 56.02 | 9739.54 | 43.59 | 7925.04 | 35.47 |
Agricultural Lands | 6195.98 | 27.73 | 8714.08 | 39.04 | 9603.39 | 42.46 |
Barren and Urban Lands | 3270.01 | 14.63 | 3510.39 | 15.71 | 3817.07 | 20.29 |
Waterbodies | 363.18 | 1.62 | 377.47 | 1.68 | 391.79 | 1.75 |
Years | 2000–2010 | 2010–2020 | ||
---|---|---|---|---|
LULC (Area) | Area (km2) | % | Area (km2) | % |
Dense Forests | −2772.77 | −12.4108 | −1812.85 | −8.11 |
Agricultural Lands | 2518.09 | 11.27 | 889.90 | 3.46 |
Barren and Urban Lands | 240.38 | 1.07 | 307.36 | 4.59 |
Waterbodies | 14.29 | 0.06 | 15.31 | 0.068 |
Class Name | Area (km2) 2030 | Area (km2) 2040 | Area (km2) 2050 | Change from 2030 to 2040 (km2) | Change from 2040 to 2050 (km2) |
---|---|---|---|---|---|
Waterbodies | 388.72 | 387.16 | 384.633 | −1.56 | −2.53 |
Barren and urban lands | 3830.35 | 3896.3 | 3948.24 | 65.95 | 51.24 |
Dense forests | 7461.2 | 7125.39 | 7030.62 | −335.91 | −94.77 |
Agricultural lands | 9788.3 | 9847.8 | 9894.7 | 60.6 | 46.9 |
2020–2030 | ||||
Waterbodies | Barren and Urban Lands | Dense Forests | Agricultural Lands | |
Waterbodies | 0.90 | 0.06 | 0.03 | 0.01 |
Barren and urban lands | 0.00 | 0.94 | 0.01 | 0.05 |
Dense forests | 0.00 | 0.06 | 0.75 | 0.19 |
Agricultural lands | 0.00 | 0.12 | 0.05 | 0.83 |
2030–2040 | ||||
Waterbodies | Barren and Urban Lands | Dense Forests | Agricultural Lands | |
Waterbodies | 0.96 | 0.00 | 0.00 | 0.04 |
Barren and urban lands | 0.00 | 0.98 | 0.01 | 0.01 |
Dense forests | 0.00 | 0.02 | 0.87 | 0.11 |
Agricultural lands | 0.00 | 0.03 | 0.06 | 0.91 |
2040–2050 | ||||
Waterbodies | Barren and Urban Lands | Dense Forests | Agricultural Lands | |
Waterbodies | 0.97 | 0.00 | 0.01 | 0.02 |
Barren and urban lands | 0.00 | 0.95 | 0.01 | 0.04 |
Dense forests | 0.00 | 0.02 | 0.85 | 0.13 |
Agricultural lands | 0.00 | 0.07 | 0.05 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeshan, M.T.; Mustafa, M.R.U.; Baig, M.F. Monitoring Land Use Changes and Their Future Prospects Using GIS and ANN-CA for Perak River Basin, Malaysia. Water 2021, 13, 2286. https://doi.org/10.3390/w13162286
Zeshan MT, Mustafa MRU, Baig MF. Monitoring Land Use Changes and Their Future Prospects Using GIS and ANN-CA for Perak River Basin, Malaysia. Water. 2021; 13(16):2286. https://doi.org/10.3390/w13162286
Chicago/Turabian StyleZeshan, Muhammad Talha, Muhammad Raza Ul Mustafa, and Mohammed Feras Baig. 2021. "Monitoring Land Use Changes and Their Future Prospects Using GIS and ANN-CA for Perak River Basin, Malaysia" Water 13, no. 16: 2286. https://doi.org/10.3390/w13162286
APA StyleZeshan, M. T., Mustafa, M. R. U., & Baig, M. F. (2021). Monitoring Land Use Changes and Their Future Prospects Using GIS and ANN-CA for Perak River Basin, Malaysia. Water, 13(16), 2286. https://doi.org/10.3390/w13162286