Escherichia coli Reduction in Water by Zero-Valent Iron–Sand Filtration Is Based on Water Quality Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of ZVI and Sand Filter
2.2. Influent Water Collection and Characteristics
2.3. Inoculum Preparation
2.4. Filtration and Recovery of E. coli TVS 353
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Environmental Protection Agency (EPA). Guidelines for Water Reuse, Development; U.S. Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
- Suri, M.R.; Dery, J.L.; Perodin, J.; Brassill, N.; He, X.; Ammons, S.; Gredes, M.; Rock, C.R.; Goldstein, R.E.R. U.S. farmers’ opinion on the use of nontraditional water sources for agricultural activities. Environ. Res. 2019, 172, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.R.; Brassil, N.; Dery, J.L.; Carr, D.; McLain, J.E.; Bright, K.R.; Gerba, C.P. Review of water quality criteria for water reuse and risk-based implications under the FDA Food Safety Modernization Act, Produce Safety Rule. Environ. Res. 2020, 172, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Cooley, M.B.; Quiñones, B.; Oryang, D.; Mandrell, R.E.; Gorski, L. Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region. Front. Cell. Infect. Microbiol. 2014, 4, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, M.T.; Van Kessel, J.A.; Micallef, S.A. Salmonella enterica recovery from river waters of the Maryland Eastern Shore reveals high serotype diversity and some multidrug resistance. Environ. Res. 2019, 168, 7–13. [Google Scholar] [CrossRef]
- Sharma, M.; Handy, E.T.; East, C.L.; Kim, S.; Jiang, C.; Callahan, M.T.; Allard, S.M.; Micallef, S.; Craighead, S.; Anderson-Coughlin, B.; et al. Prevalence of Salmonella and Listeria monocytogenes in non-traditional irrigation waters in the Mid-Atlantic United States is affected by water type, season, and recovery method. PLoS ONE 2020, 15, e0229365. [Google Scholar] [CrossRef]
- Truitt, L.N.; Vazquez, K.M.; Pfuntner, R.C.; Rideout, S.L.; Havelaar, A.H.; Strawn, L.K. Microbial quality of agricultural water used in produce preharvest production on the eastern shore of Virginia. J. Food Prot. 2018, 81, 1661–1672. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FSMA Final Rule on Produce Safety. 2016. Available online: https://www.fda.gov/food/food-safety-modernization-act-fsma/fsma-final-rule-produce-safety (accessed on 1 August 2020).
- California LGMA (LGMA). Commodity Specific Food Safety Guidelines for the Production and Harvest of Lettuce and Leafy Greens. 2019. Available online: https://lgma-assets.sfo2.digitaloceanspaces.com/downloads/CA_LGMA_METRICS_FINAL_VERSION_Accessible_Jan2020.pdf (accessed on 1 August 2020).
- World Health Organization (WHO). Guidelines for the Safe Use of Wastewater Excreta and Greywater. 2006. Available online: https://apps.who.int/iris/bitstream/handle/10665/39401/WHO_TRS_778.pdf?sequence=1&isAllowed=y (accessed on 1 August 2020).
- World Health Organization (WHO). Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture. 1989. Available online: https://apps.who.int/iris/bitstream/handle/10665/78265/9241546824_eng.pdf?sequence=1 (accessed on 24 July 2020).
- Tomato Good Agricultural Practices and Tomato Best Management Practices (T-GAP). 2006. Available online: https://www.floridatomatoes.org/wp-content/uploads/2013/01/TOMATO_QA_on_T-GAP_and_T-BMP11-8-06.pdf (accessed on 25 July 2020).
- EFSA. Commission Notice on Guidance Document on Addressing Microbiological Risks in Fresh Fruits and Vegetables at Primary Production Through Good Hygiene. 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017XC0523%2803%29 (accessed on 1 August 2020).
- Garrido, Y.; Marín, A.; Tudela, J.A.; Truchado, P.; Allende, A.; Gil, M.I. Chlorate accumulation in commercial lettuce cultivated in open field and irrigated with reclaimed water. Food Control 2020, 114, 107283. [Google Scholar] [CrossRef]
- Lonigro, A.; Montemurro, N.; Laera, G. Effects of residual disinfectant on soil and lettuce crop irrigated with chlorinated water. Sci. Total Environ. 2017, 584, 595–602. [Google Scholar] [CrossRef]
- Chang, I.S.; Clech, P.L.; Jefferson, B.; Judd, S. Membrane fouling in membrane bioreactors for wastewater treatment. J. Environ. Eng. 2002, 128, 1018–1029. [Google Scholar] [CrossRef]
- Herzberg, M.; Elimelech, M. Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. J. Membr. Sci. 2007, 295, 11–20. [Google Scholar] [CrossRef]
- Hu, R.; Yang, H.; Tao, R.; Cui, X.; Xiao, M.; Amoah, B.K.; Cao, V.; Lufingo, M.; Soppa-Sangue, N.P.; Ndé-Tchoupé, A.I.; et al. Metallic Iron for Environmental Remediation: Starting an Overdue Progress in Knowledge. Water 2020, 12, 641. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.M.M.; Begum, Z.A.; Sawai, H.; Maki, T.; Hasegawa, H. Decontamination of spent iron-oxide coated sand from filters used in arsenic removal. Chemosphere 2013, 92, 196–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran-Ros, M.; Puig-Bargués, J.; Arbat, G.; Barragán, J.; De Cartagena, F.R. Effect of filter, emitter and location on clogging when using effluents. Agri. Water Mgmt. 2009, 96, 67–79. [Google Scholar] [CrossRef]
- Powell, R.M.; Blowes, D.W.; Gillham, R.W.; Schultz, D.; Sivavec, T.; Puls, R.W.; Vogan, J.L.; Powel, P.D.; Landis, R. Permeable Reactive Barrier Technologies for Contaminant Remediation. US EPA. 1998. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryId=90404 (accessed on 1 September 2021).
- Xie, L.I.; Shang, C. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environ. Sci. Technol. 2005, 39, 1092–1100. [Google Scholar] [CrossRef]
- Pearson, C.R.; Hozalski, R.M.; Arnold, W.A. Degradation of chloropicrin in the presence of zero-valent iron. Environ. Toxicol. Chem. 2005, 24, 3037–3042. [Google Scholar] [CrossRef] [PubMed]
- Hozalski, R.M.; Zhang, L.; Arnold, W.A. Reduction of haloacetic acids by Fe0: Implications for treatment and fate. Environ. Sci. Technol. 2001, 35, 2258–2263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Arnold, W.A.; Hozalski, R.M. Kinetics of haloacetic acid reactions with Fe (0). Environ. Sci. Technol. 2004, 38, 6881–6889. [Google Scholar] [CrossRef]
- Odziemkowski, M.S.; Gui, L.; Gillham, R.W. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 2. Mechanistic studies. Environ. Sci. Technol. 2000, 34, 3495–3500. [Google Scholar] [CrossRef]
- Kulkarni, P.; Raspanti, G.A.; Bui, A.Q.; Bradshaw, R.N.; Kniel, K.E.; Chiu, P.C.; Sharma, M.; Sapkota, A.; Sapkota, A.R. Zerovalent iron-sand filtration can reduce the concentration of multiple antimicrobials in conventionally treated reclaimed water. Environ. Res. 2019, 172, 301–309. [Google Scholar] [CrossRef]
- Marik, C.; Anderson, B.; Gartley, S.; Craighead, S.; Bradshaw, R.; Kulkarni, P.; Sharma, M.; Kniel, K. ZVI filtration reduced Listeria innocua in pond water compared to sand filtration. Environ. Res. 2019, 173, 33–39. [Google Scholar] [CrossRef]
- Kim, S.; Bradshaw, R.; Kulkarni, P.; Allard, S.; Chiu, P.C.; Sapkota, A.R.; Newell, C.; Hand, E.; East, C.; Kniel, K.; et al. Zero-valent iron-sand filtration reduces Escherichia coli in surface water and leafy green growing environments. Front. Sustain. Food Syst. 2020, 4, 112. [Google Scholar] [CrossRef]
- George, D.; Ahammed, M. Effect of zero-valent iron amendment on the performance of biosand filters. Water Supply 2019, 19, 1612–1618. [Google Scholar] [CrossRef]
- Shearer, A.E.; Kniel, K.E. Enhanced removal of norovirus surrogates, Murine norovirus and Tulane virus, from aqueous systems by zero-valent iron. J. Food Prot. 2018, 81, 1432–1438. [Google Scholar] [CrossRef]
- Chopyk, J.; Kulkarni, P.; Nasko, D.J.; Bradshaw, R.; Kniel, K.E.; Chiu, P.; Sharma, M.; Sapkota, A.R. Zero-valent iron sand filtration reduces concentrations of virus-like particles and modifies virome community composition in reclaimed water used for agricultural irrigation. BMC Res. Notes 2019, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Diao, M.; Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 2009, 43, 5243–5251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.X. Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 2003, 5, 323–332. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.Y.; Lee, W.I.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008, 42, 4927–4933. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Callejas, A.; López-Velasco, G.; Camacho, A.B.; Artés, F.; Artés-Hernández, F.; Suslow, T.V. Survival and distribution of Escherichia coli on diverse fresh-cut baby leafy greens under preharvest through postharvest conditions. Int. J. Food Microbiol. 2011, 151, 216–222. [Google Scholar] [CrossRef]
- R Core Team. R: The R Project for Statistical Computing. 2020. Available online: http://www.R-project.org/ (accessed on 28 January 2021).
- Ingram, D.T.; Callahan, M.T.; Ferguson, S.; Hoover, D.G.; Shelton, D.R.; Millner, P.D.; Camp, M.J.; Patel, J.R.; Kniel, K.E.; Sharma, M. Use of zero-valent iron biosand filters to reduce Escherichia coli O157: H12 in irrigation water applied to spinach plants in a field setting. J. Appl. Microbiol. 2012, 112, 551–560. [Google Scholar] [CrossRef]
- Auffan, M.; Achouak, W.; Rose, J.; Roncato, M.A.; Chanéac, C.; Waite, D.T.; Masion, A.; Woicik, J.C.; Wiesner, M.R.; Bottero, J.Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008, 42, 6730–6735. [Google Scholar] [CrossRef]
- Henderson, A.D.; Demond, A.H. Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environ. Eng. Sci. 2007, 24, 401–423. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Phenrat, T.; Lowry, G.V. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ. Sci. Technol. 2007, 41, 7881. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Z.L.; Yan, X.; Zhang, B. Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron. Chem. Eng. J. 2014, 245, 34–40. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, Y.; Zhao, R.; Zhou, R. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron. J. Environ. Sci. 2010, 22, 1741–1747. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, C.; Love, D.C.; Sedlak, D.L.; Yoon, J.; Nelson, K.L. Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environ. Sci. Technol. 2011, 45, 6978–6984. [Google Scholar] [CrossRef] [PubMed]
International Agency or Organization | Water Use and Classification | Criteria (CFU/100 mL) | Reference |
---|---|---|---|
U.S. Food and Drug Administration (proposed to be implemented in 2022) | Water used during growing activities for covered produce | ≤126 E. coli (geometric mean) | FDA, 2018 [8] |
≤410 E. coli (statistical threshold) | |||
Water used for agricultural teas, sprout irrigation water, and postharvest washing | 0 E. coli | ||
California Leafy Green Marketing Agreement (LGMA) | Type A agricultural water—unlikely to contain indicators of fecal contamination | 0 E. coli (2 of 3 samples); ≤10 E. coli (remaining sample) | LGMA, 2020 [9] |
Type B agricultural water—water not subject to hydrogeologic filtration, U.S. EPA, or state-level treatment of water | ≤126 E. coli (geometric mean); 0 E. coli when irrigation within 21 days of harvest | ||
≤235 E. coli (single samples) | |||
World Health Organization | Water intended for: Crops likely to be eaten uncooked; | ≤1000 E. coli | WHO, 1989; WHO, 2006 [10,11] |
Root crops; | ≤103 E. coli | ||
Leaf crops. | ≤104 E. coli | ||
Drip irrigation: unlikely to contact edible portion of crop | ≤105 E. coli | ||
Drip irrigation: likely to contact edible portion of crop | ≤103 E. coli | ||
Tomato Good Agricultural Practices (T-GAP); U.S. state of Florida | Water to be used to irrigate tomatoes | ≤126 E. coli | T-GAP, 2006 [12] |
Water to contact tomatoes at time of harvest | ≤5% of samples (n ≥ 40) positive for total coliforms | ||
European Food Safety Authority | Water intended for: Direct contact with edible portion of uncooked fruit/vegetable during preharvest/harvest; | ≤100 E. coli | EFSA, 2017 [13] |
Indirect contact with edible portion of uncooked fruit/vegetable during preharvest/harvest; | ≤1000 E. coli | ||
Direct contact with edible portion of fruit/vegetable intended for cooking during preharvest/harvest; | ≤1000 E. coli | ||
Indirect contact with edible portion of cooked FFV during preharvest/harvest. | ≤10,000 E. coli |
Explanatory Variables | |||||||
---|---|---|---|---|---|---|---|
Reduction (%) | Time (Days) | Turbidity(FNU) | pH | DO(%) | ORP(mV) | Conductivity (SPC µS/cm) | |
DI 50% ZVI | 99.74% | 0 | 0 | 8.37 | 95.7 | −12 | 3.6 |
99.94% | 5 | 0 | 8.49 | 96.1 | −18.9 | 3.6 | |
99.76% | 13 | 0 | 9.81 | 92.0 | 107.0 | 9.4 | |
99.13% | 20 | 0 | 8.36 | 94.8 | 95.1 | 9.3 | |
99.21% | 27 | 0 | 9.90 | 99.2 | −25.0 | 7.1 | |
95.58% | 35 | 0 | 9.40 | 96.6 | −23.2 | 7.4 | |
Mean ± standard deviation | 0 | 9.05 ± 0.73 | 95.7 ± 2.3 | 20.5 ± 62.6 | 6.75 ± 2.60 | ||
Pond 50% ZVI | 98.99% | 0 | 4.3 | 8.51 | 47.9 | 26.0 | 172.3 |
85.04% | 5 | 1.9 | 8.21 | 93.2 | 13.0 | 156.1 | |
61.96% | 13 | 19.6 | 7.87 | 97.1 | 206.43 | 209.2 | |
48.19% | 20 | 4.4 | 8.61 | 93.9 | 178.1 | 188.1 | |
40.23% | 27 | 160.9 | 8.41 | 79.1 | 45.0 | 151.9 | |
43.93% | 35 | 47.7 | 8.96 | 85.2 | 72.7 | 353.3 | |
Mean ± standard deviation | 39.8 ± 61.7 | 8.42 ± 0.36 | 82.7 ± 18.2 | 90.2 ± 82.0 | 205.1 ± 75.5 | ||
Pond 35% ZVI | 55.82% | 0 | 8.9 | 9.29 | 80.9 | −11.4 | 138.5 |
40.71% | 7 | 33.8 | 9.29 | 90.8 | 1.3 | 159.2 | |
31.19% | 14 | 50.4 | 7.54 | 82.5 | 77.4 | 363.3 | |
−46.69% | 16 | 47.7 | 8.96 | 85.2 | 72.7 | 353.3 | |
Mean ± standard deviation | 35.2 ± 18.9 | 8.77 ± 0.83 | 84.8 ± 4.3 | 35.0 ± 46.5 | 253.5 ± 121.2 |
Reduction in E. coli by Filtration | |||||||
---|---|---|---|---|---|---|---|
ZVI 50% DI | ZVI 50% Pond | ZVI 35% Pond Water | |||||
Trial | Time (Days) | Pct (%) | Log CFU/mL | Pct (%) | Log CFU/mL | Pct (%) | Log CFU/mL |
1 | 0 | 99.74 | 2.28 | 98.99 | 1.85 | 55.82 | 0.34 |
2 | 5 | 99.94 | 3.16 | 85.04 | 0.78 | 40.71 | 0.17 |
3 | 13 | 99.76 | 2.42 | 61.96 | 0.34 | 31.19 | 0.06 |
4 | 20 | 99.21 | 2.04 | 48.19 | 0.26 | −46.69 | −0.26 |
5 | 27 | 99.13 | 2.00 | 40.23 | 0.18 | - 1 | - |
6 | 35 | 95.58 | 1.20 | 43.93 | 0.19 | - | - |
Mean ± standard deviation | 98.8 ± 1.7 | 2.12 ± 0.64 | 63.0 ± 24.0 | 0.60 ± 0.65 | 20.3 ± 45.7 | 0.08 ± 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Eckart, K.; Sabet, S.; Chiu, P.C.; Sapkota, A.R.; Handy, E.T.; East, C.L.; Kniel, K.E.; Sharma, M. Escherichia coli Reduction in Water by Zero-Valent Iron–Sand Filtration Is Based on Water Quality Parameters. Water 2021, 13, 2702. https://doi.org/10.3390/w13192702
Kim S, Eckart K, Sabet S, Chiu PC, Sapkota AR, Handy ET, East CL, Kniel KE, Sharma M. Escherichia coli Reduction in Water by Zero-Valent Iron–Sand Filtration Is Based on Water Quality Parameters. Water. 2021; 13(19):2702. https://doi.org/10.3390/w13192702
Chicago/Turabian StyleKim, Seongyun, Katherine Eckart, Sarah Sabet, Pei C. Chiu, Amy Rebecca Sapkota, Eric T. Handy, Cheryl L. East, Kalmia E. Kniel, and Manan Sharma. 2021. "Escherichia coli Reduction in Water by Zero-Valent Iron–Sand Filtration Is Based on Water Quality Parameters" Water 13, no. 19: 2702. https://doi.org/10.3390/w13192702
APA StyleKim, S., Eckart, K., Sabet, S., Chiu, P. C., Sapkota, A. R., Handy, E. T., East, C. L., Kniel, K. E., & Sharma, M. (2021). Escherichia coli Reduction in Water by Zero-Valent Iron–Sand Filtration Is Based on Water Quality Parameters. Water, 13(19), 2702. https://doi.org/10.3390/w13192702