Integrated Water Quality Management Model for the Rural Transboundary River Basin—A Case Study of the Sutla/Sotla River
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sutla River Basin: Case Study
- −
- Prišlin (upstream of the dam) regarding the monitoring of sediment has significant anthropogenic impact and significant hydro-morphological changes, and, regarding the monitoring of water quality has a water status ranging from bad, poor to good (depending on the group of indicators).
- −
- Luke Poljanske (downstream of the dam) has anthropogenic impacts and slightly changed hydro- morphology status and, regarding water quality has the water status ranging from bad, poor to good.
- −
- Zelenjak has anthropogenic impacts and slightly changed hydro-morphology status and, and regarding water quality has the water status ranging from good to poor.
- −
- Harmica has anthropogenic impacts and slightly changed hydro-morphology status and, and regarding water quality has the water status ranging from good to poor [32].
2.2. Input Data and Database
2.3. Integrated Water Quality Management Model for Rural Transboundary River Basin
2.3.1. DPSIR Approach, Identification of the Problem, and Analysis of the Available Data
2.3.2. Pressure Indicator Identification
2.3.3. Pressure and Impact Quantification
2.3.4. Modelling the Impact
2.3.5. The SWAT Model
2.3.6. Key Impact Assessment
2.3.7. Definition of the Future Alternative Scenarios
2.3.8. Impact Assessment for Alternative Scenarios
2.4. Model Performance Objective Functions
3. Results and Discussion
3.1. DPSIR Approach, Identification of the Problem, and Analysis of the Available Data
3.2. Pressure Indicator Identification
3.3. SWAT River Basin Model—BASE MODEL
Results of Indices Analysis for Algae as Eutrophication Indicators
3.4. Model Performance Objective Functions
3.5. Key Impact Assessment Analysis
3.6. Impact Assessment for Alternative Scenarios of Future River Basin Management
The Evaluation of the Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ćosić-Flajsig, G.; Karleuša, B.; Kompare, B. Planning wastewater collection and treatment in agglomerations below 2000 PE in protected areas. In Proceedings of the 13th International Symposium on Water Management and Hydraulic Engineering, Bratislava, Slovakia, 9–12 September 2013. [Google Scholar]
- Global Water Partnership—GWP. Integrated Water Resources Management. TAC Backgr. Pap. 2000, 4. [Google Scholar]
- European Union (EU). EU Water framework Directive, Directive 2000/60/EC. In European Parliament and Council; European Union: Maastricht, The Netherlands, 2000. [Google Scholar]
- European Environment Agency. (EEA) Report. European Water Assessment of Status and Pressures; No 7/2018; Publication Office of the European Union: Luxembourg, 2018; ISSN 1977-8449. [Google Scholar] [CrossRef]
- The Water Framework Directive Will Not Be Revised. Available online: https://watereurope.eu/the-water-framework-directive-will-not-be-revised (accessed on 3 May 2021).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions a Blueprint to Safeguard Europe’s Water Resources. COM/2012/0673. Final. 2012. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0673 (accessed on 16 September 2021).
- Pavić Rogošić, L. Ruralni razvoj u Hrvatskoj (Rural Development in Croatia). In Proceedings of the EU-Croatia Joint Consultative Committee, 8. Sastanak, Zagreb, Croatia, 27 November 2011. [Google Scholar]
- Eurostat Regional Yearbook 2010, A Revised Urban-Rural Typology. Available online: https://ec.europa.eu/eurostat/web/productsstatistical-books/-/KS-HA-10-001-15 (accessed on 3 May 2021).
- Ćosić-Flajsig, G.; Karleuša, B.; Vučković, I.; Glavan, M. Analysis of the eutrophication factors in the Sutla River Basin. Acta Hydrol. Slovaca 2017, 18, 290–300. [Google Scholar]
- Ćosić-Flajsig, G.; Globevnik, L.; Karleuša, B. Water Quality of the river Sutla and possibility of river restoration. In Proceedings of the People, Buildings and Environment 2014, An International Scientific Conference, Kroměříž, Czech Republic, 15–17 October 2014; pp. 531–544. [Google Scholar]
- Voulvoulis, N.; Arpon, K.D.; Giakoumis, T. The EU Water Framework Directive: From great expectations to problems with implementation. Sci. Total. Environ. 2017, 575, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giakoumis, T.; Voulvoulis, N. The Transition of EU Water Policy Towards the Water Framework Directive’s Integrated River Basin Management Paradigm. Environ. Manag. 2018, 62, 819–831. [Google Scholar] [CrossRef] [Green Version]
- Bouraoui, F.; Grizzetti, B.; Adelsköld, G.; Behrendt, H.; De Miguel, I.; Silgram, M.; Gómez, S.; Granlund, K.; Hoffmann, L.; Kronvang, B.; et al. Basin characteristics and nutrient losses: The EUROHARP catchment network perspective. J. Environ. Monit. 2009, 11, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Kronvang, B.; Borgvang, S.A.; Barkved, L.J. Towards European Harmonized Procedures for Quantification of Nutrient Losses from Diffuse Sources the EUROHARP project. J. Environ. Monit. 2009, 11, 503–505. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Silgram, M.; Groenendijk, P.; Bouraoui, F.; Andersen, H.E.; Kronvang, B.; Behrendt, H.; Arheimer, B.; Johnsson, H.; Panagopoulos, Y.; et al. Description of nine nutrient loss models: Capabilities and suitability based on their characteristics. J. Environ. Monit. 2009, 11, 506–514. [Google Scholar] [CrossRef]
- Čerkasova, N.; Umgiesser, G.; Erturk, A. Development of a hydrology and water quality model for a large watershed to investigate the impacts of climate change—A SWAT application. Ecol. Eng. 2018, 124, 99–115. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–737. [Google Scholar] [CrossRef] [Green Version]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Krysanova, V.; Arnold, J.G. Advances in ecohydrological modelling with SWAT—A review. Hydrol. Sci. J. 2008, 53, 939–947. [Google Scholar] [CrossRef]
- Kersebaum, K.C.; Steidl, J.; Bauer, O.; Piorr, H.-P. Modelling scenarios to assess the effects of different agricultural management and land use options to reduce diffuse nitrogen pollution into the river Elbe. Phys. Chem. Earth Parts A/B/C 2003, 28, 537–545. [Google Scholar] [CrossRef]
- Volk, M.; Fohrer, N.; Schmalz, B.; Ullrich, A. Application of the SWAT model for ecohydrological modelling in Germany. CAB Int. Soil Hydrol. Land Use Agric. 2011, 176–195. [Google Scholar] [CrossRef]
- Piniewski, M.; Szcześniak, M.; Huang, S.; Kundzewicz, Z. Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model. Hydrol. Res. 2017, 49, 303–317. [Google Scholar] [CrossRef]
- Epelde, A.M.; Cerro, I.; Sánchez-Pérez, J.M.; Sauvage, S.; Srinivasan, R.; Antigüedad, I. Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrol. Sci. J. 2015, 60, 825–843. [Google Scholar] [CrossRef]
- Glavan, M.; Pintar, M. Modeling of Surface Water Quality by Catchment Model SWAT. In Studies on Water Management Issues; InTech: Vienna, Austria, 2012; Available online: www.intechopen.com (accessed on 16 September 2021)ISBN 978-953-307-961-5.
- Glavan, M.; Bele, S.; Curk, M.; Pintar, M. Modelling Impacts of a Municipal Spatial Plan of Land-Use Changes on Surface Water Quality—Example from Goriška Brda in Slovenia. Water 2020, 12, 189. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total. Environ. 2018, 658, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Rismal, M. Vodna akumulacija Vonarje je že 28 let prazna (The Vonarje water reservoir has been empty for 28 years). In Urbani Izziv; Posebna Izdaja: Ljubljana, Slovenia, 2016. [Google Scholar]
- European assessment of eutrophication abatement measures across land-based sources, inland, coastal and marine waters. In ETC/ICM Technical Report—2/2016; European Environment Agency: Copenhagen, Denmark, 2016. Available online: http://water.eionet.europa.eu (accessed on 19 May 2017)ISBN 978-3-944280-55-4.
- Projekt FRISCO1. FRISCO1 (Cross-Border Harmonised Slovenian-Croatian Flood Risk Reduction 1–Non Structural Measures) Project EU The Cooperation Programme INTERREG V-A Slovenia–Croatia; 2014–2020. Available online: https://frisco-project-eu/sl/porecja/sotla/ (accessed on 3 May 2021).
- ARSO. Atlas Okolja (Environmental Atlas). FRISCO Project EU. Available online: http://gis.arso.gov.si/atlasokolja (accessed on 3 May 2021).
- Šemnički, P.; Sutla, R. Natura 2000 Područje (Sutla River—Natura 2000 Area). In Javna Ustanova za Upravljanje Zaštićenim Dijelovima Prirode Krapinsko-Zagorske Županije; InTech: Rijeka, Croatia, 2014. [Google Scholar]
- Ćosić-Flajsig, G.; Vučković, I.; Karleuša, B. An Innovative Holistic Approach to an E-flow Assessment Model. Civ. Eng. J. 2020, 6, 2188–2202. [Google Scholar] [CrossRef]
- Commission Staff Working Document, Report on the progress in implementing the Water Framework Directive Programmes of Measures, Accompanying the document: Communication from the Commission to the European Parliament and the Council. In The Water Framework Directive and the Floods Directive: Actions towards the “Good Status” of EU Water and to Reduce Flood Risks; European Commission: Brussels, Belgium, 2015; COM (2015), 50 Final.
- European Communities. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance document No. 24 River Basin Management in a Changing Climate. Tech. Rep. 2009, 40. Available online: http://ec.europa.eu (accessed on 16 September 2021).
- Karleuša, B.; Rubinić, J.; Radišić, M.; Krvavica, N. Analysis of Climate Change Impact on Water Supply in Northern Istria (Croatia). Teh. Vjesn. Tech. Gaz. 2018, 25, 366–374. [Google Scholar] [CrossRef]
- Glavan, M.; Ceglar, A.; Pintar, M. Assessing the impacts of climate change on water quantity and quality modelling in small Slovenian Mediterranean catchment—Lesson for policy and decision makers. Hydrol. Process. 2015, 29, 3124–3144. [Google Scholar] [CrossRef]
- Ćosić-Flajsig, G.; Vučković, I.; Karleuša, B. Stanje voda rijeke Sutle i mogućnosti restauracije rijeke (Water status of Sutla river and possibilities of river restoration). In Proceedings of the 6. Hrvatska Konferencija o Vodama, Hrvatske vode na Investicijskom valu (6 th Croatian Water Conference with International Participation, Croatian Waters on the Investment Waves), Opatija, Croatia, 2–23 May 2015; pp. 297–305. [Google Scholar]
- IMPRESS. Guidance for the Analysis of Pressures and Impacts in Accordance with the Water Framework Directive, Common Implementation Strategy Working Group 2.1; Office for Official Publications of the European Communities: Luxembourg, 2002; COM (2012) 710 Final; Available online: http://forum.Europa.eu.int/Public/irc/env/wfdlibrary (accessed on 12 July 2021)ISBN 92-894-5123.
- Report from the Commission to the European Parliament and the Council on the implementation of the Water Framework Directive (2000/60/EC) River Basin Management Plans; European Commission: Brussels, Belgium, 2012.
- Guipponi, C. From the DPSIR Reporting Framework to a System for a Dynamic and Integrated Decision-Making Process. In Proceedings of the MULINO Conference on “European Policy and Tools for Sustainable Water Management”, Venice, Italy, 21–23 November 2002. [Google Scholar]
- Ćosić-Flajsig, G.; Karleuša, B. An Approach to Water Quality Management in Rural Areas. In Proceedings of the International Scientific Conference People, Buildings and Environment 2014 (PBE2014), Kroměříž, Czech Republic, 15–17 October 2014; Available online: www.fce.vutbr.cz/ekr/PBE (accessed on 3 May 2021).
- Brzozowski, J.; Miatkowski, Z.; Śliwiński, D.; Smarzyńska, K.; Śmietanka, M. Application SWAT Model to Small Agriculture Catchment in Poland. In Proceedings of the International SWAT Conference, Boulder, CO, USA, 3–7 August 2009; pp. 163–170. [Google Scholar]
- Mihelic, R.; Cop, J.; Jakše, M.; Štampar, F.; Majer, D.; Tojnko, S.; Vršic, S. Guidelines for Professionally Justified Fertilization (Smernice za Strokovno Utemeljeno Gnojenje); Ministry of Agriculture, Forestry and Food of Republic of Slovenia: Ljubljana, Slovenia, 2010.
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Application, and Future Research Directions. Trans. Asabe 2017, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; van Liew, M.W.; et al. Swat: Model Use, Calibration, and Validation. Trans. Asabe 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Tuppad, P.; Kannan, N.; Srinivasan, R.; Rossi, C.G.; Arnold, J.G. Simulation of Agricultural Management Alternatives for Watershed Protection. Water Resour. Manag. 2010, 24, 3115–3144. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation—Version 2005; Agricultural Experiment Station, Blackland Research Center, Agricultural Research Service, Grassland, Soil and Water Research Laboratory: Temple, TX, USA, 2005.
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.R. Soil and Water Assessment Tool (SWAT) Model, Current Development and Application. Am. Soc. Agric. Biol. Eng. 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Taffarello, D.; Srinivasan, R.; Mohor, G.S.; Guimarães, J.L.B.; Calijuri, M.D.C.; Mendiondo, E.M. Modeling freshwater quality scenarios with ecosystem-based adaptation in the headwaters of the Cantareira system, Brazil. Hydrol. Earth Syst. Sci. 2018, 22, 4699–4723. [Google Scholar] [CrossRef] [Green Version]
- Strategija Prilagodbe Klimatskim Promjenama u Republici Hrvatskoj za razdoblje do 2040. Godine s Pogledom na 2070. Godinu (Strategy for Adaptation to Climate Change in the Republic of Croatia for the Period Up to 2040 with a View to 2070). NN 46/2020. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2020_04_46_921.html (accessed on 16 September 2021).
- ARSO. Ocena Podnebnih Sprememb v Sloveniji do Konca 21. Stoletja (Assessment of Climate Change in Slovenia by the End of the 21st Century). 2019. Available online: https://meteo.arso.gov.si/uploads/probase/www/climate/text/sl/publications/OPS21_povzetek_posodobljeno.pdf (accessed on 16 September 2021).
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. Available online: https://doi.org/10.13031/2013.23153 (accessed on 16 September 2021). [CrossRef]
- Johnston, J.M.; McGarvey, D.J.; Barber, M.C.; Laniak, G.; Babendreier, J.; Parmar, R.; Wolfe, K.; Kraemer, S.R.; Cyterski, M.; Knightes, C.; et al. An Integrated Modeling Framework for Performing Environmental Assessments: Application to Ecosystem Services in the Albemarle Pamlico Basins (NC and VA, USA). Ecol. Modeling 2011, 222, 2471–2484. [Google Scholar] [CrossRef]
- Vlachopoulou, M.; Coughlin, D.; Forrow, D.; Kirk, S.; Logan, P.; Voulvoulis, N. The Potential of Using the Ecosystem Approach in the Implementation of the EU Water Framework Directive. Sci. Total Environ. 2014, 470, 684–694. [Google Scholar] [CrossRef]
- Ćosić-Flajsig, G.; Karleuša, B.; Vučković, I. Analiza značaja upravljanja sedimentom na primjeru rijeke Sutle (Analysis of the importance of sediment management on the example of the river Sutla). In Okrugli stol s Međunarodnim Sudjelovanjem, Nanos u Vodnim Sustavima—Stanje i Trendovi (The Round Table with International Participation, Sediment in Water Systems—Current State and Trends); Oskoruš, D., Rubinić, J., Eds.; Varaždin MIODIO d.o.o: Rijeka, Croatia, 2020; pp. 37–48. [Google Scholar]
Type Data | Characteristics and Data Description | Source | Scenario |
---|---|---|---|
Topography (DEM raster) | Slovenia: 25 m—Elevation Austria: 1 m—Elevation | CLS EEA | All scenarios |
Soils | Slovenia: 1:25,000 Croatia: 1:25,000 Spatial soil variability, soil types and properties | MAFFS BFULJ FAUZ | All scenarios |
Land Use | Slovenia, Croatia: 1 m Vector data (Graphical Units of Agricultural Land) Croatia: 100 m Corina Land cover (CLC), 2012, Version 18.5.1 Land use, Land cover classification and spatial representation | MAFFS BFULJ FAUZ | All scenarios |
Land Management | Crop rotations (harvesting, planting, management), fertilizer application (rates and time) | CAFS Field trip | All scenarios |
Weather | Daily precipitation, temperature (max., min.), relative humidity, wind, solar radiation from 2001–2014 | EARS CMHS | PRESENT and PAST scenarios |
Climate change data | Daily precipitation, temperature (max., min.), relative humidity, wind, solar radiation from 2020–2050 and 2070–2100 | EARS CMHS | RCMs data FUTURE scenarios |
River Discharge | Daily flow data (m3/s) from 2001–2014 | EARS CMHS | PRESENT scenario |
Water quality | 1 monitoring point (CRO-Zelenjak) TSS, NO3−, PO42−, TP, TN (2001–2012) | monthly monitoring HV | PRESENT scenario |
Reservoir data | Reservoir: volume, surface area, the month of operational, sediment concentration, hydraulic conductivity, outflow | project documentation | PAST and FUTURE scenarios |
Agglomerations | PE, spatial position prepared in GIS | EARS HV | FUTURE scenarios |
WWTP | Average daily discharge of orgP, sediment and orgN and other parameters | EARS HV | All scenarios |
Septic tanks | Septic systems: year became operational, permanent residents, the average area of the drained area | EARS HV | All scenarios |
Sutla/Sotla River Basin | Slovenian Part of the River Basin | Croatian Part of the River Basin |
---|---|---|
Surface of the river basin | 459.9 km2 (78% of the whole) | 130.7 km2 (22% of the whole) |
Driving forces: | Tourism and recreation, protection of cultural and natural heritage | Agriculture, protection of cultural and natural heritage, traffic |
Pressure—Urbanization: Settlements; settl. ≥ 2000 inh. Density; Population density | 84; 1 38139; 85/km2 | 67; 1 16700; 120/km2 |
Pressure—Land Use | 62% of agricul. land; 36.3% forests; 8.6% pastures; permanent crops 0.4; scrub 0.5 | 65% of agricul. land; 22% forests; 20.1% pastures; perm. crops 0; scrub 10.2 |
Pressure—Agriculture rural population | 10% of the pop.; agricul. activity: livestock; fragment. farms | 30% of the pop.; agricul. activity: vineyards, livestock; fragmented farms |
Pressure—Industry/ Entrepreneurship, Tourism | Glass manufacturing; sparkling water—drink production; 250 small enterprises | Industry in Hum na Sutli, manufact. in Klanjec, Livestock in G. Čemehovec |
Pressure—Tourism/Recreation/Parks | Health C. Rog. Slatina; Spa C. Olimje; Reg. Park Kozjansko; Lands.P. Boč and Jovsi; | Ethno village Kumrovec |
Pressure—Natura 2000 | Whole river Sutla/Sotla | |
Pressure indicators | Nutrient emissions, nutrient loads—for all water bodies | |
State-water status [8] | Sutla-Prišlin station—poor status, Sutla-Zelenjak and Sutla-Harmica—good status | |
State indicators | Phosphorus concentrations (Total-P, orthophosphate), nitrogen concentrations (Total N, NO3)—for all water bodies | |
Impact indicators | Ecological status and macrozoobenthos (community composition, biomass); phytoplankton (chlorophyll a, biovolume) and Secchi depth; macrophytes (lower growing depth); phytobentos (benthic algae) |
Land Use | Sediment Yield Average (t/ha) | Nitrate Nitrogen Average (kg N/ha) | Soluble P Average (kg P/ha) |
---|---|---|---|
arable land | 1.91 | 3.61 | 1.80 |
orchard | 0.02 | 4.54 | 0.78 |
grassland | 0.08 | 0.76 | 0.31 |
forest | 0.02 | 0.61 | 0.08 |
vineyards | 3.51 | 3.83 | 0.69 |
urban | 0.23 | 0.21 | 0.31 |
water | 0.00 | 0.00 | 0.00 |
wetlands | 0.08 | 0.93 | 0.29 |
Total average for river basin | 0.78 | 1.97 | 0.60 |
Objective Function | ||
---|---|---|
ENS | PBIAS | |
River flow (daily) | ||
Calibration (2009–2014) | 0.59 | −10.58 |
Validation (2004–2008) | 0.54 | 0.59 |
Sediment (monthly) | ||
Load Calibration (2004–2012) | 0.72 | 34.35 |
Nitrate–nitrogen (monthly) | ||
Concentration Calibration (2004–2012) | 0.82 | −1.96 |
Load Calibration (2004–2012) | 0.65 | 31.30 |
Mineral phosphorus (monthly) | ||
Load Calibration (2004–2012) | 0.41 | 2.32 |
Scenario | Qav,year (m3/s) av. (min; max)% | Sediment (t) av. (min; max)% | Total N (t) av. (min; max)% | Total P (t) av. (min; max)% |
---|---|---|---|---|
BASE MODEL | 7.76 | 13853 | 1898 | 119 |
PAST2a | 1% | 72% | 38% | 55% |
PAST2b | 0% | 81% | 53% | 53% |
FUTURE 3a1 | 4% (5.7; 9.3) | 4% (−12; 19) | 1% (−13; 10) | −6% (−21; −4) |
FUTURE 3a2 | 17% (−7; 51) | 9% (−15; 35) | 4% (−14; 23) | 5% (−21; 13) |
FUTURE 3a3 | 12% (1; 29) | 12% (−5; 26) | 5% (−4; 17) | −3% (−10; 6) |
FUTURE 3a4 | 23% (3; 67) | 22% (−5; 77) | 8% (−9:39) | −3% (−15; 23) |
FUTURE 3b1 | 5% (−13; 19) | 10% (−19; 29) | 2% (−12; 10) | 2% (−12; 11) |
FUTURE 3b2 | 17% (−7; 50) | 12% (−13; 39) | 4% (−13; 23) | 2% (−12; 20) |
FUTURE 3b3 | 12% (1; 29) | 15% (−2; 32) | 5% (−5; 16) | 4% (−4; 11) |
FUTURE 3b4 | 22% (3; 66) | 25% (−3; 84) | 7% (−9; 38) | 3% (−10; 31) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćosić-Flajsig, G.; Karleuša, B.; Glavan, M. Integrated Water Quality Management Model for the Rural Transboundary River Basin—A Case Study of the Sutla/Sotla River. Water 2021, 13, 2569. https://doi.org/10.3390/w13182569
Ćosić-Flajsig G, Karleuša B, Glavan M. Integrated Water Quality Management Model for the Rural Transboundary River Basin—A Case Study of the Sutla/Sotla River. Water. 2021; 13(18):2569. https://doi.org/10.3390/w13182569
Chicago/Turabian StyleĆosić-Flajsig, Gorana, Barbara Karleuša, and Matjaž Glavan. 2021. "Integrated Water Quality Management Model for the Rural Transboundary River Basin—A Case Study of the Sutla/Sotla River" Water 13, no. 18: 2569. https://doi.org/10.3390/w13182569
APA StyleĆosić-Flajsig, G., Karleuša, B., & Glavan, M. (2021). Integrated Water Quality Management Model for the Rural Transboundary River Basin—A Case Study of the Sutla/Sotla River. Water, 13(18), 2569. https://doi.org/10.3390/w13182569