Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Areas
2.2. Vineyards Management
2.3. The SIMDualKc Model
2.3.1. The Soil Water Balance
2.3.2. Model Setup
- Climatic data: daily weather data from local meteorological stations, namely the maximum and minimum temperatures (Tmin and Tmax, °C), minimum and maximum relative humidity (RHmax and RHmin, %), global solar radiation (Rs, MJ m−2 day−1), wind speed at 2 m height (u2, m s−1), and rainfall (P, mm) (Figure 1 and Figure 2).
- Soil data: θS, θFC, and θWP as well as the particle size distribution of the different soil layers defined in the rootzone domain (Table 1).
- Initial conditions: initial (observed) values of the soil water content in both the root zone (% of TAW) and the evaporation layer (% of TEW) (Table 3).
- Crop data: the dates defining the different stages of vineyards during growing seasons (Table 2) and respective values of Kcb, p, h, the fraction of ground covered (fc), ML, and Zr. Values of h and fc were observed in the field and are presented in Table 4. Zr was set to 1.0 m in both case studies. The ML value is unique for all crop stages and was set in both case studies to 1.5 following Pereira et al. [56].
- Active ground cover: the density of the active ground cover (28–30% and 15–20% for the GC and CT plots in Italy, respectively, and 15–20% for the Portuguese plot); the initial values of active ground cover fraction (fc gcover) and height (hgcover), which were then updated for each crop stage according to Table 4; and ML, which was also assumed to be 1.5 following Fandiño et al. [58].
- Runoff (more relevant for the Italian case studies): the CN value for each inter-row condition [77].
- Irrigation: the dates of irrigation events and irrigation depths, which were specified according to observations; and the fraction of the soil surface wetted by irrigation (fw), which was measured in the field and set to 0.13.
2.3.3. Model Calibration and Validation
3. Results and Discussion
3.1. Model Parametrization
3.2. Model Performance
3.3. Soil Water Balance in the Hillslope Vineyards of Monferrato, Northern Italy
3.4. Soil Water Balance in the Irrigated Vineyard of Samora Correia, Southern Portugal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corti, G.; Cavallo, E.; Cocco, S.; Biddoccu, M.; Brecciaroli, G.; Agnelli, A. Evaluation of Erosion Intensity and Some of Its Consequences in Vineyards from Two Hilly Environments Under a Mediterranean Type of Climate, Italy. In Soil Erosion Issues in Agriculture; Godone, D., Stanchi, S., Eds.; InTechOpen: London, UK, 2011; pp. 113–160. [Google Scholar]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B.S. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agr. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Foronda-Robles, C. The territorial redefinition of the Vineyard Landscape in the sherry wine region (Spain). Misc. Geogr. 2018, 22, 95–101. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. Vineyard Landscape of Piedmont: Langhe-Roero and Monferrato. 2021. Available online: http://whc.unesco.org/en/list/1390 (accessed on 17 December 2021).
- Salomé, C.; Coll, P.; Lardo, E.; Metay, A.; Villenave, C.; Marsden, C.; Blanchart, E.; Hinsinger, P.; Le Cadre, E. The soil quality concept as a framework to assess management practices in vulnerable agroecosystems: A case study in Mediterranean vineyards. Ecol. Indic. 2016, 61, 456–465. [Google Scholar] [CrossRef]
- Biddoccu, M.; Opsi, F.; Cavallo, E. Relationship between runoff and soil losses with rainfall characteristics and long-term soil management practices in a hilly vineyard (Piedmont, NW Italy). Soil Sci. Plant Nutr. 2014, 60, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Biddoccu, M.; Guzman, G.; Capello, G.; Thielke, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Nicolai, A.; Cluzeau, D.; Popescu, D.; et al. Evaluation of soil erosion risk and identification of soil cover and management factor (C) for RUSLE in European vineyards with different soil management. Int. Soil Water Conserv. Res. 2020, 8, 337–353. [Google Scholar] [CrossRef]
- Gómez, J.A.; Llewellyn, C.; Basch, G.; Sutton, P.B.; Dyson, J.S.; Jones, C.A. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manage. 2011, 27, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Capello, G.; Biddoccu, M.; Cavallo, E. Permanent cover for soil and water conservation in mechanized vineyards: A study case in Piedmont, NW Italy. Ital. J. Agron. 2020, 15, 323–331. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Marques, M.J. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Till. Res. 2011, 117, 211–223. [Google Scholar] [CrossRef]
- Napoli, M.; Dalla Marta, A.; Zanchi, C.A.; Orlandini, S. Assessment of soil and nutrient losses by runoff under different soil management practices in an Italian hilly vineyard. Soil Till. Res. 2017, 168, 71–80. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.-M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef] [Green Version]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Till. Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Pessina, D.; Galli, L.E.; Santoro, S.; Facchinetti, D. Sustainability of Machinery Traffic in Vineyard. Sustainability 2021, 13, 2475. [Google Scholar] [CrossRef]
- Bagagiolo, G.; Biddoccu, M.; Rabino, D.; Cavallo, E. Effects of rows arrangement, soil management, and rainfall characteristics on water and soil losses in Italian sloping vineyards. Environ. Res. 2018, 166, 690–704. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Senciales, J.M.; Ramos, M.A.; Martínez-Casasnovas, J.A.; Lasanta, T.; Brevik, E.C.; Ries, J.B.; Sinoga, J.R. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 2017, 296, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Ben-Salem, N.; Álvarez, S.; López-Vicente, M. Soil and water conservation in rainfed vineyards with common sainfoin and spontaneous vegetation under different ground conditions. Water 2018, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agr. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guernion, M.; et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, G.; Cabezas, J.M.; Sánchez-Cuesta, R.; Lora, Á.; Bauer, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Gómez, J.A. A field evaluation of the impact of temporary cover crops on soil properties and vegetation communities in southern Spain vineyards. Agr. Ecosyst. Environ. 2019, 272, 135–145. [Google Scholar] [CrossRef]
- Celette, F.; Gaudin, R.; Gary, C. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur. J. Agron. 2008, 29, 153–162. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Eldridge, D.J.; Marques, M.J. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Lopes, C.M.; Santos, T.P.; Monteiro, A.; Rodrigues, M.; Costa, J.M.; Chaves, M.M. Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Sci. Hortic. 2011, 129, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.E.; Matthews, M.A. Grapevine. In Irrigation of Agricultural Crops; Agronomy Monographs No. 30. ASA-CSSA-SSSA; Stewart, B.J., Nielsen, D.R., Eds.; Agronomy Monographs: Madison, WI, USA, 1990; pp. 1019–1055. [Google Scholar]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manage. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. PNAS 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [Green Version]
- Organisation Internationale de la Vigne et du Vin (OIV). State of the vitiviniculture world market 2021. 2021. Available online: https://www.oiv.int/en/technical-standards-and-documents/statistical-analysis/state-of-vitiviniculture (accessed on 17 December 2021).
- Zarrouk, O.; Francisco, R.; Pinto-Marijuan, M.; Brossa, R.; Santos, R.R.; Pinheiro, C.; Costa, J.M.; Lopes, C.; Chaves, M.M. Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine. Agr. Water Manage. 2012, 114, 18–29. [Google Scholar] [CrossRef]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L) grape berries during ripening. J. Sci. Food Agr. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Permanhani, M.; Costa, J.M.; Conceição, M.A.F.; De Souza, R.T.; Vasconcellos, M.A.S.; Chaves, M.M. Deficit irrigation in table grape: Eco-physiological basis and potential use to save water and improve quality. Theor. Exp. Plant Phys. 2016, 28, 85–108. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, A.P.; Schröder, J.J. Intercropping reduces nitrate leaching from under field crops without loss of yield: A modelling study. Eur. J. Agron. 2007, 27, 81–88. [Google Scholar] [CrossRef]
- Clothier, B.E.; Green, S.R. The leaching and runoff of nutrients from vineyards. In Science and Policy: Nutrient Management Challenges for the Next Generation; Occasional Report No. 30; Currie, L.D., Hedley, M.J., Eds.; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2017; 7p. [Google Scholar]
- Steenwerth, K.L.; Belina, K.M. Vineyard weed management practices influence nitrate leaching and nitrous oxide emissions. Agric. Ecosyst. Environ. 2010, 138, 127–131. [Google Scholar] [CrossRef]
- Andreoli, V.; Cassardo, C.; La Iacona, T.; Spanna, F. Description and preliminary simulations with the Italian vineyard integrated numerical model for estimating physiological values (IVINE). Agron. J. 2019, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Bagagiolo, G.; Rabino, D.; Biddoccu, M.; Nigrelli, G.; Cat Berro, D.; Mercalli, L.; Spanna, F.; Capello, G.; Cavallo, E. Effects of inter-annual climate variability on grape harvest timing in rainfed hilly vineyards of Piedmont (NW Italy). Ital. J. Agrometeorol. 2021, 1, 37–49. [Google Scholar] [CrossRef]
- Fraga, H.; De Cortázar Atauri, I.G.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A review of recent trends and climate change projections. Oeno One 2017, 51, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, S.C.; Begert, M.; Croci Maspoli, M.; Appenzeller, C. Long series of Swiss seasonal precipitation: Regionalization trends and influence of large scale flow. Int. J. Climatol. 2016, 36, 3673–3689. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Global Warming of 1.5 °C., an IPCC Special Report, IPCC. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 17 December 2021).
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric. Water Manage. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Pôças, I.; Gonçalves, J.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. Int. J. Appl. Earth Observ. Geoinf. 2017, 58, 177–190. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Condori, W.E.; Riveros-Burgos, C.; Fuentes-Peñailillo, F.; Bardeen, M. Evaluation of a two-source patch model to estimate vineyard energy balance using high-resolution thermal images acquired by an unmanned aerial vehicle (UAV). Agric. For. Meteo. 2021, 304–305, 108433. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Cancela, J.J.; Fandiño, M.; Rey, B.J.; Martinez, E.M. Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía). Agric. Water Manage. 2015, 151, 52–63. [Google Scholar] [CrossRef]
- Silva, S.P.; Valín, M.I.; Mendes, S.; Araujo-Paredes, C.; Cancela, J. Dual crop coefficient approach in Vitis vinifera L. cv. Loureiro. Agronomy 2021, 11, 2062. [Google Scholar] [CrossRef]
- Celette, F.; Ripoche, A.; Gary, C. WaLIS—A simple model to simulate water partitioning in a crop association: The example of an intercropped vineyard. Agr. Water Manage. 2010, 97, 1749–1759. [Google Scholar] [CrossRef]
- Phogat, V.; Pitt, T.; Stevens, R.M.; Cox, J.W.; Šimůnek, J.; Petrie, P.R. Assessing the role of rainfall redirection techniques for arresting the land degradation under drip irrigated grapevines. J. Hydrol. 2020, 587, 125000. [Google Scholar] [CrossRef]
- Kustas, W.P.; Alfieri, J.G.; Nieto, H.; Wilson, T.G.; Gao, F.; Anderson, M.C. Utility of the two-source energy balance (TSEB) model in vine and interrow flux partitioning over the growing season. Irrig. Sci. 2019, 37, 375–388. [Google Scholar] [CrossRef]
- Kool, D.; Kustas, W.P.; Ben-Gal, A.; Agam, N. Energy partitioning between plant canopy and soil, performance of the two-source energy balance model in a vineyard. Agr. For. Meteorol. 2021, 300, 108328. [Google Scholar] [CrossRef]
- Loddo, S.; Soccol, M.; Perra, A.; Ucchesu, M.; Meloni, P.; Barbaro, M.; Lo Cascio, M.; Sirca, C. Biosensing IoT platform for water management in vineyards. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020. [Google Scholar] [CrossRef]
- Rallo, G.; Paço, T.A.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L.S. Updated single and dual crop coefficients for tree and vine fruit crops. Agric. Water Manage. 2021, 250, 106645. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Irrigation & Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Mota, M.; Wang, T. Prediction of crop coefficients from fraction of ground cover and height: Pratical application to vegetable, field, and fruit crops with focus on parameterization. Agric. Water Manage. 2021, 252, 106663. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manage. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Fandiño, M.; Cancela, J.J.; Rey, B.J.; Martínez, E.M.; Rosa, R.G.; Pereira, L. Using the dual-Kc approach to model evapotranspiration of Albariño vineyards (Vitis vinifera L. cv. Albariño) with consideration of active ground cover. Agric. Water Manage. 2012, 112, 75–87. [Google Scholar] [CrossRef]
- Paço, T.; Ferreira, M.; Rosa, R.; Paredes, P.; Rodrigues, G.; Conceição, N.; Pacheco, C.; Pereira, L. The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrig. Sci. 2012, 30, 115–126. [Google Scholar] [CrossRef]
- Paço, T.A.; Pôças, I.; Cunha, M.; Silvestre, J.C.; Santos, F.L.; Paredes, P.; Pereira, L.S. Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar] [CrossRef] [Green Version]
- Puig-Sirera, À.; Rallo, G.; Paredes, P.; Paço, T.A.; Minacapilli, M.; Provenzano, G.; Pereira, L.S.S. Transpiration and water use of an irrigated traditional olive grove with Sap-Flow observations and the FAO56 dual crop coefficient approach. Water 2021, 13, 2466. [Google Scholar] [CrossRef]
- Biancotti, A.; Bellardone, G.; Bovo, S.; Cagnazzi, B.; Giacomelli, L.; Marchisio, C. Distribuzione Regionale di Piogge e Temperature. Collana Studi Climatologici del Piemonte, Vol.1; Regione Piemonte: Torino, Italy, 1998. [Google Scholar]
- Servizio Geologico Italiano. Carta Geologica d’Italia alla scala 1:100.000. 1969. Available online: http://193.206.192.231/carta_geologica_italia/cartageologica.htm (accessed on 17 December 2021).
- IUSS Working Group. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2014. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy–Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Cavazza, L. Fisica del Terreno Agrario. UTET: Torino, Italy, 1981. [Google Scholar]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Gomes, M.P.; Silva, A.A. Um novo diagrama triangular para a classificação básica da textura do solo. Garcia Orta 1962, 10, 171–179. [Google Scholar]
- Ramos, T.B.; Gonçalves, M.C.; Brito, D.; Martins, J.C.; Pereira, L.S. Development of class pedotransfer functions for integrating water retention properties into Portuguese soil maps. Soil Res. 2013, 51, 262–277. [Google Scholar] [CrossRef]
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Martins, J.C.; Pereira, L.S. Development of ternary diagrams for estimating water retention properties using geostatistical approaches. Geoderma 2014, 230, 229–242. [Google Scholar] [CrossRef]
- ARPA Piemonte—Meteorologia e Clima. Available online: https://www.arpa.piemonte.it/dati-ambientali/dati-meteoidrografici-giornalieri-richiesta-automatica (accessed on 17 December 2021).
- Biddoccu, M.; Ferraris, S.; Opsi, F.; Cavallo, E. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy). Soil Till. Res. 2016, 155, 176–189. [Google Scholar] [CrossRef]
- Raffelli, G.; Previati, M.; Canone, D.; Gisolo, G.; Bevilacqua, I.; Capello, G.; Biddoccu, M.; Cavallo, E.; Deiana, R.; Cassiani, G.; et al. 2017. Local and plot-scale measurements of soil moisture: Time and spatially resolved field techniques in plain, hill and mountain sites. Water 2017, 9, 706. [Google Scholar] [CrossRef]
- Sohne, W. Druckverteilung im Boden und Boden-verformung unter Schlepper Reifen. Grundl. Der Landtech. 1953, 5, 49–63. [Google Scholar]
- Ritchie, J.T. Model for predicting evaporation from a row crop within complete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pereira, L.S.; Fernando, R.M. Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation. Agric. Water Manage. 2006, 84, 27–40. [Google Scholar] [CrossRef]
- USDA-SCS. National Engineering Handbook; Section 4, Table 10.1; 1972. Available online: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17752.wba (accessed on 17 December 2021).
- Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. Water requirements. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 208–288. [Google Scholar]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.J.; Allen, R. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric. Water Manage. 2020, 240, 106197. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Rodrigues, G.C.; Neves, M. Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agric. Water Manage. 2015, 159, 239–254. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gaudin, R.; Celette, F.; Gary, C. Contribution of runoff to incomplete off season soil water refilling in a Mediterranean vineyard. Agric. Water Manage. 2010, 97, 1534–1540. [Google Scholar] [CrossRef]
- Romero, P.; Castro, G.; Gomez, J.A.; Fereres, E. Curve number values for olive orchards under different soil management. Soil Sci. Soc. Am. J. 2007, 71, 1758–1769. [Google Scholar] [CrossRef]
- Ferreira, M.I.; Silvestre, J.; Conceição, N.; Malheiro, A.C. Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques. Irrig. Sci. 2012, 30, 433–447. [Google Scholar] [CrossRef]
- Zarrouk, O.; Brunetti, C.; Egipto, R.; Pinheiro, C.; Genebra, T.; Gori, A.; Lopes, C.M.; Tattini, M.; Chaves, M.M. Grape ripening is regulated by deficit irrigation/elevated temperatures according to cluster position in the canopy. Front. Plant Sci. 2016, 7, 1640. [Google Scholar] [CrossRef] [Green Version]
- Paço, T.A.; Paredes, P.; Pereira, L.S.; Silvestre, J.; Santos, F.L. Crop Coefficients and Transpiration of a Super Intensive Arbequina Olive Orchard using the Dual Kc Approach and the Kcb Computation with the Fraction of Ground Cover and Height. Water 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manage. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Rosa, R.D.; Ramos, T.B.; Pereira, L.S. The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model. Agric. Water Manage. 2016, 115, 291–310. [Google Scholar] [CrossRef]
- Darouich, H.; Karfoul, R.; Eid, H.; Ramos, T.B.; Baddour, N.; Moustafa, A.; Assaad, M.I. Modeling zucchini squash irrigation requirements in the Syrian Akkar region using the FAO56 dual-Kc approach. Agric Water Manage. 2020, 229, 105927. [Google Scholar] [CrossRef]
- Darouich, H.; Karfoul, R.; Ramos, T.B.; Moustafa, A.; Shaheen, B.; Pereira, L.S. Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region. Agric. Water Manage. 2021, 255, 107038. [Google Scholar] [CrossRef]
- Novara, A.; Cerdà, A.; Gristina, L. Sustainable vineyard floor management: An equilibrium between water consumption and soil conservation. Curr. Opin. Environ. Sci. Health. 2018, 5, 33–37. [Google Scholar] [CrossRef]
Depth (cm) | Soil Texture (%) | ρb (Mg m−3) | Soil Hydraulic Properties (m3 m−3) | TAW (mm) | |||||
---|---|---|---|---|---|---|---|---|---|
Coarse Sand (2000–200 μm) | Fine Sand (200–20 μm) | Silt (20–2 μm) | Clay (<2 μm) | θS | θFC | θWP | |||
Monferrato, Italy (conventional tillage plot) | |||||||||
0–10 | 10.9 | 44.1 | 26.8 | 18.2 | 1.32 | 0.437 | 0.380 | 0.083 | 29.7 |
10–20 | 16.8 | 29.9 | 36.7 | 16.6 | 1.37 | 0.443 | 0.379 | 0.078 | 30.1 |
20–30 | 17.3 | 40.8 | 6.1 | 35.8 | 1.35 | 0.436 | 0.357 | 0.127 | 23.0 |
30–100 | 17.3 | 40.8 | 6.1 | 35.8 | 1.35 | 0.436 | 0.350 | 0.115 | 164.5 |
Monferrato, Italy (grass cover plot) | |||||||||
0–10 | 11.1 | 27.6 | 29.8 | 31.5 | 1.33 | 0.453 | 0.375 | 0.115 | 26.0 |
10–20 | 9.5 | 27.3 | 30.4 | 32.8 | 1.32 | 0.448 | 0.398 | 0.119 | 27.9 |
20–30 | 13.8 | 28.4 | 26.8 | 31.0 | 1.28 | 0.454 | 0.372 | 0.115 | 25.7 |
30–100 | 13.8 | 28.4 | 26.8 | 31.0 | 1.28 | 0.454 | 0.350 | 0.135 | 150.5 |
Samora Correia, Portugal | |||||||||
0–20 | 59.7 | 26.8 | 9.4 | 4.1 | 1.68 | 0.404 | 0.178 | 0.064 | 22.90 |
20–40 | 60.1 | 26.0 | 9.4 | 4.4 | 1.65 | 0.404 | 0.178 | 0.064 | 22.90 |
40–60 | 63.3 | 25.9 | 7.5 | 3.3 | 1.72 | 0.404 | 0.145 | 0.047 | 19.53 |
60–80 | 72.2 | 19.4 | 5.5 | 2.8 | - | 0.398 | 0.110 | 0.038 | 14.48 |
80–100 | 79.6 | 14.2 | 4.4 | 1.8 | - | 0.398 | 0.094 | 0.025 | 13.74 |
Crop Growth Stages | ||||||||
---|---|---|---|---|---|---|---|---|
Year | Non-Growing | Initiation | Crop Development | Mid- Season | Late-Season | End- Season | Non-Growing | Total GDD |
Monferrato, northern Italy | ||||||||
2016 | 01/01 | 12/03 | 13/04 | 13/06 | 07/08 | 31/10 | 31/12 | |
GDD | - | 44 | 325 | 698 | 684 | - | - | 1753 |
2017 | 01/01 | 15/03 | 30/04 | 18/06 | 01/08 | 31/10 | 31/12 | |
GDD | - | 123 | 407 | 582 | 797 | - | - | 1910 |
2018 | 01/01 | 18/03 | 02/04 | 07/06 | 09/08 | 31/10 | 31/12 | |
GDD | - | 5 | 391 | 845 | 742 | - | - | 1982 |
2019 | 01/01 | 24/03 | 08/04 | 15/06 | 19/08 | 31/10 | 31/12 | |
GDD | - | 20 | 307 | 897 | 577 | - | - | 1801 |
Samora Correia, southern Portugal | ||||||||
2018 | 01/01 | 13/03 | 03/04 | 25/05 | 05/08 | 15/10 | 31/12 | |
GDD | - | 54 | 308 | 799 | 904 | - | - | 2065 |
2019 | 01/01 | 10/03 | 13/04 | 11/06 | 13/08 | 20/10 | 31/12 | |
GDD | - | 150 | 508 | 700 | 789 | - | - | 2147 |
2020 | 01/01 | 25/03 | 12/04 | 31/05 | 10/08 | 23/10 | 31/12 | |
GDD | - | 86 | 423 | 906 | 822 | - | - | 2236 |
Growing Season | % of TAW | % of TEW | ||||
---|---|---|---|---|---|---|
Monferrato (CT) | Monferrato (GC) | S. Correia | Monferrato (CT) | Monferrato (GC) | S. Correia | |
2016 | 67 | 34 | - | 67 | 34 | - |
2017 | 22 | 25 | - | 22 | 25 | - |
2018 | 45 | 33 | 30 | 45 | 33 | 30 |
2019 | 31 | 14 | 23 | 31 | 14 | 23 |
2020 | - | - | 17 | - | - | 17 |
Monferrato (CT) | Monferrato (GC) | Samora Correia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vineyard | Inter-Row | Vineyard | Inter-Row | Vineyard | Inter-Row | |||||||
fc (-) | h (m) | fc gcover (-) | hgcover (m) | fc (-) | h (m) | fc gcover (-) | hgcover (m) | fc (-) | h (m) | fc gcover (-) | hgcover (m) | |
2016 | ||||||||||||
Non-Growing | 0.04 | 0.50 | 0. 20 | 0.20 | 0.05 | 0.50 | 0.82 | 0.18 | - | - | - | - |
Initiation | 0.15 | 0.80 | 0.18 | 0.15 | 0.16 | 0.80 | 0.75 | 0.15 | - | - | - | - |
Mid-season | 0.35 | 1.80 | 0.12 | 0.15 | 0.29 | 1.80 | 0.65 | 0.15 | - | - | - | - |
Late-season | 0.27 | 1.20 | 0.18 | 0.15 | 0.23 | 1.20 | 0.77 | 0.15 | - | - | - | - |
Non-Growing | 0.03 | 0.50 | 0.20 | 0.20 | 0.04 | 0.50 | 0.82 | 0.18 | - | - | - | - |
2017 | ||||||||||||
Non-Growing | 0.04 | 0.50 | 0. 20 | 0.20 | 0.03 | 0.50 | 0.81 | 0.18 | - | - | - | - |
Initiation | 0.15 | 0.80 | 0.17 | 0.15 | 0.14 | 0.80 | 0.70 | 0.15 | - | - | - | - |
Mid-season | 0.37 | 1.80 | 0.12 | 0.15 | 0.25 | 1.70 | 0.61 | 0.15 | - | - | - | - |
Late-season | 0.28 | 1.20 | 0.18 | 0.15 | 0.23 | 1.10 | 0.72 | 0.15 | - | - | - | - |
Non-Growing | 0.03 | 0.50 | 0.20 | 0.20 | 0.04 | 0.50 | 0.81 | 0.18 | - | - | - | - |
2018 | ||||||||||||
Non-Growing | 0.04 | 0.50 | 0.24 | 0.20 | 0.04 | 0.50 | 0.80 | 0.20 | 0.03 | 0.50 | 0.20 | 0.15 |
Initiation | 0.16 | 0.80 | 0.18 | 0.15 | 0.15 | 0.80 | 0.71 | 0.18 | 0.13 | 0.80 | 0.18 | 0.15 |
Mid-season | 0.37 | 1.90 | 0.13 | 0.15 | 0.29 | 1.80 | 0.59 | 0.17 | 0.36 | 1.70 | 0.07 | 0.10 |
Late-season | 0.30 | 1.20 | 0.26 | 0.15 | 0.22 | 1.20 | 0.74 | 0.18 | 0.30 | 1.20 | 0.18 | 0.10 |
Non-Growing | 0.03 | 0.50 | 0.26 | 0.20 | 0.04 | 0.50 | 0.80 | 0.20 | 0.04 | 0.50 | 0.20 | 0.15 |
2019 | ||||||||||||
Non-Growing | 0.03 | 0.50 | 0.24 | 0.20 | 0.03 | 0.50 | 0.82 | 0.20 | 0.03 | 0.50 | 0.21 | 0.15 |
Initiation | 0.16 | 0.80 | 0.19 | 0.15 | 0.15 | 0.80 | 0.72 | 0.18 | 0.13 | 0.80 | 0.19 | 0.15 |
Mid-season | 0.39 | 1.90 | 0.13 | 0.15 | 0.29 | 1.80 | 0.60 | 0.18 | 0.35 | 1.70 | 0.08 | 0.10 |
Late-season | 0.30 | 1.20 | 0.25 | 0.15 | 0.22 | 1.20 | 0.75 | 0.18 | 0.29 | 1.20 | 0.18 | 0.10 |
Non-Growing | 0.03 | 0.50 | 0.25 | 0.20 | 0.04 | 0.50 | 0.82 | 0.20 | 0.03 | 0.50 | 0.20 | 0.15 |
2020 | ||||||||||||
Non-Growing | - | - | - | - | - | - | - | - | 0.03 | 0.50 | 0.20 | 0.15 |
Initiation | - | - | - | - | - | - | - | - | 0.17 | 0.80 | 0.18 | 0.15 |
Mid-season | - | - | - | - | - | - | - | - | 0.36 | 1.70 | 0.08 | 0.10 |
Late-season | - | - | - | - | - | - | - | - | 0.31 | 1.20 | 0.18 | 0.10 |
Non-Growing | - | - | - | - | - | - | - | - | 0.03 | 0.50 | 0.20 | 0.15 |
Parameters | Units | Default Values | Calibrated Values | ||
---|---|---|---|---|---|
Monferrato (CT) | Monferrato (GC) | Samora Correia | |||
Kcb nongrowing | - | 0.15 | 0.17 | 0.35 | 0.16 |
Kcb ini | - | 0.15 | 0.20 | 0.35 | 0.17 |
Kcb mid | - | 0.65 | 0.47 | 0.47 | 0.47 |
Kcb end | - | 0.40 | 0.34 | 0.40 | 0.39 |
pini | - | 0.45 | 0.45 | 0.35 | 0.40 |
pmid | - | 0.45 | 0.45 | 0.35 | 0.40 |
pend | - | 0.45 | 0.45 | 0.35 | 0.40 |
TEW | mm | 34–15 | 30 | 31 | 15 |
REW | mm | 9–7 | 9 | 11 | 7 |
Ze | m | 0.10 | 0.09 | 0.10 | 0.10 |
aD | mm | - | 360 | 370 | 152 |
bD | - | −0.0173 | −0.0150 | −0.0170 | −0.0173 |
CN | - | 75–60 | 70 | 55 | 65 |
Parameters | Monferrato (CT) | Monferrato (GC) | Samora Correia | ||||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 | 2018–2020 | |
Kcb gcover nongrowing | 0.09 | 0.09 | 0.09 | 0.10 | 0.24 | 0.24 | 0.24 | 0.25 | 0.09 |
Kcb gcover ini | 0.08 | 0.08 | 0.08 | 0.08 | 0.22 | 0.21 | 0.22 | 0.23 | 0.08 |
Kcb gcover mid | 0.07 | 0.07 | 0.07 | 0.07 | 0.20 | 0.19 | 0.19 | 0.19 | 0.06 |
Kcb fcover end | 0.08 | 0.08 | 0.09 | 0.09 | 0.22 | 0.21 | 0.23 | 0.22 | 0.07 |
Kcb vine nongrowing | 0.09 | 0.09 | 0.10 | 0.10 | 0.24 | 0.24 | 0.24 | 0.24 | 0.09 |
Kcb vine ini | 0.12 | 0.12 | 0.12 | 0.12 | 0.13 | 0.14 | 0.13 | 0.12 | 0.09 |
Kcb vine mid | 0.40 | 0.40 | 0.40 | 0.40 | 0.27 | 0.28 | 0.28 | 0.28 | 0.41 |
Kcb vine end | 0.26 | 0.26 | 0.25 | 0.25 | 0.18 | 0.19 | 0.17 | 0.18 | 0.32 |
Site | Year | Treatment | b0 (-) | R2 (-) | RMSE (m3 m−3) | NRMSE (-) | PBIAS (%) | EF (-) |
---|---|---|---|---|---|---|---|---|
Monferrato | 2016 | CT | 1.04 | 0.84 | 0.03 | 0.69 | −3.30 | 0.53 |
GC | 1.03 | 0.76 | 0.02 | 0.78 | −2.55 | 0.39 | ||
2017 | CT | 1.06 | 0.97 | 0.02 | 0.34 | −5.76 | 0.88 | |
GC | 0.91 | 0.90 | 0.03 | 0.81 | 9.95 | 0.34 | ||
2018 | CT | 0.95 | 0.86 | 0.03 | 0.51 | 5.60 | 0.74 | |
GC | 1.02 | 0.89 | 0.03 | 0.74 | −1.12 | 0.45 | ||
2019 | CT | 1.01 | 0.90 | 0.01 | 0.32 | −1.03 | 0.90 | |
GC | 0.99 | 0.90 | 0.02 | 0.45 | 1.04 | 0.80 | ||
S. Correia | 2018 | - | 1.01 | 0.59 | 0.01 | 0.74 | −1.53 | 0.45 |
2019 | - | 1.02 | 0.57 | 0.01 | 0.86 | −1.84 | 0.30 | |
2020 | - | 1.00 | 0.75 | 0.01 | 0.50 | −0.50 | 0.75 |
Year | Plot | I (mm) | P (mm) | ΔSW (mm) | Tc (mm) | Tc act (mm) | Es (mm) | DP (mm) | RO (mm) |
---|---|---|---|---|---|---|---|---|---|
2016 | CT | 0 | 779 | −156 | 372 | 262 | 234 | 27 | 90 |
GC | 0 | 779 | −85 | 417 | 298 | 234 | 118 | 43 | |
2017 | CT | 0 | 493 | 35 | 395 | 275 | 206 | 42 | 8 |
GC | 0 | 493 | −17 | 445 | 300 | 203 | 8 | 2 | |
2018 | CT | 0 | 1190 | −100 | 347 | 313 | 307 | 310 | 178 |
GC | 0 | 1189 | −86 | 386 | 326 | 306 | 315 | 92 | |
2019 | CT | 0 | 1476 | −68 | 353 | 313 | 274 | 467 | 355 |
GC | 0 | 1476 | −40 | 403 | 339 | 284 | 600 | 198 |
Period | Parameter | Units | 2016 | 2017 | 2018 | 2019 | ||||
---|---|---|---|---|---|---|---|---|---|---|
CT | GC | CT | GC | CT | GC | CT | GC | |||
Non-Growing | Tc act | (mm) | 9 | 22 | 13 | 25 | 11 | 21 | 20 | 41 |
Tc act gcover | (mm) | 5 | 17 | 7 | 17 | 6 | 15 | 12 | 29 | |
Tc act/Tc | (-) | 0.84 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
Es | (mm) | 58 | 50 | 59 | 52 | 61 | 50 | 48 | 47 | |
Initial stage | Tc act | (mm) | 15 | 26 | 34 | 52 | 6 | 10 | 10 | 17 |
Tc act gcover | (mm) | 6 | 14 | 11 | 29 | 2 | 6 | 4 | 11 | |
Tc act/Tc | (-) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
Es | (mm) | 37 | 37 | 47 | 48 | 22 | 21 | 11 | 10 | |
Rapid growth | Tc act | (mm) | 85 | 99 | 92 | 99 | 72 | 86 | 79 | 94 |
Tc act gcover | (mm) | 18 | 30 | 17 | 44 | 16 | 43 | 17 | 47 | |
Tc act/Tc | (-) | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | |
Es | (mm) | 41 | 45 | 39 | 41 | 94 | 95 | 107 | 111 | |
Mid-season | Tc act | (mm) | 98 | 93 | 85 | 72 | 149 | 135 | 149 | 132 |
Tc act gcover | (mm) | 15 | 16 | 13 | 29 | 22 | 55 | 22 | 53 | |
Tc act/Tc | (-) | 0.69 | 0.66 | 0.72 | 0.61 | 0.96 | 0.87 | 0.91 | 0.81 | |
Es | (mm) | 19 | 21 | 7 | 8 | 47 | 54 | 51 | 61 | |
Late-season | Tc act | (mm) | 47 | 47 | 44 | 41 | 68 | 62 | 47 | 44 |
Tc act gcover | (mm) | 8 | 11 | 7 | 18 | 11 | 29 | 8 | 20 | |
Tc act/Tc | (-) | 0.42 | 0.40 | 0.34 | 0.30 | 0.70 | 0.61 | 0.64 | 0.58 | |
Es | (mm) | 52 | 58 | 23 | 27 | 58 | 64 | 30 | 32 | |
Non-Growing | Tc act | (mm) | 7 | 11 | 7 | 12 | 7 | 11 | 7 | 11 |
Tc act gcover | (mm) | 1 | 8 | 2 | 9 | 2 | 7 | 2 | 8 | |
Tc act/Tc | (-) | 0.97 | 0.95 | 0.80 | 0.93 | 1.00 | 1.00 | 1.00 | 1.00 | |
Es | (mm) | 26 | 23 | 32 | 28 | 24 | 21 | 26 | 23 | |
Total | Tc act | (mm) | 262 | 298 | 275 | 300 | 313 | 326 | 313 | 339 |
Tc act gcover | (mm) | 53 | 96 | 57 | 146 | 59 | 155 | 65 | 168 | |
Tc act/Tc | (-) | 0.70 | 0.71 | 0.70 | 0.68 | 0.90 | 0.85 | 0.88 | 0.84 | |
Es | (mm) | 234 | 234 | 206 | 203 | 307 | 306 | 274 | 284 |
Schedule | Year | I (mm) | P (mm) | ΔSW (mm) | Tc (mm) | Tc act (mm) | Es (mm) | DP (mm) | RO (mm) |
---|---|---|---|---|---|---|---|---|---|
Farmer | 2018 | 454 | 499 | −28 | 329 | 324 | 274 | 342 | 13 |
2019 | 625 | 240 | −17 | 350 | 337 | 235 | 265 | 1 | |
2020 | 465 | 506 | −13 | 404 | 399 | 281 | 283 | 7 | |
Model | 2018 | 295 | 499 | −19 | 329 | 327 | 278 | 169 | 13 |
2019 | 375 | 240 | −23 | 350 | 347 | 239 | 9 | 1 | |
2020 | 355 | 506 | −14 | 404 | 399 | 274 | 170 | 7 |
Period | Parameter | Units | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
Non-Growing | Tc act | (mm) | 12 | 12 | 20 |
Tc act gcover | (mm) | 6 | 6 | 10 | |
Tc act/Tc | (-) | 1.00 | 1.00 | 1.00 | |
Es | (mm) | 58 | 60 | 59 | |
Initial stage | Tc act | (mm) | 7 | 16 | 7 |
Tc act gcover | (mm) | 4 | 8 | 3 | |
Tc act/Tc | (-) | 1.00 | 1.00 | 1.00 | |
Es | (mm) | 33 | 29 | 29 | |
Vegetation growth | Tc act | (mm) | 53 | 66 | 69 |
Tc act gcover | (mm) | 11 | 14 | 14 | |
Tc act/Tc | (-) | 1.00 | 0.83 | 1.00 | |
Es | (mm) | 53 | 47 | 59 | |
Mid-season | Tc act | (mm) | 122 | 120 | 173 |
Tc act gcover | (mm) | 16 | 15 | 22 | |
Tc act/Tc | (-) | 0.96 | 1.00 | 0.97 | |
Es | (mm) | 42 | 30 | 45 | |
Late-season | Tc act | (mm) | 110 | 106 | 115 |
Tc act gcover | (mm) | 21 | 20 | 21 | |
Tc act/Tc | (-) | 1.00 | 1.00 | 1.00 | |
Es | (mm) | 33 | 30 | 45 | |
Non-Growing | Tc act | (mm) | 19 | 17 | 15 |
Tc act gcover | (mm) | 6 | 5 | 4 | |
Tc act/Tc | (-) | 1.00 | 1.00 | 1.00 | |
Es | (mm) | 55 | 40 | 44 | |
Total | Tc act | (mm) | 324 | 337 | 399 |
Tc act gcover | (mm) | 63 | 68 | 76 | |
Tc act/Tc | (-) | 0.99 | 0.96 | 0.99 | |
Es | (mm) | 274 | 235 | 281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. https://doi.org/10.3390/w14040554
Darouich H, Ramos TB, Pereira LS, Rabino D, Bagagiolo G, Capello G, Simionesei L, Cavallo E, Biddoccu M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water. 2022; 14(4):554. https://doi.org/10.3390/w14040554
Chicago/Turabian StyleDarouich, Hanaa, Tiago B. Ramos, Luis S. Pereira, Danilo Rabino, Giorgia Bagagiolo, Giorgio Capello, Lucian Simionesei, Eugenio Cavallo, and Marcella Biddoccu. 2022. "Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation" Water 14, no. 4: 554. https://doi.org/10.3390/w14040554
APA StyleDarouich, H., Ramos, T. B., Pereira, L. S., Rabino, D., Bagagiolo, G., Capello, G., Simionesei, L., Cavallo, E., & Biddoccu, M. (2022). Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water, 14(4), 554. https://doi.org/10.3390/w14040554