Non-Linear Visualization and Importance Ratio Analysis of Multivariate Polynomial Regression Ecological Models Based on River Hydromorphology and Water Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Management
2.2. Model Development
- The model always started with an intercept (average of the dependent variable values). The software generated terms that best combined with existing terms of a model, depending on the allowable exponents and multiplicands set by the user. The terms were sorted in terms of best t-statistics of the fit data.
- A candidate term was chosen from among the statistically significant variables of fit data, which also improved the R2 of a separate cross-correlation dataset. Both these criteria had to be met for a term to be added into the model. This procedure reduced the possibility of overfitting and improved the generalizability of the model.
- After any term was added to the model, the other terms previously added were tested for statistical significance and removed if not.
- The above process was repeated iteratively for additional candidate terms.
- The model was thus built by an iterative process by adding and removing candidate terms from among statistically significant terms based on fit dataset that also improved the R2 of the test dataset, until the model could not be improved by addition or removal of any single term.
- After the model was complete, it was tested against a 3rd independent validation dataset. The performance with the validation dataset was used for comparison with the ANN models.
2.3. Sensitivity Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hefley, T.J.; Broms, K.M.; Brost, B.M.; Buderman, F.E.; Kay, S.L.; Scharf, H.R.; Tipton, J.R.; Williams, P.J.; Hooten, M.B. The basis function approach for modeling autocorrelation in ecological data. Ecology 2016, 93, 632–646. [Google Scholar] [CrossRef] [Green Version]
- Milošević, D.; Mančev, D.; Čerba, D.; Piperac, M.S.; Popović, N.; Atanacković, A.; Đuknić, J.; Simić, V.; Paunović, M. The potential of chironomid larvae-based metrics in the bioassessment of non-wadeable rivers. Sci. Total Environ. 2018, 616, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Gebler, D.; Szoszkiewicz, K.; Pietruczuk, K. Modeling of the river ecological status with macrophytes using artificial neural networks. Limnologica 2017, 65, 46–54. [Google Scholar] [CrossRef]
- Szoszkiewicz, K.; Jusik, S.; Lawniczak, A.E.; Zgola, T. Macrophyte development in unimpacted lowland rivers in Poland. Hydrobiologia 2010, 656, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Meena, D.K.; Lianthuamluaia, L.; Mishal, P.; Swain, H.S.; Naskar, B.K.; Saha, S.; Sandhya, K.M.; Kumari, S.; Tayung, T.; Sarkar, U.K.; et al. Assemblage patterns and community structure of macro-zoobenthos and temporal dynamics of eco-physiological indices of two wetlands, in lower gangetic plains under varying ecological regimes: A tool for wetland management. Ecol. Eng. 2019, 130, 1–10. [Google Scholar] [CrossRef]
- Zuo, K.; Wu, Y.; Li, C.; Xu, J.; Zhang, M. Ecosystem-Based Restoration to Mitigate Eutrophication: A Case Study in a Shallow Lake. Water 2020, 12, 2141. [Google Scholar]
- Najafzadeh, M.; Homaei, F.; Mohamadi, S. Reliability evaluation of groundwater quality index using data-driven models. Environ. Sci. Pollut. Res. 2021. [CrossRef]
- Najafzadeh, M.; Homaei, F.; Farhadi, H. Reliability assessment of water quality index based on guidelines of national sanitation foundation in natural streams: Integration of remote sensing and data-driven models. Artif. Intell. Rev. 2021, 54, 4619–4651. [Google Scholar] [CrossRef]
- Haury, J.; Peltre, M.C.; Tremolieres, M.; Barbe, J.; Thiebaut, G.; Bernez, I.; Daniel, H.; Chatenet, P.; Haan-Archipof, G.; Muller, S.; et al. A new method to assess water trophy and organic pollution-the Macrophyte Biological Index for Rivers (IBMR): Its application to different types of rivers and pollution. Hydrobiologia 2006, 570, 153–158. [Google Scholar] [CrossRef]
- Mikulyuk, A.; Martha, B.; Jennifer, H.; Catherine, H.; Ellen, K.; Kristi, M.; Michelle, N.E.; Daniel, O.L.; Kelly, W.I. A macrophyte bioassessment approach linking taxon-specific tolerance and abundance in north temperate lakes. J. Environ. Manag. 2017, 199, 172–180. [Google Scholar] [CrossRef]
- European Commission. Establishing a Framework for Community Action in the Field of Water Policy; Directive 2000/60/EC of the European Parliament and of the Council; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Bytyqi, P.; Czikkely, M.; Shala-Abazi, A.; Osman, F.; Ismaili, M.; Hyseni-Spahiu, M.; Ymeri, P.; Kabashi-Kastrati, E.; Millaku, F. Macrophytes as biological indicators of organic pollution in the Lepenci River Basin in Kosovo. J. Freshw. Ecol. 2020, 35, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Denny, P. Sites of Nutrient Absorption in Aquatic Macrophytes. J. Ecol. 1972, 60, 819–829. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, Z.; Wang, G.; Liu, Y.; Wang, H.; Xie, J. Optimal submerged macrophyte coverage for improving water quality in a temperate lake in China. Ecol. Eng. 2021, 162, 106177. [Google Scholar] [CrossRef]
- Damanik-Ambarita, M.N.; Everaert, G.; Forio, M.A.E.; Nguyen, T.H.T.; Lock, K.; Musonge, P.L.S.; Suhareva, N.; Dominhuez-Granda, L.; Bennetsen, E.; Boets, P.; et al. Generalized Linear Models to Identify Key Hydromorphological and Chemical Variables Determining the Occurence of Macroinvertebrates in the Guayas River Basin (Ecuador). Water 2016, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.; Poikane, S.; Lyche-Solheim, A.; Phillips, G.; Borics, G.; Catalan, J.; Hoyos, C.D.; Drakare, S.; Dudley, B.J.; Järvinen, M.; et al. Strength and uncertainity of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 2013, 704, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Hering, D.; Borja, A.; Carstensen, J.; Carvalho, L.; Elliott, M.; Feld, C.K.; Heiskanen, A.-S.; Johnson, R.K.; Moe, J.; Pont, D.; et al. The European Water Frame Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci. Total Environ. 2010, 408, 4007–4019. [Google Scholar] [CrossRef] [Green Version]
- Gebler, D.; Wiegleb, G.; Szoszkiewic, K. Integrating river hydromorphology and water quality into ecological status modeling by artificial neural networks. Water Res. 2018, 139, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Krtolica, I.; Cvijanović, D.; Obradović, Đ.; Novković, M.; Milošević, D.; Savić, D.; Vojinović-Miloradov, M.; Radulović, S. Water quality and macrophytes in the Danube River: Artificial neural network modelling. Ecol. Indic. 2021, 121, 107076. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and Disadvantages of Using Artificial Neural versus Logistic Regression for Predicting Medical Outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Li, Y.; Rad, A.B.; Peng, W. An Enhanced Training Algorithm for Multilayer Neural Networks Based on Reference Output of Hidden Layer. Neural Comput. Appl. 1999, 8, 218–225. [Google Scholar] [CrossRef]
- Vaccari, David, A. TaylorFit Response Surface Analysis- with stepwise Multivariate Polynomial Regression. Available online: http://www.taylorfit-rsa.com/ (accessed on 15 August 2018).
- Su, S.; Zhi, J.; Lou, L.; Huang, F.; Chen, X.; Wu, J. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques. Phys. Chem. Earth 2011, 36, 379–386. [Google Scholar] [CrossRef]
- Jagupilla, S.C.K.; Vaccari, D.A.; Hires, R.I. Multivariate Polynomial Time-Series Models and Importance Ratios to Qualify Fecal Coliform Sources. J. Environ. Eng. 2010, 136, 657–665. [Google Scholar] [CrossRef]
- Kazi, T.; Arain, M.; Jamali, M.; Jalbani, N.; Afridi, H.; Sarfraz, R.; Baig, J.A.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef]
- Vaccari, D.A.; Wang, H.-K. Multivariate polynomial regression for identification of chaotic time series. Math. Comput. Model. Dyn. Syst. 2007, 13, 395–412. [Google Scholar] [CrossRef]
- Jagupilla, S.C.K.; Shah, V.; Ramaswamy, V.; Gurumurthy, P.; Vaccari, D.A. Prediction of Boundary and Stormwater E. Coli Concentrations Using River Flows and Baseflow Index. J. Environ. Eng. 2020, 146, 04020017. [Google Scholar] [CrossRef]
- Jongman, R.H.G.; Braak, C.J.F.T.; van Tongeren, O.F.R. Data Analysis in Community and Landscape Ecology; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Mead, R. A Note on the Use and Misuse of Regression Models in Ecology. J. Ecol. 1971, 59, 215–219. [Google Scholar] [CrossRef]
- Szoszkiewicz, K.; Jusik, S.; Pietruczuk, K.; Gebler, D. The Macrophyte Index for Rivers (MIR) as an Advantageous Approach to Running Water Assessment in Local Geographical Conditions. Water 2019, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Willby, N.; Pitt, J.A.; Phillips, G. The Ecological Classification of UK Rivers Using Aquatic Macrophytes; Environmental Agency Science Report: Bristol, UK, 2012. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Raven, P.J.; Holmes, N.T.H.; Dawson, F.H.; Everard, M. Quality assessment using river habitat survey data. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 477–499. [Google Scholar] [CrossRef]
- Schoefs, F. Sensitivity approach for modelling the environmental loading of marine structures through a matrix response surface. Reliab. Eng. Syst. Saf. 2008, 93, 1004–1017. [Google Scholar] [CrossRef] [Green Version]
- Giustolisi, O.; Savic, D.A. A symbolic data-driven technique based on evolutionary polynomial regression. J. Hydroinform. 2006, 8, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Jusik, S.; Szoszkiewicz, K.; Kupiec, J.M.; Lewin, I.; Samecka-Cymerman, A. Development of comprehensive river typology based on macrophytes in the mountain-lowland gradient of different Central European ecoregions. Hydrobiologia 2014, 745, 241–262. [Google Scholar] [CrossRef] [Green Version]
- Gevrey, M.; Dimopoulos, I.; Lek, S. Review and comparison of methods to study the contribution of variables in artificial neutral network models. Ecol. Model. 2003, 160, 249–264. [Google Scholar] [CrossRef]
- Hachoł, J.; Bondar-Nowakowska, E.; Nowakowska, E. Factors Influencing Macrophyte Species Richness in Unmodified and Altered Watercourses. Pol. J. Environ. Stud. 2018, 28, 609–622. [Google Scholar] [CrossRef]
- Birk, S.; Willby, N. Towards harmonization of ecological quality classification: Establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia 2010, 652, 149–163. [Google Scholar] [CrossRef]
- Saloua, B.; Abdelilah, R.; Lahsen, C.; Soumaya, H.; Elhassan, A. Evaluation of Biological Water Quality by Biological Macrophytic Index in River: Application on the Watershed of Beht River. Eur. Sci. J. ESJ 2017, 13, 217–244. [Google Scholar] [CrossRef] [Green Version]
- Thiebaut, G.; Guerold, F.; Muller, S. Are trophic and diversity indices based on macrophyte communities pertinent tools to monitor water quality? Water Res. 2002, 36, 3602–3610. [Google Scholar] [CrossRef]
- Rameshkumar, S.; Radhakrishnan, K.; Aanand, S.; Rajaram, R. Influence of physicochemical water quality on aquatic macrophyte diversity in seasonal wetlands. Appl. Water Sci. 2019, 9, 12. [Google Scholar] [CrossRef]
Parameter | Shortcut | Unit | Range |
---|---|---|---|
pH | pH | - | 5.84–8.82 |
Conductivity | Cond. | mS·cm−1 | 101–2250 |
Alkalinity | Alkal. | mg CaCO3·dm−3 | 40–564 |
Total Phosphorus | PTot. | mg P·dm−3 | 0.03–2.56 |
Reactive Phosphorus | PPO4 | mg PO43−·dm−3 | 0.01–1.99 |
Nitrate Nitrogen | NNO3 | mg N-NO3−·dm−3 | 0.02–5.74 |
Nitrite Nitrogen | NNO2 | mg N-NO2−·dm−3 | 0.002–0.543 |
Ammonia Nitrogen | NNH4 | mg N-NH4+·dm−3 | 0.01–7.75 |
Organic Nitrogen | NOrg. | mg Norg·dm−3 | 0.34–15.09 |
Total Nitrogen | NTot. | mg N·dm−3 | 0.19–24.82 |
Biochemical Oxygen Demand | BOD5 | mg O2·dm−3 | 0.04–10.88 |
Dissolved Oxygen | O2 | mg O2·dm−3 | 0.42–22.32 |
Habitat Quality Assessment | HQA | - | 6–53 |
Habitat Modification Score | HMS | - | 11–108 |
Macrophyte Index for Rivers | MIR | - | 10.00–80.00 |
Macrophyte Biological Index for Rivers | IBMR | - | 4.44–16.18 |
River Macrophyte Nutrient Index | RMNI | - | 3.56–8.98 |
Species Richness | N | - | 2–35 |
Simpson Diversity Index | D | - | 0.01–0.92 |
Index | Equation |
---|---|
MIR | |
RMNI | |
IBMR | |
D | |
N |
Term: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
MIR | t-stat | 5.53 | −7.40 | −4.91 | 5.40 | −3.50 | 4.28 | 3.79 | −2.61 | −1.98 |
p(t) | 1.71 × 10−7 | 1.51 × 10−11 | 2.71 × 10−6 | 3.08 × 10−7 | 6.42 × 10−4 | 3.60 × 10−5 | 2.30 × 10−4 | 1.00 × 10−2 | 5.00 × 10−2 | |
RMNI | t-stat | 4.77 | 9.05 | 6.04 | 3.28 | 2.94 | - | - | - | - |
p(t) | 4.72 × 10−6 | 1.55 × 10−15 | 1.49 × 10−8 | 1.30 × 10−3 | 3.90 × 10−3 | - | - | - | - | |
IBMR | t-stat | −5.47 | −2.76 | 8.79 | −5.13 | 2.91 | −4.08 | - | - | - |
p(t) | 2.14 × 10−7 | 6.00 × 10−3 | 6.33 × 10−15 | 1.00 × 10−6 | 4.00 × 10−3 | 7.76 × 10−5 | ||||
D | t-stat | −5.73 | −3.80 | −2.25 | 2.58 | - | - | - | - | - |
p(t) | 6.13 × 10−8 | 2.16 × 10−4 | 2.50 × 10−2 | 1.10 × 10−2 | - | - | - | - | - | |
N | t-stat | −4.01 | −3.70 | −2.66 | −2.77 | −3.93 | 2.99 | −2.26 | - | - |
p(t) | 1.00 × 10−4 | 3.09 × 10−4 | 8.00 × 10−3 | 6.00 × 10−3 | 1.39 × 10−4 | 3.00 × 10−3 | 2.50 × 10−2 | - | - |
Type of Model | Validation R2 | Degrees of Freedom (df) for Error | Mean Square Error (MSE) | F-Stat | p(F) | |
---|---|---|---|---|---|---|
MIR | MPR | 0.58 | 12 | 10.856 | 1.11 | 0.373 |
ANN | 0.702 | 52 | 9.790 | |||
RMNI | MPR | 0.65 | 9 | 0.048 | 1.00 | 0.452 |
ANN | 0.715 | 52 | 0.050 | |||
IBMR | MPR | 0.47 | 9 | 0.364 | 0.88 | 0.551 |
ANN | 0.532 | 52 | 0.411 | |||
D | MPR | 0.237 | 8 | 0.008 | 1.00 | 0.447 |
ANN | 0.284 | 52 | 0.009 | |||
N | MPR | 0.33 | 11 | 8.392 | 0.90 | 0.544 |
ANN | 0.415 | 52 | 9.288 |
Index | Independent Variables | 10% Percentile | Median | 90% Percentile | Root Mean Square (RMS) |
---|---|---|---|---|---|
MIR | HMS | −0.437 | −0.213 | −0.108 | 0.295 |
HQA | 0.097 | 0.250 | 0.666 | 0.659 | |
pH | −0.057 | −0.035 | −0.018 | 0.044 | |
BOD5 | −0.098 | −0.005 | 0.000 | 0.424 | |
Conductivity | −1.410 | −0.467 | −0.112 | 1.358 | |
RMNI | HQA | 0.002 | 0.006 | 0.019 | 0.020 |
Ptot | −0.001 | 0.475 | 4.122 | 8.350 | |
NNO3 | −0.285 | 0.080 | 0.290 | 8.737 | |
NNH4 | 0.002 | 0.074 | 1.273 | 14.640 | |
Conductivity | 0.000 | 0.000 | 0.002 | 0.000 | |
IBMR | HMS | −0.561 | −0.482 | −0.396 | 0.892 |
Norg | −2.107 | −0.295 | −0.038 | 3.993 | |
NNO2 | −0.278 | −0.024 | 2.907 | 14.607 | |
BOD5 | −0.169 | −0.031 | −0.009 | 0.173 | |
Conductivity | −0.245 | −0.013 | −0.001 | 0.797 | |
D | HMS | −0.427 | −0.127 | 0.074 | 0.580 |
HQA | −0.115 | 0.023 | 0.264 | 0.589 | |
NNO3 | −0.654 | 0.000 | 0.755 | 4.638 | |
BOD5 | −0.370 | −0.038 | 0.672 | 7.324 | |
Conductivity | 0.010 | 0.057 | 0.279 | 0.262 | |
N | HMS | −0.602 | −0.513 | 0.128 | 0.803 |
HQA | 0.067 | 0.201 | 0.747 | 0.647 | |
NNO2 | −0.291 | 0.516 | 8.040 | 6.463 | |
BOD5 | −0.619 | −0.367 | −0.182 | 0.466 | |
Conductivity | −0.024 | 0.208 | 0.879 | 0.798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, V.; Jagupilla, S.C.K.; Vaccari, D.A.; Gebler, D. Non-Linear Visualization and Importance Ratio Analysis of Multivariate Polynomial Regression Ecological Models Based on River Hydromorphology and Water Quality. Water 2021, 13, 2708. https://doi.org/10.3390/w13192708
Shah V, Jagupilla SCK, Vaccari DA, Gebler D. Non-Linear Visualization and Importance Ratio Analysis of Multivariate Polynomial Regression Ecological Models Based on River Hydromorphology and Water Quality. Water. 2021; 13(19):2708. https://doi.org/10.3390/w13192708
Chicago/Turabian StyleShah, Vishwa, Sarath Chandra K. Jagupilla, David A. Vaccari, and Daniel Gebler. 2021. "Non-Linear Visualization and Importance Ratio Analysis of Multivariate Polynomial Regression Ecological Models Based on River Hydromorphology and Water Quality" Water 13, no. 19: 2708. https://doi.org/10.3390/w13192708
APA StyleShah, V., Jagupilla, S. C. K., Vaccari, D. A., & Gebler, D. (2021). Non-Linear Visualization and Importance Ratio Analysis of Multivariate Polynomial Regression Ecological Models Based on River Hydromorphology and Water Quality. Water, 13(19), 2708. https://doi.org/10.3390/w13192708