Reed Biochar Addition to Composite Filler Enhances Nitrogen Removal from BDBR Systems in Eutrophic Rivers Channel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Reed Biochar Composite Filler
2.2. Construction of Novel Sequencing Batch Biofilm Reactor (SBBR)
2.3. Sampling and Water Quality Analysis
2.4. Biofilm Biomass and Microbial Activity
2.5. DNA Extraction and Biofilm Microbial Diversity
2.6. Statistical Analysis
3. Results
3.1. Removal of COD and TN for Eutrophic River Channel by SBBR Constructed with Reed Biochar Composite Filler
3.2. Removal of NH4+-N and NO3−-N from Eutrophic Rivers by SBBR Constructed with Reed Biochar Composite Filler
3.3. Biofilm Biomass and Microbial Activity in SBBR Constructed with Reed Biochar Composite Filler
3.4. Diversity of Dominant Bacteria on Biofilm in SBBR Constructed with Reed Biochar Composite Filler
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Z.; Fang, W.; Luo, Y.; Lu, Q.; Juneau, P.; He, Z.; Wang, S. Mechanistic insights into organic carbon-driven water blackening and odorization of urban rivers. J. Hazard. Mater. 2021, 405, 124663. [Google Scholar] [CrossRef]
- Qin, C.; Li, Z.; Xie, P.; Hao, Q.; Tang, X.; Wu, Y.; Du, P. Temporal Variation and Reduction Strategy of Nutrient Loads from an Urban River Catchment into a Eutrophic Lake, China. Water 2019, 11, 166. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Gao, L.; Li, W.; Wang, Y.; Liu, J.; Cai, Y. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China. Environ. Pollut. 2016, 209, 1–10. [Google Scholar] [CrossRef]
- Chen, C.; Yang, X.; Luo, H.; Zeng, D.; Sima, M.; Huang, S. Linking microbial community and biological functions to redox potential during black-odor river sediment remediation. Environ. Sci. Pollut. Res. 2020, 27, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, S.; Zhang, L.; Li, X.; Wang, F.; Li, G.; Li, J.; Li, W. In-situ remediation of sediment by calcium nitrate combined with composite microorganisms under low-DO regulation. Sci. Total. Environ. 2019, 697, 134109. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Sun, Q.; Zhao, D.; Xu, M.; Shen, Q.; Wang, D.; Wang, Y.; Ding, S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. J. Hazard. Mater. 2020, 385, 121511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tang, Y.; Kou, Z.; Teng, X.; Cai, W.; Hu, J. Shift of Sediments Bacterial Community in the Black-Odor Urban River during In Situ Remediation by Comprehensive Measures. Water 2019, 11, 2129. [Google Scholar] [CrossRef] [Green Version]
- Kabutey, F.T.; Antwi, P.; Ding, J.; Zhao, Q.-L.; Quashie, F.K. Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC). Environ. Sci. Pollut. Res. 2019, 26, 26829–26843. [Google Scholar] [CrossRef]
- Behera, B.K.; Chakraborty, H.J.; Patra, B.; Rout, A.K.; Dehury, B.; Das, B.K.; Sarkar, D.J.; Parida, P.K.; Raman, R.K.; Rao, A.R.; et al. Metagenomic Analysis Reveals Bacterial and Fungal Diversity and Their Bioremediation Potential from Sediments of River Ganga and Yamuna in India. Front. Microbiol. 2020, 11, 556136. [Google Scholar] [CrossRef]
- Ting, W.; Tan, I.A.W.; Salleh, S.; Wahab, N. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. J. Water Process. Eng. 2018, 22, 239–249. [Google Scholar] [CrossRef]
- Liu, C.; Shao, M.; Wang, Y.; Hou, X. Status quo of Water Science & Technology Development in China and Abroad; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; pp. 37–52. [Google Scholar]
- Xu, R.; Zhang, S.; Meng, F. Large-sized planktonic bioaggregates possess high biofilm formation potentials: Bacterial succession and assembly in the biofilm metacommunity. Water Res. 2020, 170, 115307. [Google Scholar] [CrossRef]
- Pepe-Ranney, C.; Hall, E.K. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly. Front. Microbiol. 2015, 6, 703. [Google Scholar] [CrossRef]
- Ye, J.; Ren, G.; Wang, C.; Hu, A.; Li, F.; Zhou, S.; He, Z. A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation. Biosens. Bioelectron. 2021, 190, 113464. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, D.; Huang, W.; Yang, Y.; Ji, M.; Nghiem, L.D.; Trinh, Q.T.; Tran, N.H. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. Bioresour. Technol. 2019, 288, 121619. [Google Scholar] [CrossRef]
- Fanta, A.B.; Nair, A.M.; Sægrov, S.; Østerhus, S.W. Phosphorus removal from industrial discharge impacted municipal wastewater using sequencing batch moving bed biofilm reactor. J. Water Process. Eng. 2021, 41, 102034. [Google Scholar] [CrossRef]
- Mielcarek, A.; Rodziewicz, J.; Janczukowicz, W.; Dabrowska, D.; Ciesielski, S.; Thornton, A.; Struk-Sokołowska, J. Citric acid application for denitrification process support in biofilm reactor. Chemosphere 2017, 171, 512–519. [Google Scholar] [CrossRef]
- Wen, X.; Zhou, J.; Wang, J.; Qing, X.; He, Q. Effects of dissolved oxygen on microbial community of single-stage autotrophic nitrogen removal system treating simulating mature landfill leachate. Bioresour. Technol. 2016, 218, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wang, T.; Ye, J.; Zhao, J.; Yang, L.; Wu, P.; Duan, J.; Ye, G. Effects of carbon sources and operation modes on the performances of aerobic denitrification process and its microbial community shifts. J. Environ. Manag. 2019, 239, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Saba, B.; Zaman, B.; Mahmood, T.; Khan, S.J. Treatment of wastewater with a high C/N ratio in Sequencing Batch Bioreactor (SBBR) containing biocarrier. Environ. Eng. Manag. J. 2017, 16, 2485–2489. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, C.; Zhang, K.; Zhang, C.; Fang, Q.; Li, S. Effects of temperature on simultaneous nitrification and denitrification via nitrite in a sequencing batch biofilm reactor. Bioprocess Biosyst. Eng. 2009, 32, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Janczukowicz, W.; Rodziewicz, J.; Czaplicka, K.; Kłodowska, I.; Mielcarek, A. The effect of volatile fatty acids (VFAs) on nutrient removal in SBR with biomass adapted to dairy wastewater. J. Environ. Sci. Health Part A 2013, 48, 809–816. [Google Scholar] [CrossRef]
- Al-Saedi, R.; Smettem, K.; Siddique, K.H. The impact of biodegradable carbon sources on microbial clogging of vertical up-flow sand filters treating inorganic nitrogen wastewater. Sci. Total. Environ. 2019, 691, 360–366. [Google Scholar] [CrossRef]
- Rahman, N.S.A.; Yhaya, M.F.; Azahari, B.; Ismail, W.R. Utilisation of natural cellulose fibres in wastewater treatment. Cellulose 2018, 25, 4887–4903. [Google Scholar] [CrossRef]
- Torresi, E.; Casas, M.E.; Polesel, F.; Plósz, B.G.; Christensson, M.; Bester, K. Impact of external carbon dose on the removal of micropollutants using methanol and ethanol in post-denitrifying Moving Bed Biofilm Reactors. Water Res. 2017, 108, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, R.; Chen, Y.; Zheng, X.; Su, Y.; Huang, H. Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism. Sci. Total. Environ. 2018, 627, 896–904. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, B.; Zhu, L.; Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Liu, W.; Li, K.; Hu, X.; Hu, X.; Zhang, R.; Li, Q. Characteristics and Mechanism of Pb2+ Adsorption From Aqueous Solution Onto Biochar Derived From Microalgae and Chitosan-Modified Microalgae. Front. Environ. Chem. 2021, 2, 9. [Google Scholar] [CrossRef]
- Stylianou, M.; Christou, A.; Michael, C.; Agapiou, A.; Papanastasiou, P.; Fatta-Kassinos, D. Adsorption and removal of seven antibiotic compounds present in water with the use of biochar derived from the pyrolysis of organic waste feedstocks. J. Environ. Chem. Eng. 2021, 9, 105868. [Google Scholar] [CrossRef]
- Ilangovan, M.; Guna, V.K.; Olivera, S.; Ravi, A.; Muralidhara, H.; Santosh, M.; Reddy, N. Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water. Bioresour. Technol. 2017, 245, 296–299. [Google Scholar] [CrossRef]
- Hassanpour, B.; Riazi, S.F.; Pluer, E.M.; Geohring, L.D.; Guzman, C.D.; Steenhuis, T.S. Biochar acting as an electron acceptor reduces nitrate removal in woodchip denitrifying bioreactors. Ecol. Eng. 2020, 149, 105724. [Google Scholar] [CrossRef]
- Moradi, N.; Karimi, A. Fe-Modified Common Reed Biochar Reduced Cadmium (Cd) Mobility and Enhanced Microbial Activity in a Contaminated Calcareous Soil. J. Soil Sci. Plant Nutr. 2020, 21, 329–340. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Xin, Z.-B.; Peng, F.; Ma, M.-G. Influence of Pyrolysis Temperature on Characteristics and Nitrobenzene Adsorption Capability of Biochar Derived from Reed and Giant Reed. Sci. Adv. Mater. 2019, 11, 1523–1530. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Li, R.; Guo, J.; Li, Y.; Zhu, J.; Xie, X. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere 2017, 185, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Water Environmental Federation; APH Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Gross, A.; Boyd, C.E.; Seo, J. Evaluation of the Ultraviolet Spectrophotometric Method for the Measurement of Total Nitrogen in Water. J. World Aquac. Soc. 1999, 30, 388–393. [Google Scholar] [CrossRef]
- Lowry, R.R.; Tinsley, I.J. A simple, sensitive method for lipid phosphorus. Lipids 1974, 9, 491–492. [Google Scholar] [CrossRef]
- Féray, C.; Volat, B.; Degrange, V.; Clays-Josserand, A.; Montuelle, B. Assessment of Three Methods for Detection and Quantification of Nitrite-Oxidizing Bacteria and Nitrobacter in Freshwater Sediments (MPN-PCR, MPN-Griess, Immunofluorescence). Microb. Ecol. 1999, 37, 208–217. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, B.S.; Yu, C.W.; Chiang, S.W. A water-based triphenyltetrazolium chloride method for the evaluation of green plant tissue viability. Phytochem. Anal. 2010, 12, 211–213. [Google Scholar] [CrossRef]
- Yajun, C.; Ya, Z.; Naiwei, L.; Xiaojing, L.; Fengfeng, D.; Dongrui, Y. Biomass production and nutrient removal efficiency of Suaeda salsa in eutrophic saline water using a floating mat treatment system. Water Supply 2018, 19, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Ling, F.; Wang, G.X.; Xu, K.; Zhou, F.; Du, X. Effects of Aeration on Nitrification Process in a Polluted Urban River. Meteorol. Environ. Res. 2012, 3, 26–29. [Google Scholar]
- Schullehner, J.; Stayner, L.; Hansen, B. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems. Int. J. Environ. Res. Public Health 2017, 14, 276. [Google Scholar] [CrossRef] [Green Version]
- Ferrocino, I.; Gilardi, G.; Pugliese, M.; Gullino, M.L.; Garibaldi, A. Shifts in ascomycete community of bisolarizated substrate infested with Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. basilici by PCR-DGGE. Appl. Soil Ecol. 2014, 81, 12–21. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Z.; Lin, Z.; Gong, X.; Guo, H.; Wang, H. Modification of polyurethane sponge filler using medical stones and application in a moving bed biofilm reactor for ex situ remediation of polluted rivers. J. Water Process. Eng. 2021, 42, 102189. [Google Scholar] [CrossRef]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielcarek, A.; Rodziewicz, J.; Janczukowicz, W.; Dulski, T.; Ciesielski, S.; Thornton, A. Denitrification aided by waste beer in anaerobic sequencing batch biofilm reactor (AnSBBR). Ecol. Eng. 2016, 95, 384–389. [Google Scholar] [CrossRef]
- Wang, J.; Ding, L.; Li, K.; Huang, H.; Hu, H.; Geng, J.; Xu, K.; Ren, H. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms. Sci. Total. Environ. 2018, 612, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhou, J.; Jing, W.; Zhang, X.; Zhang, Z.; Uddin, M.S. Performance and Microbial Structure of a Combined Biofilm Reactor. Bioprocess Biosyst. Eng. 2005, 27, 249–254. [Google Scholar] [CrossRef]
- Dai, J.; Peng, Y.; Zhang, J.; Zhang, L. Anammox bacteria enrichment in fixed biofilm successfully enhanced nitrogen removal of domestic wastewater in a sequencing biofilm batch reactor (SBBR). J. Water Process. Eng. 2021, 42, 102154. [Google Scholar] [CrossRef]
- Geyik, A.G.; Kılıç, B.; Çeçen, F. Extracellular polymeric substances (EPS) and surface properties of activated sludges: Effect of organic carbon sources. Environ. Sci. Pollut. Res. 2016, 23, 1653–1663. [Google Scholar] [CrossRef]
- Raper, E.; Fisher, R.; Anderson, D.R.; Stephenson, T.; Soares, A. Alkalinity and external carbon requirements for denitrification-nitrification of coke wastewater. Environ. Technol. 2018, 39, 2266–2277. [Google Scholar] [CrossRef]
- Hu, Z.; Yao, H.; Li, D. Remediation of contaminated urban river sediment based to iron-rich substrate: A comparative study with chemical oxidants. Environ. Technol. Innov. 2021, 23, 101793. [Google Scholar] [CrossRef]
- Czaczyk, K.; Myszka, K. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol. J. Environ. Stud. 2007, 16, 799–806. [Google Scholar]
BC: 0% | BC: 5% | BC: 10% | BC: 15% | |
---|---|---|---|---|
Biomass (106 P ∙ g−1∙DW−1) | 8.35 d 1 | 13.91 c | 16.90 b | 22.08 a |
Nitrifying bacteria (104 MPN ∙ g−1∙DW−1) | 0.29 d | 3.21 b | 7.13 a | 1.94 bc |
Denitrifying bacteria (105 MPN ∙ g−1∙DW−1) | 0.20 d | 4.56 b | 8.89 a | 1.75 c |
TTC-dehydrogenase activity (μg ∙ nmol−1) | 9.60 d | 26.63 bc | 55.56 a | 20.81 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Liu, J.; Tang, Q.; Sun, L.; Cui, J.; Liu, X.; Yao, D.; Han, S. Reed Biochar Addition to Composite Filler Enhances Nitrogen Removal from BDBR Systems in Eutrophic Rivers Channel. Water 2021, 13, 2501. https://doi.org/10.3390/w13182501
Chang Y, Liu J, Tang Q, Sun L, Cui J, Liu X, Yao D, Han S. Reed Biochar Addition to Composite Filler Enhances Nitrogen Removal from BDBR Systems in Eutrophic Rivers Channel. Water. 2021; 13(18):2501. https://doi.org/10.3390/w13182501
Chicago/Turabian StyleChang, Yajun, Jie Liu, Qiang Tang, Linhe Sun, Jian Cui, Xiaojing Liu, Dongrui Yao, and Shiqun Han. 2021. "Reed Biochar Addition to Composite Filler Enhances Nitrogen Removal from BDBR Systems in Eutrophic Rivers Channel" Water 13, no. 18: 2501. https://doi.org/10.3390/w13182501
APA StyleChang, Y., Liu, J., Tang, Q., Sun, L., Cui, J., Liu, X., Yao, D., & Han, S. (2021). Reed Biochar Addition to Composite Filler Enhances Nitrogen Removal from BDBR Systems in Eutrophic Rivers Channel. Water, 13(18), 2501. https://doi.org/10.3390/w13182501