Spatio-Temporal Analysis of Surface Water Quality in Mokopane Area, Limpopo, South Africa
Abstract
:1. Introduction
2. Study Area
2.1. Site Description
2.2. LULC Classification
3. Methodology
3.1. Heavy Metal Pollution Index (HPI) Calculation
- -
- Wi is the unit weight of ith parameter, in which K is constant of proportionality, ;
- -
- Qi is the sub-index of the ith parameter, in which Mi is monitored values; and
- -
- Ii is the ideal value, Si is suggested permissible values.
3.2. Heavy Metal Evaluation Index (HEI) Calculation
3.3. Water Quality Index
- Calculating relative weight: It was calculated using Equation (3).
- Calculating Q value: It was calculated using Equation (4).
- Finally, the Water quality Index (WQI) was calculated using Equation (5).
4. Results and Discussion
4.1. General Water Chemistry
4.2. Heavy Metal Evaluation Index (HEI)
4.3. Water Quality Index (WQI)
5. Conclusions and Recommendation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avtar, R.; Kumar, P.; Singh, C.; Mukherjee, S. A Comparative Study on Hydrogeochemistry of Ken and Betwa Rivers of Bundelkhand Using Statistical Approach. Water Qual. Exposure Health 2011, 2, 169–179. [Google Scholar] [CrossRef]
- Kazi, T.; Arain, M.; Jamali, M.K.; Jalbani, N.; Afridi, H.; Sarfraz, R.; Baig, J.; Shah, A.Q. Assessment of Water Quality of Polluted Lake Using Multivariate Statistical Techniques: A Case Study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P. Numerical Quantification of Current Status Quo and Future Prediction of Water Quality in Eight Asian Megacities: Challenges and Opportunities for Sustainable Water Management. Environ. Monit. Assess. 2019, 191, 319. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.; Tundisi, J. Hidrogeochemical Comparative Study of the Jaú and Jacaré-Guaçu River Watersheds, São Paulo, Brazil. Rev. Bras. Biol. 2000, 60, 563–570. [Google Scholar] [CrossRef] [Green Version]
- UN Water. Water a Shared Responsibility. 2006. Available online: http://Unesdoc.Unesco.Org/Images/0014/001454/145405e.Pdf#page=519 (accessed on 21 April 2019).
- Eneh, O.C.; Eneh, A. Potable Water Access and Management and Management in Africa: Implecations for Poverty, Hunger and Health. Technol. Sci. Rev. 2014, 5, 8036–9694. [Google Scholar]
- Sila, O.N. Physico-Chemical and Bacteriological Quality of Water Sources in Rural Settings, a Case Study of Kenya, Africa. Sci. Afr. 2019, 2, E00018. [Google Scholar] [CrossRef]
- Bello, M.; Tolaba, M.; Suarez, C. Factors Affecting Water Uptake of Rice Grain during Soaking. LWT—Food Sci. Technol. 2004, 37, 811–816. [Google Scholar] [CrossRef]
- Avtar, R.; Aggarwal, R.; Kharrazi, A.; Kumar, P.; Kurniawan, T.A. Utilizing Geospatial Information to Implement SDGs and Monitor Their Progress. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef]
- Shrivastava, A.; Tandon, S.A.; Kumar, R. Water Quality Management Plan for Patalganga River for Drinking Purpose and Human Health Safety. Int. J. Sci. Res. Environ. Sci. 2015, 3, 71–87. [Google Scholar] [CrossRef]
- Lukubye, B.; Andama, M. Bacterial Analysis of Selected Drinking Water Sources in Mbarara Municipality, Uganda. J. Water Resour. Prot. 2017, 9, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.; Kumari, P.; Bano, S.; Kumari, S. Ground Water Quality Evaluation near Mining Area and Development of Heavy Metal Pollution Index. Appl. Water Sci. 2014, 4, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, M.V.; Chidambaram, S.; Hameed, A.S.; Srinivasamoorthy, K. Hydrogeochemical Analysis and Evaluation of Groundwater Quality in the Gadilam River Basin, Tamil Nadu, India. J. Earth Syst. Sci. 2011, 120, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F. The Genetic Effects of Environmental Lead. Mutation Res./Rev. Mutation Res. 1998, 410, 123–140. [Google Scholar] [CrossRef]
- Tsuji, L.; Karagatzides, J. Chronic Lead Exposure, Body Condition, and Testis Mass in Wild Mallard Ducks. Bull. Environ. Contam. Toxicol. 2001, 67, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Abbasi, N.S.R. Heavy Metal in the Environment, 1st ed.; Mital Publication: New Delhi, India, 1998. [Google Scholar]
- Amadi, A.; Okoye, N.; Alabi, A.; Tukur, A.; Angwa, E. Quality Assessment of Soil and Groundwater near Kaduna Refinery and Petrochemical Company, Northwest Nigeria. J. Sci. Res. Rep. 2014, 3, 884–893. [Google Scholar] [CrossRef]
- Tsai, L.-J.; Yu, K.-C.; Chen, S.-F.; Kung, P.-Y. Effect of Temperature on Removal of Heavy Metals from Contaminated River Sediments via Bioleaching. Water Res. 2003, 37, 2449–2457. [Google Scholar] [CrossRef]
- Aliyu, J.; Saleh, Y.; Kabiru, S. Heavy Metals Pollution on Surface Water Sources in Kaduna Metropolis, Nigeria. Sci. World J. 2015, 10, 1–5. [Google Scholar]
- Bhagure, G.R.; Mirgane, S. Heavy Metal Concentrations in Groundwaters and Soils of Thane Region of Maharashtra, India. Environ. Monit. Assess. 2011, 173, 643–652. [Google Scholar] [CrossRef]
- Varalakshmi, L.; Ganeshamurthy, A. Heavy Metal Contamination of Water Bodies, Soils and Vegetables in Peri Urban Areas of Bangalore City of India. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Villanueva, J.; Le Coustumer, P.; Huneau, F.; Motelica-Heino, M.; Perez, T.; Materum, R.; Espaldon, M.; Stoll, S. Assessment of Trace Metals during Episodic Events Using DGT Passive Sampler: A Proposal for Water Management Enhancement. Water Resour. Manag. 2013, 27, 4163–4181. [Google Scholar] [CrossRef] [Green Version]
- Statistics South Africa 2016. Available online: https://www.gov.za/sites/default/files/gcis_document/201609/40312gen628.pdf (accessed on 29 May 2019).
- Climate Data Climate Mokopane. Available online: https://En.Climate-Data.Org/Africa/South-Africa/Limpopo/Mokopane-953/ (accessed on 1 July 2019).
- Platreef Resources (PTY) Ltd. Platreef Project Pre-Feasibility Study: Draft Hydrology Report for Draft EIA; Platreef Resources (PTY) Ltd.: Sandton, South Africa, 2013; p. 85. [Google Scholar]
- Sahu, N.; Panda, A.; Nayak, S.; Saini, A.; Mishra, M.; Sayama, T.; Sahu, L.; Duan, W.; Avtar, R.; Behera, S. Impact of Indo-Pacific Climate Variability on High Streamflow Events in Mahanadi River Basin, India. Water 2020, 12, 1952. [Google Scholar] [CrossRef]
- USGS Earth Explorer. Available online: https://Earthexplorer.Usgs.Gov/ (accessed on 1 May 2019).
- Avtar, R.; Herath, S.; Saito, O.; Gera, W.; Singh, G.; Mishra, B.; Takeuchi, K. Application of Remote Sensing Techniques toward the Role of Traditional Water Bodies with Respect to Vegetation Conditions. Environ. Dev. Sustain. 2014, 16, 995–1011. [Google Scholar] [CrossRef]
- Available online: https://Www.Ivanhoemines.Com/Projects/Platreef-Project/ (accessed on 22 December 2019).
- Panigrahy, B.; Singh, P.; Tiwari, A.; Kumar, B.; Kumar, A. Assessment of Heavy Metal Pollution Index for Groundwater around Jharia Coalfield Region, India. J. Biodivers. Environ. Sci. 2015, 6, 33–39. [Google Scholar]
- Avtar, R.; Kumar, P.; Singh, C.K.; Sahu, N.; Verma, R.L.; Thakur, J.K.; Mukherjee, S. Hydrogeochemical Assessment of Groundwater Quality of Bundelkhand, India Using Statistical Approach. Water Qual. Exposure Health 2013, 5, 105–115. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Singh, C.K.; Saraswat, C.; Avtar, R.; Ramanathan, A.; Herath, S. Hydrogeochemical Evolution and Appraisal of Groundwater Quality in Panna District, Central India. Expo. Health 2016, 8, 19–30. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Kurasaki, M.; Van Ty, T.; Tran, D.Q.; Le, K.N.; Avtar, R.; Rahman, M.; Osaki, M. Effects of Multi-Dike Protection Systems on Surface Water Quality in the Vietnamese Mekong Delta. Water 2019, 11, 1010. [Google Scholar] [CrossRef] [Green Version]
- Minh, H.V.T.; Avtar, R.; Kumar, P.; Tran, D.Q.; Ty, T.V.; Behera, H.C.; Kurasaki, M. Groundwater Quality Assessment Using Fuzzy-AHP in An Giang Province of Vietnam. Geosciences 2019, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, V.; Saxena, K. Hydrogeochemistry of Groundwater in the Delhi Region of India; IAHS-AISH Publication: Wallingford, UK, 1983. [Google Scholar]
- Skrabal, S.A.; Terry, C.M. Distributions of Dissolved Titanium in Porewaters of Estuarine and Coastal Marine Sediments. Mar. Chem. 2002, 77, 109–122. [Google Scholar] [CrossRef]
- Neal, C.; Jarvie, H.; Rowland, P.; Lawler, A.; Sleep, D.; Scholefield, P. Titanium in UK Rural, Agricultural and Urban/Industrial Rivers: Geogenic and Anthropogenic Colloidal/Sub-Colloidal Sources and the Significance of within-River Retention. Sci. Total Environ. 2011, 409, 1843–1853. [Google Scholar] [CrossRef]
- Voitkevich, G.; Kokin, A.; Miroshnikov, A.; Prokhorov, V. Spravochnik Po Geokhimii. (Geochemistry Handbook); Nedra Publishers: Moscow, Russia, 1990. [Google Scholar]
Parameters | Condition of Sampled Water | Method of Analysis | Precision Level | Method of Validation |
---|---|---|---|---|
pH, EC, Temperature | Natural condition | Multi parameter probe (Orion Model Number, 01915) | <5% | Repetition after each five analysis |
HCO3− | Natural condition | Acid titration using Metrohm Multi-Dosimat | <5% | Repetition after each five analysis |
Cl−, SO42−, F−, NO3−, PO43− | Natural condition | DIONEX ICS-90 ion chromatography with a detection limit of 10μg/L. | <2% | Repetition after each five analysis |
Ca2+, Mg2+, Na+, K+, Al, Cr, Cu, Fe, Mn, Sr, Ti, Zn, Si | Acidic condition (by addition of 1% HNO3) | Agilent 7500 Series Inductively coupled plasma-mass spectrometry (ICP-MS) | <2% | Repetition after each five analysis |
Ranking | Water Quality |
---|---|
<50 | Excellent |
50–100 | Good water |
100–200 | Poor water |
200–300 | Very poor water |
>300 | Likely not suitable for drinking |
Parameters | Minimum | Maximum | Average | St. Dev. |
---|---|---|---|---|
pH | 6.6300 | 9.4300 | 8.1246 | 0.6962 |
EC (µs/cm) | 91.9000 | 2686.0000 | 1094.1306 | 389.5242 |
HCO3- (mg/L) | 37.5000 | 738.8000 | 316.1714 | 190.3866 |
Cl−(mg/L) | 1.4300 | 609.4300 | 109.2615 | 147.8633 |
SO42− (mg/L) | 0.2500 | 467.3300 | 38.0170 | 78.9900 |
F− (mg/L) | 0.1500 | 19.4000 | 1.2675 | 2.6694 |
NO3- (mg/L) | 0.0600 | 53.4400 | 3.5649 | 8.5746 |
PO43− (mg/L) | 0.0900 | 15.1500 | 3.8751 | 4.1173 |
Ca2+ (mg/L) | 4.0400 | 112.7200 | 35.9860 | 20.1310 |
Mg2+ (mg/L) | 1.3560 | 143.0800 | 57.7536 | 38.6605 |
K+ (mg/L) | 0.4200 | 13.6410 | 4.0060 | 2.5411 |
Na+ (mg/L) | 1.5270 | 477.1500 | 113.0088 | 98.2543 |
Al (mg/L) | 0.0040 | 1.1770 | 0.1310 | 0.2708 |
Cr (mg/L) | 0.0054 | 0.0120 | 0.0081 | 0.0016 |
Cu (mg/L) | 0.0050 | 0.0323 | 0.0121 | 0.0091 |
Fe (mg/L) | 0.0069 | 1.8700 | 0.1501 | 0.3563 |
Mn (mg/L) | 0.0060 | 1.0655 | 0.3187 | 0.2675 |
Sr (mg/L) | 0.0210 | 0.2480 | 0.1179 | 0.0521 |
Ti (mg/L) | 0.0010 | 0.0800 | 0.0165 | 0.0190 |
Zn (mg/L) | 0.0050 | 0.0320 | 0.0133 | 0.0101 |
Si (mg/L) | 0.0320 | 12.1400 | 5.7580 | 3.9085 |
Parameters | WHO Standards (mg/L)-Si | The Ideal Values | 1/Si | K | Wi |
---|---|---|---|---|---|
Ag | 0.05 | 0.005 | 20 | 0.0015 | 0.029 |
Al | 0.9 | 0.2 | 1 | 0.0015 | 0.002 |
As | 0.01 | 0.001 | 100 | 0.0015 | 0.146 |
B | 2.4 | 0.01 | 0 | 0.0015 | 0.001 |
Ba | 0.7 | 0.002 | 1 | 0.0015 | 0.002 |
Cd | 0.003 | 0.0001 | 33 | 0.0015 | 0.049 |
Co | 0.05 | - | 20 | 0.0015 | 0.029 |
Cr | 0.05 | 0.0002 | 20 | 0.0015 | 0.029 |
Cu | 2 | 0.0005 | 167 | 0.0015 | 0.243 |
Fe | 0.3 | - | 33 | 0.0015 | 0.049 |
Hg | 0.01 | 0.006 | 20 | 0.0015 | 0.029 |
Mn | 0.1 | - | 10 | 0.0015 | 0.015 |
Mo | 0.01 | - | 100 | 0.0015 | 0.146 |
Ni | 0.07 | 0.001 | 14 | 0.0015 | 0.021 |
Pb | 0.01 | - | 20 | 0.0015 | 0.029 |
Se | 0.04 | 0.0005 | 25 | 0.0015 | 0.036 |
Ti | 0.03 | 0.007 | 30 | 0.0015 | 0.037 |
Zn | 3 | 0.01 | 100 | 0.0015 | 0.146 |
Year | Classification (HPI) from Upstream to Downstream Location | ||||
---|---|---|---|---|---|
Dithokeng Dam | Rooisloot Upstream | Rooisloot Downstream | Mogalakwena Deep Pool | Dorps River | |
2016 | Good (49) | Bad (51) | Bad (51) | Bad (51) | Good (49) |
2017 | Good (50) | Bad (53) | Good (50) | Bad (50) | Bad (69) |
2018 | Good (49) | Good (50) | Bad (60) | Bad (65) | Bad (51) |
2019 | Good (50) | Bad (54) | Bad (51) | Bad (56) | Good (49) |
2020 | Good (49) | Good (50) | Good (48) | Good (48) | Good (49) |
Year | Classification (HEI) from Upstream to Downstream Location | ||||
---|---|---|---|---|---|
Dithokeng Dam | Rooisloot Upstream | Rooisloot Downstream | Mogalakwena Deep Pool | Dorps River | |
2016 | Low heavy metal (9) | Low heavy metal (10) | Low heavy metal (10) | Low heavy metal (10) | Low heavy metal (9) |
2017 | Low heavy metal (9) | Low heavy metal (11) | Moderate heavy metal (17) | Moderate heavy metal (14) | Low heavy metal (10) |
2018 | Low heavy metal (10) | Low heavy metal (10) | Moderate heavy metal (15) | Moderate heavy metal (16) | Low heavy metal (9) |
2019 | Low heavy metal (10) | Low heavy metal (10) | Low heavy metal (10) | Low heavy metal (9) | Moderate heavy metal (13) |
2020 | Low heavy metal (10) | Low heavy metal (10) | Low heavy metal (9) | Low heavy metal (9) | Low heavy metal (9) |
Year | Classification (WQI) from Upstream to Downstream Location | ||||
---|---|---|---|---|---|
Dithokeng Dam | Rooisloot Upstream | Rooisloot Downstream | Mogalakwena Deep Pool | Dorps River | |
2016 | Likely not suitable for drinking (318.33) | Likely not suitable for drinking (975.02) | Likely not suitable for drinking (1536.39) | Likely not suitable for drinking (1829.67) | Likely not suitable for drinking (1930.49) |
2017 | Very poor water (245.4) | Very poor water (265.46) | Likely not suitable for drinking (1219.11) | Likely not suitable for drinking (1032.61) | Likely not suitable for drinking (1082.92) |
2018 | Likely not suitable for drinking (318.55) | Likely not suitable for drinking (786.67) | Likely not suitable for drinking (1110.04) | Likely not suitable for drinking (1920.07) | Likely not suitable for drinking (4643.71) |
2019 | Likely not suitable for drinking (1566.46) | Likely not suitable for drinking (950.5) | Poor water (120.71) | Likely not suitable for drinking (751.13) | Likely not suitable for drinking (681.05) |
2020 | Likely not suitable for drinking (408.12) | Very poor water (223.09) | Poor water (175.57) | Likely not suitable for drinking (440.24) | Very poor water (205.85) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molekoa, M.D.; Avtar, R.; Kumar, P.; Thu Minh, H.V.; Dasgupta, R.; Johnson, B.A.; Sahu, N.; Verma, R.L.; Yunus, A.P. Spatio-Temporal Analysis of Surface Water Quality in Mokopane Area, Limpopo, South Africa. Water 2021, 13, 220. https://doi.org/10.3390/w13020220
Molekoa MD, Avtar R, Kumar P, Thu Minh HV, Dasgupta R, Johnson BA, Sahu N, Verma RL, Yunus AP. Spatio-Temporal Analysis of Surface Water Quality in Mokopane Area, Limpopo, South Africa. Water. 2021; 13(2):220. https://doi.org/10.3390/w13020220
Chicago/Turabian StyleMolekoa, Mmasabata Dolly, Ram Avtar, Pankaj Kumar, Huynh Vuong Thu Minh, Rajarshi Dasgupta, Brian Alan Johnson, Netrananda Sahu, Ram Lal Verma, and Ali P. Yunus. 2021. "Spatio-Temporal Analysis of Surface Water Quality in Mokopane Area, Limpopo, South Africa" Water 13, no. 2: 220. https://doi.org/10.3390/w13020220
APA StyleMolekoa, M. D., Avtar, R., Kumar, P., Thu Minh, H. V., Dasgupta, R., Johnson, B. A., Sahu, N., Verma, R. L., & Yunus, A. P. (2021). Spatio-Temporal Analysis of Surface Water Quality in Mokopane Area, Limpopo, South Africa. Water, 13(2), 220. https://doi.org/10.3390/w13020220