Effect of Drip Irrigation on Soil Water Balance and Water Use Efficiency of Maize in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Methods and Measurements
2.4. Data Interpolation
2.5. Data Analysis Method
3. Results
3.1. Soil Water Balance
3.1.1. The Difference of Precipitation (P), Irrigation (I) and Soil Water Content (SWC), Drainage (D) between DI Treatment and BI Treatment
3.1.2. The Difference of Evaporation (E), Transpiration (T) between DI Treatment and BI Treatment
3.2. Comparison of Proportion of CWUE, WUE, IWUE and Proportion of Drainage to the Sum of Precipitation and Irrigation (D/(P+I)) between DI Treatment and BI Treatment
4. Discussion
4.1. Why Does Drip Irrigation Improve Water Use Efficiencies?
4.2. Compared with Precious Studies?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. 2017. Available online: http://data-worldbank-org-s/indicator/ER.H2O.FWAG.ZS (accessed on 21 October 2020).
- Postel, S.; Polak, P.; Gonzales, F.; Keller, J. Drip irrigation for small farmers—A new initiative to alleviate hunger and poverty. Water Int. 2001, 26, 3–13. [Google Scholar] [CrossRef]
- Tiwari, K.N.; Singh, A.; Mal, P.K. Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions. Agric. Water Manag. 2003, 58, 19–28. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuno, M.F.; Chaves, M.M. Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture. J. Integr. Plant Biol. 2007, 49, 14. [Google Scholar] [CrossRef]
- Wang, E.L.; Cresswell, H.; Xu, J.; Jiang, Q. Capacity of soils to buffer impact of climate variability and value of seasonal forecasts. Agric. For. Meteorol. 2009, 149, 38–50. [Google Scholar] [CrossRef]
- Hou, X.Y.; Wang, F.X.; Han, J.J.; Kang, S.Z.; Feng, S.Y. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agric. For. Meteorol. 2010, 150, 115–121. [Google Scholar] [CrossRef]
- Qin, S.J.; Li, S.E.; Kang, S.Z.; Du, T.S.; Tong, L.; Ding, R.S. Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition? Agric. Water Manag. 2016, 177, 128–137. [Google Scholar] [CrossRef]
- Verma, M.L.; Thakur, B.C.; Bhandari, A.R. Effect of drip irrigation and polyethylene mulch on yield, quality and water-use efficiency of peach cv., July Elberta. Indian J. Hortic. 2007, 64, 406–409. [Google Scholar]
- Fan, W.B.; Wu, P.T.; Ma, F.M. Socio-economic impacts of under-film drip irrigation technology and sustainable assessment: A case in the Manas River Basin, Xinjiang, China. Acta Ecol. Sin. 2012, 23, 7559–7567. [Google Scholar]
- Zhang, H.M.; Tian, J.T.; Ma, B.; Shen, H.; Pan, Y.X. Effects of different irrigation methods on growth and water use efficiency of oil sunflower. Water Sav. Irrig. 2016, 4, 15–17, 23. [Google Scholar]
- Zhang, Y.L.; Wang, F.X.; Shock, C.C.; Yang, K.J.; Kang, S.Z.; Qin, J.T.; Li, S.E. Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation. Agric. Water Manag. 2017, 180, 160–171. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, J.D.; Gong, S.H.; Xu, D.; Sui, J.; Wu, Z.D.; Mo, Y. Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China. Agric. Water Manag. 2018, 205, 90–99. [Google Scholar] [CrossRef]
- Liao, R.K.; Wu, W.Y.; Hu, Y.Q.; Xu, D.; Huang, Q.N.; Wang, S.Y. Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China. Agric. Water Manag. 2019, 221, 388–396. [Google Scholar] [CrossRef]
- Han, S.M.; Yang, Y.H.; Yang, Y.M.; Li, H.L.; Wang, J.S.; Cao, J.S. Determination of crop water use and coefficient in drip-irrigated cotton fields in arid regions. Field Crop. Res. 2019, 236, 85–95. [Google Scholar] [CrossRef]
- Li, S.E.; Kang, S.Z.; Zhang, L.; Zhang, J.H. On the attribution of changing crop evapotranspiration in arid regions using four methods. J. Hydrol. 2018, 563, 576–585. [Google Scholar] [CrossRef]
- Li, S.E.; Kang, S.Z.; Zhang, L.; Li, F.S.; Hao, X.M.; Ortega-Farias, S.; Guo, W.H.; Ji, S.S.; Wang, J.T.; Jiang, X.L. Quantifying the combined effects of climatic, crop and soil factors on surface resistance in a maize field. J. Hydrol. 2013, 489, 124–134. [Google Scholar] [CrossRef]
- Li, S.E.; Kang, S.Z.; Zhang, L.; Ortega-Farias, S.; Li, F.S.; Du, T.S.; Tong, L.; Wang, S.F.; Ingman, M.; Guo, W.H. Measuring and modeling maize evapotranspiration under plastic film-mulching condition. J. Hydrol. 2013, 503, 153–168. [Google Scholar] [CrossRef]
- Li, S.E.; Kang, S.Z.; Zhang, L.; Zhang, J.H.; Du, T.S.; Tong, L.; Ding, R.S. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. J. Hydrol. 2016, 543, 450–461. [Google Scholar] [CrossRef]
- Li, S.E.; Zhang, L.; Kang, S.Z.; Tong, L.; Du, T.S.; Hao, X.M.; Zhao, P. Comparison of several surface resistance models for estimating crop evapotranspiration over the entire growing season in arid regions. Agric. For. Meteorol. 2015, 208, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Qin, S.; Guo, H.; Lam, H.M. How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest china. Agric. Water Manag. 2020, 239, 106256. [Google Scholar] [CrossRef]
- Jiang, X.L.; Kang, S.Z.; Tong, L.; Li, F.S.; Li, D.H.; Ding, R.S.; Qiu, R.J. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agric. Water Manag. 2014, 142, 135–143. [Google Scholar] [CrossRef]
- Qin, S.; Li, S.; Yang, K.; Hu, K. Can plastic mulch save water at night in irrigated croplands? J. Hydrol. 2018, 564, 667–681. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Liu, C.W.; Xiao, C.H.; Xie, R.Z.; Ming, B.; Hou, P.; Liu, G.Z.; Xu, W.J.; Shen, D.P.; Wang, K.R.; et al. Optimizing Water use Efficiency and Economic Return of Super High Yield Spring Maize Under Drip Irrigation and Plastic Mulching in Arid Areas of China. Field Crop. Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Perry, C.; Bucknall, J. Water Resource assessment in the Arab world: New analytical tools for New challenges. In Water in the Arab World: Management Perspectives and Innovations; Jagannathan, V., Mohamed, A., Kremer, A., Eds.; World Bank: Washington, DC, USA, 2009; pp. 97–118. [Google Scholar]
- Kijne, J.W.; Barker, R.; Molden, D. Water Productivity in Agriculture: Limits and Opportunities for Improvement (Comprehensive Assessment of Water Management in Agriculture Series 1); CABI: Wallingford, CT, USA, 2003. [Google Scholar]
- Knox, J.W.; Daccache, A.; Hess, T.M.; Else, M.; Kay, M.; Burton, M.; Malano, H. Benchmarking Agricultural Water Use and Productivity In Key Commodity Crops. In WU0122–Final Report for Defra; Cranfield University: Bedford, UK, 2013; p. 66. [Google Scholar]
- Fernandez, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchar. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Zhang, H.P.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Wang, J.; Wang, E.L.; Luo, Q.Y.; Kirby, M. Modelling the sensitivity of wheat growth and water balance to climate change in Southeast Australia. Clim. Chang. 2009, 96, 79–96. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Nishiyama, S.; Kang, Y.H. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric. Water Manag. 2003, 63, 153–167. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, S.; Nangare, D.D.; Meena, M.S. Drip irrigation and black polyethylene mulch influence on growth, yield and water-use efficiency of tomato. Afr. J. Agric. Res. 2009, 4, 1427–1430. [Google Scholar]
- Jha, S.K.; Gao, Y.; Liu, H.; Huang, Z.; Wang, G.; Liang, Y.; Duan, A. Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Agric. Water Manag. 2017, 182, 139–150. [Google Scholar] [CrossRef]
- Wang, X.W.; Huo, Z.L.; Guan, H.D.; Guo, P.; Qu, Z.Y. Drip irrigation enhances shallow groundwater contribution to crop water consumption in an arid area. Hydrol. Process. 2018, 32, 747–758. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Li, G.Y.; Wang, D.; Lamm, F.R.; Wang, J.D.; Zhang, Y.Q.; Cai, M.K.; Gong, S.H. Planting and preemergence irrigation procedures to enhance germination of subsurface drip irrigated corn. Agric. Water Manag. 2020, 242, 106412. [Google Scholar] [CrossRef]
- Zinkernagel, J.; Maestre-Valero, J.F.; Seresti, S.Y.; Intrigliolo, D.S. New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agric. Water Manag. 2020, 242, 106404. [Google Scholar] [CrossRef]
- Liang, Z.W.; Liu, X.C.; Xiong, J.B.; Xiao, J.R. Water Allocation and Integrative Management of Precision Irrigation: A Systematic Review. Water 2020, 12, 3135. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Mu, Y.; Wang, Y.H.; Wang, L. Response of winter-wheat grain yield and water-use efficiency to irrigation with activated water on Guanzhong Plain in China. Irrig. Sci. 2020. [Google Scholar] [CrossRef]
- Raza, A.; Zaka, M.A.; Khurshid, T.; Nawaz, M.A.; Ahmed, W.; Afzal, M.B.S. Different Irrigation Systems Affect the Yield and Water Use Efficiency of Kinnow Mandarin (Citrus Reticulata Blanco.). J. Anim. Plant Sci. 2020, 30, 1178–1186. [Google Scholar]
- Romic, D.; Romic, M.; Borosic, J.; Poljak, M. Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation. Agric. Water Manag. 2003, 60, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar] [CrossRef]
- Fang, Q.X.; Yu, Q.; Wang, E.L.; Chen, Y.H.; Zhang, G.L.; Wang, J.; Li, L.H. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain. Plant Soil 2006, 284, 335–350. [Google Scholar] [CrossRef]
Treatment | Year | Days | ET | E | T | P | I | ΔW | D | Yield | D/(P+I) | T/(P+I) | Y/I | Y/ET |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (t/hm2) | (kg/m3) | (kg/m3) | |||||
BI | 2014 | 149 | 497 | 108 | 389 | 201 | 360 | −31 | 95 | 6.9 | 17% | 69% | 1.92 | 1.39 |
DI | 2014 | 134 | 479 | 108 | 371 | 195 | 350 | −11 | 78 | 9.04 | 14% | 68% | 2.59 | 1.89 |
BI | 2015 | 155 | 616 | 190 | 426 | 151 | 550 | −8 | 93 | 8.52 | 13% | 61% | 1.55 | 1.38 |
DI | 2015 | 132 | 517 | 95 | 421 | 119 | 400 | −8 | 10 | 9.97 | 2% | 81% | 2.49 | 1.93 |
BI | 2016 | 154 | 521 | 106 | 415 | 119 | 480 | −47 | 124 | 10.44 | 21% | 69% | 2.17 | 2.00 |
DI | 2016 | 144 | 511 | 99 | 412 | 115 | 427 | −1 | 32 | 10.95 | 6% | 76% | 2.56 | 2.14 |
BI | 2017 | 147 | 581 | 122 | 459 | 133 | 570 | 50 | 72 | 6.76 | 10% | 65% | 1.18 | 1.16 |
DI | 2017 | 142 | 490 | 95 | 394 | 134 | 368 | −48 | 61 | 5.29 | 12% | 79% | 1.44 | 1.08 |
BI | 2018 | 159 | 525 | 117 | 408 | 158 | 525 | 56 | 103 | 7.53 | 15% | 60% | 1.44 | 1.44 |
DI | 2018 | 146 | 543 | 97 | 446 | 156 | 422 | 29 | 6 | 7.92 | 1% | 77% | 1.88 | 1.46 |
BI | 2014–2018 | 153 | 548 | 129 | 419 | 152 | 497 | 4 | 97 | 8.03 | 15% | 65% | 1.62 | 1.47 |
DI | 2014–2018 | 140 | 508 | 99 | 409 | 144 | 393 | −8 | 37 | 8.63 | 7% | 76% | 2.20 | 1.70 |
p-value (t-test) | 0.074 | 0.043 | 0.47 | 0.002 | 0.564 | 0.001 | 0.548 | 0.011 | 0.001 | 0.043 | 0.267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, S.; Cui, Y.; Qin, S.; Guo, H.; Yang, D.; Wang, C. Effect of Drip Irrigation on Soil Water Balance and Water Use Efficiency of Maize in Northwest China. Water 2021, 13, 217. https://doi.org/10.3390/w13020217
Wang Y, Li S, Cui Y, Qin S, Guo H, Yang D, Wang C. Effect of Drip Irrigation on Soil Water Balance and Water Use Efficiency of Maize in Northwest China. Water. 2021; 13(2):217. https://doi.org/10.3390/w13020217
Chicago/Turabian StyleWang, Yahui, Sien Li, Yaokui Cui, Shujing Qin, Hui Guo, Danni Yang, and Chunyu Wang. 2021. "Effect of Drip Irrigation on Soil Water Balance and Water Use Efficiency of Maize in Northwest China" Water 13, no. 2: 217. https://doi.org/10.3390/w13020217
APA StyleWang, Y., Li, S., Cui, Y., Qin, S., Guo, H., Yang, D., & Wang, C. (2021). Effect of Drip Irrigation on Soil Water Balance and Water Use Efficiency of Maize in Northwest China. Water, 13(2), 217. https://doi.org/10.3390/w13020217