A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation
Abstract
:1. Introduction
2. Governing Equations and Schemes
2.1. Governing Equations
2.2. Finite Volume Method
2.3. HLLC Riemann Solver for Fluxes Prediction
2.4. Slope Limiter
2.5. MUSCL-Hancock Method
2.6. Stability Criteria
3. Intercell Bed Elevation and Dry Cell
4. Results and Discussion
4.1. Steady Condition Calculation of Flood
4.2. Two-Dimensional Smooth River Bed Test
4.3. Dam Breach over a Thump
4.4. Dam Break Wave Propagating over Three Humps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capps, D.M.; Clague, J.J. Evolution of glacier-dammed lakes through space and time; Brady Glacier, Alaska, USA. Geomorphology 2014, 210, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.J.; Kougkoulos, I.; Edwards, L.A.; Dortch, J.M.; Hoffmann, D. Glacier change and glacial lake outburst flood risk in the Bolivian Andes. Cryosphere 2016, 10, 2399–2413. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhang, L.; Xiao, T.; He, J. Barrier lake bursting and flood routing in the Yarlung Tsangpo Grand Canyon in October 2018. J. Hydrol. 2020, 583. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0022169420300639 (accessed on 16 January 2021). [CrossRef]
- Hu, K.; Zhang, X.; You, Y.; Hu, X.; Liu, W.; Li, Y. Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge. Landslides 2019, 16, 993–1001. [Google Scholar] [CrossRef]
- Wei, R.; Zeng, Q.; Davies, T.; Yuan, G.; Wang, K.; Xue, X.; Yin, Q. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Eng. Geol. 2018, 233, 172–182. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Alonsorodriguez, A.; Subramanian, S.S.; Li, W.; Zheng, G.; Dong, X.; Huang, R. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response. Landslides 2019, 16, 1003–1020. [Google Scholar] [CrossRef]
- Li, B.; Feng, Z.; Wang, G.; Wang, W. Processes and behaviors of block topple avalanches resulting from carbonate slope failures due to underground mining. Environ. Earth. Sci. 2016, 75, 694. [Google Scholar] [CrossRef]
- Liu, W.; Carling, P.A.; Hu, K.; Wang, H.; Zhou, Z.; Zhou, L.; Liu, D.; Lai, Z.; Zhang, X. Outburst floods in China: A review. Earth Sci. Rev. 2019, 197, 102895. [Google Scholar] [CrossRef]
- Cui, P.; Dang, C.; Zhuang, J.Q.; You, Y.; Chen, X.Q.; Scott, K.M. Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): Risk assessment, mitigation strategy, and lessons learned. Environ. Earth. Sci. 2012, 65, 1055–1065. [Google Scholar] [CrossRef]
- Wang, G.Q.; Fan, L. Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China. Sci. China Ser. E Technol. Sci. 2008, 51, 82–94. [Google Scholar] [CrossRef]
- Yan, Y.; Cui, Y.F.; Xin, T.; Hu, S.; Guo, J.; Wang, Z.; Yin, S.Y.; Liao, L.F. Seismic Signal Recognition and Interpretation of the 2019 “7.23” Shuicheng Landslide by Seismogram Stations. Landslides 2020, 17, 1206–1911. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, T.; He, J.; Chen, C. Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018. Landslides 2019, 16, 1965–1979. [Google Scholar] [CrossRef]
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dams. Geol. Soc. Am. Bull. 1988, 100, 1054–1068. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, P.; Hao, M. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Ma, D.T. Study on Influences of Mountain Hazards in Yigong Zangbu River Basin to Mitigation and Reconstruction of Sichuan-Tibetan Highway Line. Ph.D. Thesis, The Graduate School of Chinese Academy of Sciences, Beijing, China, 2006. [Google Scholar]
- Cui, P.; Zhu, Y.Y.; Han, Y.S.; Chen, X.Q.; Zhuang, J.Q. The 12 May Wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation. Landslides 2009, 6, 209–223. [Google Scholar] [CrossRef]
- Carling, P.A. Freshwater megaflood sedimentation: What can we learn about generic processes? Earth Sci. Rev. 2013, 125, 87–113. [Google Scholar] [CrossRef]
- Carling, P.A.; Fan, X. Particle comminution defines megaflood and superflood energetics. Earth Sci. Rev. 2020, 204, 103087. [Google Scholar] [CrossRef]
- Turzewski, M.D.; Huntington, K.W.; LeVeque, R.J. The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. J. Geophys. Res Earth. 2019, 124, 1056–1079. [Google Scholar] [CrossRef]
- Teller, J.T.; Leverington, D.W.; Mann, J.D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quat. Sci. Rev. 2002, 21, 1–887. [Google Scholar] [CrossRef]
- Garcia-Castellanos, D.; Estrada, F.; Jimenez-Munt, I.; Gorini, C.; Fernandez, M.; Verges, J.; De Vicente, R. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature. 2009, 462, 778–781. [Google Scholar] [CrossRef]
- Burr, D.M.; Carling, P.A.; Baker, V.R. Megaflooding on Earth and Mars; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Anacona, P.I.; Mackintosh, A.; Norton, K. Reconstruction of a glacial lake outburst flood (GLOF) in the Engano Valley, Chilean Patagonia: Lessons for GLOF Risk management. Sci. Total Environ. 2015, 527–528, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bohorquez, P.; Cañada-Pereira, P.; Jimenez-Ruiz, P.J.; del Moral-Erencia, J.D. The fascination of a shallow-water theory for the formation of megaflood-scale dunes and antidunes. Earth Sci. Rev. 2019, 193, 91–108. [Google Scholar] [CrossRef]
- George, D.L. Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset dam-break flood (France, 1959). Int. J. Numer. Methods Fluids 2011, 66, 1000–1018. [Google Scholar] [CrossRef]
- Swartenbroekx, C.; Zech, Y.; Soares-Frazão, S. Two-dimensional two-layer shallow water model for dam break flows with significant bed load transport. Int. J. Numer. Methods Fluids 2013, 73, 477–508. [Google Scholar] [CrossRef]
- Hou, J.; Liang, Q.; Simons, F.; Hinkelmann, R. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment. Adv. Water Resour. 2013, 52, 107–131. [Google Scholar] [CrossRef]
- Ma, D.J.; Sun, D.J.; Yin, X.Y. Solution of the 2D shallow water equations with source terms in surface elevation splitting form. Int. J. Numer. Methods Fluids 2007, 55, 431–454. [Google Scholar] [CrossRef]
- Liang, Q.; Borthwick, A.G.L. Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography. Comput. Fluids 2009, 38, 221–234. [Google Scholar] [CrossRef]
- Rogers, B.; And, M.F.; Borthwick, A.G.L. Adaptive Q-tree Godunov-type scheme for shallow water equations. Int. J. Numer. Methods Fluids 2001, 3, 247–280. [Google Scholar] [CrossRef]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics. An Advanced Introduction with OpenFoam® and Matlab®; Springer: Berlin, Germany, 2016. [Google Scholar]
- Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; Springer: Berlin, Germany, 2013. [Google Scholar]
- Van Leer, B. Towards the ultimate conservative difference scheme, V: Asecond-order sequel to Godunov’s method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Harten, A.; Lax, P.D.; van Leer, B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 1983, 25, 35–61. [Google Scholar] [CrossRef]
- Cea, L.; Puertas, J.; Vazquezcendon, M. Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts. Arch. Comput. Method E 2007, 14, 303–341. [Google Scholar] [CrossRef]
- Hu, P.; Cao, Z.; Pender, G.; Tan, G. Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China. J. Hydrol. 2012, 464, 41–53. [Google Scholar] [CrossRef]
- Liu, L.; Liu, L.; Yang, G.W. Cache performance optimization of irregular sparse matrix multiplication on modern multi-core CPU and GPU. High Technol. Lett. 2013, 339–345. [Google Scholar] [CrossRef]
- Wu, W. Computational River Dynamics; Crc Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Cao, Z.; Pender, G.; Wallis, S.; Carling, P. Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng. 2004, 130, 689–703. [Google Scholar] [CrossRef]
- Liang, Q. Flood Simulation Using a Well-Balanced Shallow Flow Model. J. Hydraul. Eng. 2010, 136, 669–675. [Google Scholar] [CrossRef]
- Song, L.; Zhou, J.; Li, Q.Q.; Yang, X.L.; Zhang, Y.C. An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography. Int. J. Numer. Methods Fluids 2011, 67, 960–980. [Google Scholar] [CrossRef]
- Hiver, J. Adverse-slope and slope (bump). In Proceedings of the Concerted Action on Dam Break Modelling: Objectives, Project Report, Test Cases, Civil Engineering Department, Hydraulic Division, Universitè Catholique de Lille, Lille, France, 26–28 June 2000. [Google Scholar]
- Liao, C.; Wu, M.S.; Liang, S.J. Numerical simulation of a dam break for an actual river terrain environment. Hydrol. Processes 2007, 21, 447–460. [Google Scholar] [CrossRef]
- Rebollo, T.C.; Nieto, E.D.; Marmol, M.G. A flux-splitting solver for shallow water equations with source terms. Int. J. Numer. Methods Fluids 2003, 42, 23–55. [Google Scholar] [CrossRef]
- Zhou, J.G.; Causon, D.M.; Minghan, C.G. Numerical prediction of dam-break flows in general geometries with complex bed topography. J. Hydraul. Eng. 2004, 130, 332–340. [Google Scholar] [CrossRef]
- Kawahara, M.; Umetsu, T. Finite element method for moving boundary problems in river flow. Int. J. Numer. Methods Fluids 1986, 6, 365–386. [Google Scholar] [CrossRef]
- Brufau, P.; Vázquez-Cendón, M.E.; García-Navarro, P. A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 2002, 39, 247–275. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Tang, J.; Wang, H.; Cao, Y.; Bazai, N.A.; Chen, H.; Liu, D. A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation. Water 2021, 13, 221. https://doi.org/10.3390/w13020221
Liu D, Tang J, Wang H, Cao Y, Bazai NA, Chen H, Liu D. A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation. Water. 2021; 13(2):221. https://doi.org/10.3390/w13020221
Chicago/Turabian StyleLiu, Dingzhu, Jinbo Tang, Hao Wang, Yang Cao, Nazir Ahmed Bazai, Huayong Chen, and Daochuan Liu. 2021. "A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation" Water 13, no. 2: 221. https://doi.org/10.3390/w13020221
APA StyleLiu, D., Tang, J., Wang, H., Cao, Y., Bazai, N. A., Chen, H., & Liu, D. (2021). A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation. Water, 13(2), 221. https://doi.org/10.3390/w13020221