Spatiotemporal Analysis of Evapotranspiration and Effects of Water and Heat on Water Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Evapotranspiration and Drought Index Data
Data Availability
2.3. Precipitation and Temperature Data
2.4. Gross Primary Production (GPP) Data
2.5. Land-Use/Land-Cover (LULC) Datasets
2.6. Coefficient of Variation
2.7. Hurst Index
2.8. Calculation of WUEs
2.9. WUEs Response to Climate Change
3. Results and Discussion
3.1. Temporal Variation in E and Ep
3.2. Stability Analysis of Evapotranspiration
3.3. Hurst Index
3.4. Spatiotemporal Characteristic of WUEs Defined by GPP/E, GPP/Et and GPP/P
3.5. WUEs Responds to Temperature and Precipitation Thresholds
3.6. WUEs Responds to Temperature and Precipitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Jiang, H.; Liu, J.; Zhou, G.; Liu, S.; Zhang, X. Assessment on water use efficiency under climate change and heterogeneous carbon dioxide in China terrestrial ecosystems. Procedia Environ. Sci. 2012, 13, 2031–2044. [Google Scholar] [CrossRef] [Green Version]
- Ponce-Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.G.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydro-climatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Piao, S.; Sun, Y.; Ciais, P.; Cheng, L.; Mao, J.; Poulter, B.; Shi, X.; Zeng, Z.; Wang, Y. Change in terrestrial eco-sys-tem water-use efficiency over the last three decades. Glob. Chang. Biol. 2015, 21, 2366–2378. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Ciais, P.; Papale, D.; Valentini, R.; Running, S.; Viovy, N.; Cramer, W.; Granier, A.; Ogée, J.; Allard, V.; et al. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob. Chang. Biol. 2007, 13, 634–651. [Google Scholar] [CrossRef]
- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid, H.P.; Richardson, A.D. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nat. Cell Biol. 2013, 499, 324–327. [Google Scholar] [CrossRef]
- Liu, X.; Hu, B.; Ren, Z. Spatiotemporal variation of water use efficiency and its driving forces on the Loess Plateau during 2000–2014. Sci. Agric. Sin. 2018, 51, 302–314. [Google Scholar]
- Zhou, S.; Yu, B.; Schwalm, C.R.; Ciais, P.; Zhang, Y.; Fisher, J.B.; Wang, G. Response of water use efficiency to global en-vironmental change based on output from terrestrial biosphere models. Glob. Biogeochem. Cycles 2017, 31, 1639–1655. [Google Scholar] [CrossRef]
- Woodward, C.; Shulmeister, J.; Larsen, J.; Jacobsen, G.E.; Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 2014, 346, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Lin, H.; Zhou, W.; Bao, H.; Zhu, X.; Jin, Z.; Song, Y.; Wang, Y.; Liu, W.; Tang, Y. Revegetation has increased ecosystem water-use efficiency during 2000–2014 in the Chinese Loess Plateau: Evidence from satellite data. Ecol. Indic. 2019, 102, 507–518. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Liu, M.; Zhang, C.; Sun, G.; Lu, C.; Chappelka, A. Model estimates of net primary productivity, evap-otranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag. 2010, 259, 1311–1327. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.; Zeng, Z.; Peng, S.; Ciais, P.; Cheng, L.; Wang, Y. Seasonal responses of terrestrial ecosystem wa-ter-use efficiency to climate change. Glob. Chang. Biol. 2016, 22, 2165–2177. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Batelaan, O.; McVicar, T.; Long, D.; Piao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Piao, S.; Huang, M.; Ciais, P.; Zeng, Z.; Cheng, L.; Zeng, H. Global patterns and climate drivers of water-use effi-ciency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models. Glob. Ecol. Biogeogr. 2016, 25, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Li, S.C.; Cai, Y.L. Some scaling issues of geography. Geogr. Res. 2005, 24, 11–18. [Google Scholar]
- Li, X.J.; Zhang, F.P.; Wang, H.W.; Veroustraete, F. Analysis of Spatio-Temporal Characteristics of water use efficiency of Vegetation and its Relationship with Climate in the Heihe River Basin. J. Desert Res. 2017, 37, 733–741. [Google Scholar]
- Hu, Z.; Yu, G.; Fu, Y.; Sun, X.; Li, Y.; Shi, P.; Wang, Y.; Zheng, Z. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Glob. Chang. Biol. 2008, 14, 1609–1619. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Chen, Y.; Yu, X.; Zhang, R. Multi-scale assessments of droughts: A case study in Xinjiang, China. Sci. Total Environ. 2018, 630, 444–452. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Yang, Y.; Hao, X.; Shen, Y. Hydrology and water resources variation and its response to regional climate change in Xinjiang. J. Geogr. Sci. 2010, 20, 599–612. [Google Scholar] [CrossRef]
- Yu, H.; Bian, Z.; Mu, S.; Yuan, J.; Chen, F. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China. Int. J. Environ. Res. Public Health 2020, 17, 4865. [Google Scholar] [CrossRef]
- White, M.A.; Brunsell, N.; Schwartz, M.D. Vegetation phenology in global change studies. Phenol. Integr. Environ. Ment. Sci. 2003, 39, 453–466. [Google Scholar]
- Chen, Y.; Li, Z.; Fang, G.; Li, W. Large Hydrological Processes Changes in the Transboundary Rivers of Central Asia. J. Geophys. Res. Atmos. 2018, 123, 5059–5069. [Google Scholar] [CrossRef]
- Shen, T.; Su, H.C.; Wang, G.Y.; Mao, W.M.; Wang, S.D.; Han, P.; Wang, N.; Li, Z.Q. The Responses of Glaciers and Snow Cover to Climate Change in Xinjiang (I): Hydrological Effects. J. Glaciol. Geocryol. 2013, 35, 513–527. [Google Scholar]
- Xu, C.; Li, J.; Zhao, J.; Gao, S.; Chen, Y. Climate variations in northern Xinjiang of China over the past 50 years under global warming. Quat. Int. 2015, 358, 83–92. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.; Miralles, D.; Domínguez-Castro, F.; Azorin-Molina, C.; ElKenawy, A.; McVicar, T.; Tomas-Burguera, M.; Beguería, S.; Maneta, M.; Peña-Gallardo, M. Global assessment of the standardized Evapotranspiration Deficit Index (SEDI) for drought analysis and monitoring. J. Clim. 2018, 31, 5371–5393. [Google Scholar] [CrossRef]
- Long, B.; Zhang, B.; He, C.; Shao, R.; Tian, W. Is There a Change From a Warm-Dry to a Warm-Wet Climate in the Inland River Area of China? Interpretation and Analysis Through Surface Water Balance. J. Geophys. Res. Atmos. 2018, 123, 7114–7131. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Sun, S.; Chen, H.; Bai, P.; Zhou, S.; Huang, Y.; Wang, J.; Deng, P. Assessment of Multi-Source Evapotranspiration Products over China Using Eddy Covariance Observations. Remote. Sens. 2018, 10, 1692. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Junde, W. Variations of Land Evapotranspiration in the Plain of the Middle Reaches of Heihe River in the Recent 35 Years. J. Glaciol. Geocryol. 2007, 29, 406–412. [Google Scholar]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Clim. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Running, S.W.; Nemani, R.R. Sensitivity of moderate resolution imaging spectroradiometer (modis) terrestri-al primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. Biogeoences 2015, 111, 1–13. [Google Scholar] [CrossRef] [Green Version]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interact. 2000, 4, 1–84. [Google Scholar] [CrossRef]
- Heinsch, F.; Zhao, M.; Running, S.; Kimball, J.; Nemani, R.; Davis, K.; Bolstad, P.; Cook, B.; Desai, A.; Ricciuto, D.; et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 1908–1925. [Google Scholar] [CrossRef] [Green Version]
- Milich, L.; Weiss, E. GAC NDVI inter-annual coefficient of variation (CoV) images: Ground truth sampling of the Sahel along north-south transects. Int. J. Remote. Sens. 2000, 21, 235–260. [Google Scholar] [CrossRef]
- Guli·jiapaer, G.; Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Zhang, S.; Wang, J.; Bai, Y.; Yao, F.; Guo, H. The potential of remote sensing-based models on global wa-ter-use efficiency estimation: An evaluation and inter comparison of an ecosystem model (BESS) and algorithm (MODIS) using site level and upscaled eddy covariance data. Agric. For. Meteorol. 2020, 287, 107959. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Yang, S.; Xia, N.; Ariken, M. Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS). Environ. Monit. Assess. 2020, 192, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Ding, J.; Welp, M.; Huang, S.; Liu, B. Using MODIS data to analyse the ecosystem water use efficiency spa-tial-temporal variations across Central Asia from 2000 to 2014. Environ. Res. 2020, 182, 108985. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Tang, Q.; Zhu, G.; Ma, J.; Gu, C.; Zhang, K.; Niu, S. Discrepant responses between evapotranspiration-and tran-spiration based ecosystem water use efficiency to inter annual precipitation fluctuations. Agric. For. Meteorol. 2021, 303, 108385. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.; Mu, Q.; Lee, S.O.; Choi, M. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. Ksce J. Civ. Eng. 2012, 16, 229–238. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Zheng, D.; Yang, Q. Regional difference of aridity/ humidity conditions change over China during the last thirty years. Chin. Sci. Bull. 2005, 50, 2226–2233. [Google Scholar] [CrossRef]
- Zhang, H.; Song, J.; Wang, G.; Wu, X.; Li, J. Spatiotemporal characteristic and forecast of drought in northern Xinjiang, China. Ecol. Indic. 2021, 127, 107712. [Google Scholar] [CrossRef]
- He, Y.B.; Su, Z.; Li, J.; Wang, S.L. Regional evapotranspiration of different land covers based on remotesensing. Chin. J. Appl. Ecol. 2007, 18, 288–296. [Google Scholar]
- Wang, Q.; Zhai, P.; Qin, D. New perspectives on «warming-wetting» trend in Xinjiang, China. Adv. Clim. Chang. Re-Search 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Song, L.L.; Yin, Y.H.; Wu, S.H. Advancements of the metrics of evapotranspiration. Prog. Geogr. 2012, 31, 1186–1195. [Google Scholar]
- Kaufmann, R.K.; Kauppi, H.; Mann, M.L.; Stock, J.H. Reconciling anthropogenic climate change with observed temper-ature 1998–2008. Sch. Artic. 2011, 108, 11790–11793. [Google Scholar]
- Gong, T.; Lei, H.; Yang, D.; Liu, T.; Duan, L. Assessing impacts of extreme water and temperature conditions on carbon fluxes in two desert shrub lands. J. Hydroelectr. Eng. 2018, 37, 32–46. [Google Scholar]
- DeLucia, E.H.; Drake, J.; Thomas, R.B.; Gonzalez-Meler, M. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Glob. Chang. Biol. 2007, 13, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Wang, F.; Mu, X.; Jin, K.; Sun, W.; Gao, P.; Zhao, G. Water use efficiency of net primary production in global terres-trial ecosystems. J. Earth Syst. Sci. 2015, 124, 921–931. [Google Scholar] [CrossRef]
- Zhang, F.; Ju, W.; Shen, S.; Wang, S.; Yu, G.; Han, S. How recent climate change influences water use efficiency in East Asia. Theor. Appl. Clim. 2013, 116, 359–370. [Google Scholar] [CrossRef]
- Xue, B.-L.; Guo, Q.; Otto, A.; Xiao, J.; Tao, S.; Li, L. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere 2015, 6, art174. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X. Water use efficiency of China’s terrestrial ecosystems and responses to drought. Sci. Rep. 2015, 5, 13799. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Ding, J.L.; Qin, Y.; Wang, F. Response of water use efficiency of Central Asia ecosystem to drought based on remote sensing data. Trans. CSAE. 2018, 34, 145–152. (In Chinese) [Google Scholar]
- Zhang, Y.; Yu, G.; Yang, J.; Wimberly, M.; Zhang, X.; Tao, J.; Jiang, Y.; Zhu, J. Climate-driven global changes in carbon use efficiency. Glob. Ecol. Biogeogr. 2013, 23, 144–155. [Google Scholar] [CrossRef]
- Salve, R.; Sudderth, E.A.; Clair, S.B.S.; Torn, M.S. Effect of grassland vegetation type on the responses of hydrological processes to seasonal precipitation patterns. J. Hydrol. 2011, 410, 51–61. [Google Scholar] [CrossRef]
SlopeWUE | Increase Degree | Abbreviations |
---|---|---|
≥0.40 | High Increase | HI |
0.2 ≤ SlopeWUE < 0.4 | Relatively High Increase | RHI |
0.1 ≤ SlopeWUE < 0.2 | Medium Increase | MI |
0 ≤ SlopeWUE < 0.1 | Relatively Low Increase | RI |
−0.1 ≤ SlopeWUE < 0 | Low Decrease | LD |
Trend of WUEs | Mean Annual of WUEs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | LD | RI | MI | RHI | HI | 0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | >0.8 |
eWUE | 31.57 | 66.87 | 0.81 | 0.31 | 0.19 | 65.25 | 23.64 | 5.18 | 1.68 | 4.24 |
tWUE | 34.77 | 41.32 | 3.00 | 2.43 | 3.31 | 23.66 | 26.78 | 15.04 | 8.86 | 25.66 |
pWUE | 18.54 | 80.13 | 1.34 | 0 | 0 | 67.11 | 22.72 | 5.81 | 1.92 | 2.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.-Y.; Chen, J.-P.; Zhang, F.; Yuan, S.-S. Spatiotemporal Analysis of Evapotranspiration and Effects of Water and Heat on Water Use Efficiency. Water 2021, 13, 3019. https://doi.org/10.3390/w13213019
Tang Y-Y, Chen J-P, Zhang F, Yuan S-S. Spatiotemporal Analysis of Evapotranspiration and Effects of Water and Heat on Water Use Efficiency. Water. 2021; 13(21):3019. https://doi.org/10.3390/w13213019
Chicago/Turabian StyleTang, Yuan-Yuan, Jian-Ping Chen, Feng Zhang, and Shi-Song Yuan. 2021. "Spatiotemporal Analysis of Evapotranspiration and Effects of Water and Heat on Water Use Efficiency" Water 13, no. 21: 3019. https://doi.org/10.3390/w13213019
APA StyleTang, Y. -Y., Chen, J. -P., Zhang, F., & Yuan, S. -S. (2021). Spatiotemporal Analysis of Evapotranspiration and Effects of Water and Heat on Water Use Efficiency. Water, 13(21), 3019. https://doi.org/10.3390/w13213019