Characteristics and Sources of Selected Halocarbon and Hydrocarbon Volatile Organic Compounds in Surface Water of the Han River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Study Area and Sample Collection
2.3. Analytical Procedure
2.4. Quality Assurance/Quality Control (QA/QC)
2.5. Calculation of Ecological Risk
2.6. Data Analyses
3. Results and Discussion
3.1. Overall Distribution of VOC Concentrations
3.2. Spatiotemporal Distributions of VOCs
3.3. Potential VOC Sources
3.4. Ecological Risk of VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dewulf, J.; Van Langenhove, H. Anthropogenic volatile organic compounds in ambient air and natural waters: A review on recent developments of analytical methodology, performance and interpretation of field measurements. J. Chromatogr. A 1999, 843, 163–177. [Google Scholar] [CrossRef]
- Lopes, T.J.; Dionne, S.G. A Review of Semivolatile and Volatile Organic Compounds in Highway Runoff and Urban Stormwater; US Department of the Interior, US Geological Survey: Reston, VI, USA, 1998; Volume 98. [Google Scholar]
- Guenther, A. Seasonal and spatial variations in natural volatile organic compound emissions. Ecol. Appl. 1997, 7, 34–45. [Google Scholar] [CrossRef]
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef]
- Mellouki, A.; Wallington, T.; Chen, J. Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate. Chem. Rev. 2015, 115, 3984–4014. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Qin, P.; Lu, S.; He, Q.; Wu, F.; Sun, H.; Wang, L.; Li, L. Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China. Ecotox. Environ. Safe 2018, 165, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Chameides, W.; Lindsay, R.; Richardson, J.; Kiang, C. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 1988, 241, 1473–1475. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Li, A.J.; Pal, V.K.; Kannan, K.A. review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ. Chem. Ecotox. 2021, 3, 91–116. [Google Scholar]
- Koppmann, R. Volatile Organic Compounds in the Atmosphere; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kim, K.-H.; Ho, D.X.; Park, C.G.; Ma, C.-J.; Pandey, S.K.; Lee, S.C.; Jeong, H.J.; Lee, S.H. Volatile organic compounds in ambient air at four residential locations in Seoul, Korea. Environ. Eng. Sci. 2012, 29, 875–889. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Seo, Y.-K.; Kim, J.-H.; Baek, S.-O. Impact of industrial activities on atmospheric volatile organic compounds in Sihwa-Banwol, the largest industrial area in South Korea. Environ. Sci. Pollut. Res. 2020, 27, 28912–28930. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Kwon, H.-O.; Lee, M.-I.; Seo, Y.; Choi, S.-D. Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea. Environ. Sci. Pollut. Res. 2019, 26, 5831–5841. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Kim, J.-C.; Park, C.-R.; Son, Y.-S. Emission characteristics of biogenic volatile organic compounds from representative plant species of the Korean peninsula–Focused on aldehydes. Atmos. Res. 2020, 236, 104840. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Kim, K.-H.; Kim, M.-Y. Volatile organic compounds at an urban monitoring station in Korea. J. Hazard. Mater. 2009, 161, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Roh, S.; Kim, J.; Lee, S.; Kim, Y. Temporal variation of volatile organic compounds and their major emission sources in Seoul, Korea. Environ. Sci. Pollut. Res. 2013, 20, 8717–8728. [Google Scholar] [CrossRef]
- Simpson, I.J.; Blake, D.R.; Blake, N.J.; Meinardi, S.; Barletta, B.; Hughes, S.C.; Fleming, L.T.; Crawford, J.H.; Diskin, G.S.; Emmons, L.K. Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ. Elem. Sci. Anthrop. 2020, 8, 37. [Google Scholar] [CrossRef]
- Cho, E.; Khim, J.; Chung, S.; Seo, D.; Son, Y. Occurrence of micropollutants in four major rivers in Korea. Sci. Total Environ. 2014, 491, 138–147. [Google Scholar] [CrossRef]
- Nikolaou, A.D.; Golfinopoulos, S.K.; Kostopoulou, M.N.; Kolokythas, G.A.; Lekkas, T.D. Determination of volatile organic compounds in surface waters and treated wastewater in Greece. Water Res. 2002, 36, 2883–2890. [Google Scholar] [CrossRef]
- Squillace, P.J.; Scott, J.C.; Moran, M.J.; Nolan, B.; Kolpin, D.W. VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States. Environ. Sci. Technol. 2002, 36, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Maslia, M.L.; Aral, M.M.; Ruckart, P.Z.; Bove, F.J. Reconstructing historical VOC concentrations in drinking water for epidemiological studies at a US Military base: Summary of results. Water 2016, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.-Z.; Feng, T.-Z.; Sree, U.; Chiu, K.-H.; Lo, J.-G. Sampling and analysis of volatile organics emitted from wastewater treatment plant and drain system of an industrial science park. Anal. Chim. Acta 2006, 576, 100–111. [Google Scholar] [CrossRef]
- Martí, N.; Aguado, D.; Segovia-Martínez, L.; Bouzas, A.; Seco, A. Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain. Mar. Pollut. Bul. 2011, 62, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Safarova, V.; Sapelnikova, S.; Djazhenko, E.; Teplova, G.; Shajdulina, G.; Kudasheva, F.K. Gas chromatography–mass spectrometry with headspace for the analysis of volatile organic compounds in waste water. J. Chromatogr. B 2004, 800, 325–330. [Google Scholar] [CrossRef]
- Fatone, F.; Di Fabio, S.; Bolzonella, D.; Cecchi, F. Fate of aromatic hydrocarbons in Italian municipal wastewater systems: An overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). Water Res. 2011, 45, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Pecoraino, G.; Scalici, L.; Avellone, G.; Ceraulo, L.; Favara, R.; Candela, E.G.; Provenzano, M.C.; Scaletta, C. Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME/GC/MS). Water Res. 2008, 42, 3563–3577. [Google Scholar] [CrossRef]
- Al-Mudhaf, H.F.; Alsharifi, F.A.; Abu-Shady, A.-S.I. A survey of organic contaminants in household and bottled drinking waters in Kuwait. Sci. Total Environ. 2009, 407, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Balaban, N.; Yankelzon, I.; Adar, E.; Gelman, F.; Ronen, Z.; Bernstein, A. The spatial distribution of the microbial community in a contaminated aquitard below an industrial zone. Water 2019, 11, 2128. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Kadokami, K.; Wang, S.; Duong, H.T.; Chau, H.T.C. Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China. Chemosphere 2015, 122, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, K.; Wu, Y.; Gao, S.; Cao, W.; Bo, Y.; Shang, Z.; Wu, J.; Zhou, F. Spatio-temporal patterns and source identification of water pollution in Lake Taihu (China). Water 2016, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Wang, J.; Zhang, Y.; Han, C.; Ma, S.; Chen, J.; Li, G.; An, T. Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. J. Clean. Prod. 2020, 253, 120019. [Google Scholar] [CrossRef]
- Zhou, L.J.; Rong, Z.Y.; Gu, W.; Fan, D.L.; Liu, J.N.; Shi, L.L.; Xu, Y.H.; Liu, Z.Y. Integrated fate assessment of aromatic amines in aerobic sewage treatment plants. Environ. Monit. Assess. 2020, 192, 278. [Google Scholar] [CrossRef] [Green Version]
- Im, J.K.; Yu, S.J.; Kim, S.; Kim, S.H.; Noh, H.R.; Kim, M.K. Occurrence, Potential Sources, and Risk Assessment of Volatile Organic Compounds in the Han River Basin, South Korea. Int. J. Environ. Res. Public Health 2021, 18, 3727. [Google Scholar] [CrossRef]
- Im, J.-K.; Cho, Y.-C.; Noh, H.-R.; Yu, S.-J. Geographical Distribution and Risk Assessment of Volatile Organic Compounds in Tributaries of the Han River Watershed. Agronomy 2021, 11, 956. [Google Scholar] [CrossRef]
- National Institute of Environmental Research (NIER). A Study on Selection of Priority Management Compounds for Water Quality and Aquatic Ecosystems; National Institute of Environmental Research (NIER): Incheon, Korea, 2010. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. (Eds.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Chen, B.; Westerhoff, P. Predicting disinfection by-product formation potential in water. Water Res. 2010, 44, 3755–3762. [Google Scholar] [CrossRef]
- Qin, P.; Cao, F.; Lu, S.; Li, L.; Guo, X.; Zhao, B.; Wan, Z.; Bi, B. Occurrence and health risk assessment of volatile organic compounds in the surface water of Poyang Lake in March 2017. RSC Adv. 2019, 9, 22609–22617. [Google Scholar] [CrossRef] [Green Version]
- IARC. Trichloroethylene, Tetrachloroethylene, and Some Other Chlorinated Agents; IARC: Lyon, France, 2014; Volume 106.
- ATSDR. Toxicological Profile for Trichloroethylene (TCE); ATSDR: Atlanta, GA, USA, 2019. [Google Scholar]
- Shukla, A.K.; Upadhyay, S.N.; Dubey, S.K. Current trends in trichloroethylene biodegradation: A review. Crit. Rev. Biotechnol. 2014, 34, 101–114. [Google Scholar] [CrossRef]
- Bianchi, A.P.; Varney, M.S. Volatile organic compounds in the surface waters of a British estuary. Part 2. Fate processes. Water Res. 1998, 32, 371–379. [Google Scholar] [CrossRef]
- Padalkar, A.V.; Kumar, R. Removal mechanisms of volatile organic compounds (VOCs) from effluent of common effluent treatment plant (CETP). Chemosphere 2018, 199, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Mullaugh, K.M.; Hamilton, J.M.; Avery, G.B.; Felix, J.D.; Mead, R.N.; Willey, J.D.; Kieber, R.J. Temporal and spatial variability of trace volatile organic compounds in rainwater. Chemosphere 2015, 134, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Liu, F.; Tong, L.; Li, K.; Yang, H.; Zhang, L. Volatile organic compounds in stormwater from a community of Beijing, China. Environ. Pollut. 2018, 239, 554–561. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Zhu, B.; Wang, H.; Li, Y.; Lin, X.; Yang, H. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 2014, 97, 206–214. [Google Scholar] [CrossRef]
- Hsieh, L.-T.; Yang, H.-H.; Chen, H.-W. Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan. J. Hazard. Mater. 2006, 128, 106–115. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Guo, S.; Fu, K.; Liao, L.; Xu, Y.; Cheng, S. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ. Sci. Pollut. Res. 2020, 27, 9000–9011. [Google Scholar] [CrossRef]
- Binda, G.; Pozzi, A.; Michetti, A.M.; Noble, P.J.; Rosen, M.R. Towards the understanding of hydrogeochemical seismic responses in karst aquifers: A retrospective meta-analysis focused on the apennines (Italy). Minerals 2020, 10, 1058. [Google Scholar] [CrossRef]
- Huang, Y.; Sui, Q.; Lyu, S.; Wang, J.; Huang, S.; Zhao, W.; Wang, B.; Xu, D.; Kong, M.; Zhang, Y. Tracking emission sources of PAHs in a region with pollution-intensive industries, Taihu Basin: From potential pollution sources to surface water. Environ. Pollut. 2020, 264, 114674. [Google Scholar] [CrossRef]
- Wang, J.; Sui, Q.; Lyu, S.; Huang, Y.; Huang, S.; Wang, B.; Xu, D.; Zhao, W.; Kong, M.; Zhang, Y. Source apportionment of phenolic compounds based on a simultaneous monitoring of surface water and emission sources: A case study in a typical region adjacent to Taihu Lake watershed. Sci. Total Environ. 2020, 722, 137946. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Yu, S.; Lee, P.-K.; Yun, S.-T.; Hwang, S.-I.; Chae, G. Comparison of volatile organic compounds in stormwater and groundwater in Seoul metropolitan city, South Korea. Environ. Earth Sci. 2017, 76, 338. [Google Scholar] [CrossRef]
- An, Y.-J.; Nam, S.-H.; Lee, J.-K. Domestic test species for aquatic toxicity assessment in Korea. Korean J. Ecol. Environ. 2007, 40, 1–13. [Google Scholar]
- Chen, X.; Luo, Q.; Wang, D.; Gao, J.; Wei, Z.; Wang, Z.; Zhou, H.; Mazumder, A. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China. Environ. Pollut. 2015, 206, 64–72. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, D.; Kumar, K.; Singh, B.B.; Jain, V.K. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment. Sci. Total Environ. 2018, 613, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Bari, M.A.; Xing, Z.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total Environ. 2020, 706, 135970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yan, X.; Gao, F.; Thai, P.; Wang, H.; Chen, D.; Zhou, L.; Gong, D.; Li, Q.; Morawska, L. Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environ. Pollut. 2018, 238, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Kong, S.; Yan, Y.; Chen, N.; Yao, L.; Liu, X.; Wu, F.; Cheng, Y.; Niu, Z.; Zheng, S. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Sci. Total Environ. 2020, 703, 135505. [Google Scholar] [CrossRef] [PubMed]
Sub-Watershed | Sites | Location | Related STP/WWTP (2) | |
---|---|---|---|---|
Longitude | Latitude | (Name, Discharge (m3/d)) | ||
Namhan River (Rural) | N-1 | 127°55′06.98″ | 37°24′35.58″ | 1(Wonju, 127,800) |
N-2 | 127°45′07.95″ | 37°14′11.08″ | 2(Munmak, 5153) | |
N-3 | 127°18′46.51″ | 37°25′19.79″ | 3(Gwangju, 24,177), 4(Konjiam, 21,415), 5(Yangbeol, 10,871), 6(Samri, 4549) | |
N-4 | 127°32′21.92″ | 37°19′54.24″ | 7(Icheon, 40,828), 8(Danwol, 1608) | |
N-5 | 127°31′55.39″ | 37°27′37.69″ | 9(Yongmun, 2968), 10(Danwol, 1461) | |
N-6 | 128°27′35.38″ | 37°09′56.03″ | - | |
N-7 | 127°53′59.44″ | 36°26′29.43″ | - | |
Bukhan River (Rural) | B-1 | 127°42′49.94″ | 37°52′12.22″ | - |
B-2 | 127°31′17.13″ | 37°49′33.15″ | - | |
B-3 | 127°35′34.94″ | 37°43′12.09″ | - | |
B-4 | 127°25′08.08″ | 37°43′41.00″ | - | |
B-5 | 128°11′13.69″ | 38°04′58.72″ | 11(Inje Bukmyeon, 1474) | |
Imjin- Hantan River (Rural) | IH-1 | 127°03′28.98″ | 38°00′21.86″ | 12(Cheongsan, 1198) |
IH-2 | 127°04′50.89″ | 38°00′09.46″ | 13(Dongducheon, 68,255) | |
IH-3 | 127°02′06.78″ | 38°03′12.79″ | - | |
IH-4 | 126°55′12.39″ | 37°59′01.39″ | - | |
IH-5 | 127°14′38.56″ | 37°57′55.80″ | 31(Pocheon Jangja, 4999) (1) | |
IH-6 | 127°12′50.42″ | 38°00′36.57″ | - | |
IH-7 | 127°14′49.53″ | 38°00′46.21″ | 30(Pocheon Yangmun, 9728) (1) | |
IH-8 | 127°01′19.19″ | 37°52′09.34″ | 28(Yangju Hongjuk, 456) (1) | |
IH-9 | 126°59′51.92″ | 37°52′16.13″ | 28(Yangju Hongjuk, 456) (1) | |
IH-10 | 127°03′40.27″ | 37°57′27.87″ | - | |
IH-11 | 127°03′31.84″ | 37°56′48.70″ | 29(Yangju Geomjun, 10,412) (1) | |
IH-12 | 126°44′40.88″ | 37°49′17.09″ | 27(Paju LCD, 144,304) (1) | |
Han River Mainstream (Urban) | H-1 | 127°10′04.98″ | 37°34‘58.67″ | 14(Guri, 139,468), 15(Jingeon, 93,431) |
H-2 | 127°04′14.24″ | 37°30′36.75″ | 16(Tancheon, 758,962),17(Gwacheon, 17,652), 18(Seongnam, 365,638) | |
H-3 | 127°03′19.63″ | 37°32′57.56″ | - | |
H-4 | 127°02′51.73″ | 37°32′51.76″ | 19(Jungnang, 1,336,827) | |
H-5 | 126°52′51.39″ | 37°32′52.21″ | 20(Anyang Bakdal, 162,013), 21(Seoksu, 190,983) | |
H-6 | 126°46′37.24″ | 37°34′10.39″ | 22(Gulpo, 700,772) | |
H-7 | 126°44′18.74″ | 37°45′05.37″ | 23(Geumchon, 24,522) | |
H-8 | 126°50′06.88″ | 37°35′35.59″ | 24(Samsong, 7910) | |
Anseong Stream (Rural) | A-1 | 127°14′23.35″ | 37°00′21.68″ | - |
A-2 | 127°11′23.02″ | 36°58′31.44″ | 25(Pyeongtaek Songtan, 7283) (1) | |
A-3 | 127°04′15.07″ | 37°01′48.60″ | 26(Anseong 2nd, 3845) (1) | |
A-4 | 126°58′51.08″ | 36°56′56.01″ | - |
1,1-DCE | 1,1,1-TCA | Bromoform | Chloroform | Styrene | PCE | Toluene | TCE | Xylenes | |
---|---|---|---|---|---|---|---|---|---|
1,1-DCE | 1.000 | 0.583 ** | −0.036 | −0.067 | −0.016 | 0.233 * | −0.025 | 0.180 | −0.037 |
1,1,1-TCA | 1.000 | 0.107 | 0.054 | −0.029 | 0.272 ** | −0.044 | 0.281 ** | −0.065 | |
Bromoform | 1.000 | 0.011 | 0.100 | −0.153 | 0.133 | −0.212 * | −0.044 | ||
Chloroform | 1.000 | 0.162 | −0.024 | 0.096 | 0.252 ** | 0.208 * | |||
Styrene | 1.000 | −0.070 | 0.405 ** | −0.141 | 0.122 | ||||
PCE | 1.000 | −0.109 | 0.620 ** | −0.014 | |||||
Toluene | 1.000 | −0.137 | −0.003 | ||||||
TCE | 1.000 | 0.106 | |||||||
Xylenes | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, J.K.; Kim, S.; Kim, Y.S.; Noh, H.R.; Lee, Y.-M.; Yu, S.J. Characteristics and Sources of Selected Halocarbon and Hydrocarbon Volatile Organic Compounds in Surface Water of the Han River Basin. Water 2021, 13, 2568. https://doi.org/10.3390/w13182568
Im JK, Kim S, Kim YS, Noh HR, Lee Y-M, Yu SJ. Characteristics and Sources of Selected Halocarbon and Hydrocarbon Volatile Organic Compounds in Surface Water of the Han River Basin. Water. 2021; 13(18):2568. https://doi.org/10.3390/w13182568
Chicago/Turabian StyleIm, Jong Kwon, Sujin Kim, Young Seuk Kim, Hye Ran Noh, Young-Min Lee, and Soon Ju Yu. 2021. "Characteristics and Sources of Selected Halocarbon and Hydrocarbon Volatile Organic Compounds in Surface Water of the Han River Basin" Water 13, no. 18: 2568. https://doi.org/10.3390/w13182568
APA StyleIm, J. K., Kim, S., Kim, Y. S., Noh, H. R., Lee, Y. -M., & Yu, S. J. (2021). Characteristics and Sources of Selected Halocarbon and Hydrocarbon Volatile Organic Compounds in Surface Water of the Han River Basin. Water, 13(18), 2568. https://doi.org/10.3390/w13182568