Dimercaptosuccinic Acid Functionalized Polystyrene Column for Trace Concentration Determination of Heavy Metal Ions: Experimental and Theoretical Calculation Studies
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Solutions
2.2. Equipments
2.3. Computational Studies
2.4. Synthesis of PSDMSA Adsorbent
2.5. Batch Studies
2.6. Column Procedure for Metal Ions Preconcentration
3. Results and Discussion
3.1. Characterization of PSDMSA
3.2. Optimized Experimental Variables
3.2.1. Effect of Sample pH
3.2.2. Theoretical Validation
3.2.3. Optimized Flow Rate
3.2.4. Co-Ions Interferences and Desorption Studies
3.2.5. Preconcentration Studies
3.3. Analytical Figures of Merits
3.4. Application of the Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry. Available online: https://www.atsdr.cdc.gov/spl/index.html#2019spl (accessed on 28 August 2021).
- Environmental Protection Agency. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (accessed on 28 August 2021).
- Rayner-Canham, G.; Overton, T. Descriptive Inorganic Chemistry; Macmillan: New York, NY, USA, 2009. [Google Scholar]
- Chen, X.C.; Zhu, X.H.; Lin, B.G.; Li, L.Z.; Yu, Z.L.; Xiang, M.D.; Yu, Y.J. Children’s non-carcinogenic health risk assessment of heavy metals exposure to residential indoor dust around an e-waste dismantling area in South China. Zhonghua Yu Fang Yi Xue Za Zhi 2019, 53, 360–364. [Google Scholar]
- Chen, M.-L.; Sun, Y.; Huo, C.-B.; Liu, C.; Wang, J.-H. Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level. Chemosphere 2015, 130, 52–58. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, Y.; Quan, X. Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere 2019, 242, 125113. [Google Scholar] [CrossRef]
- Kicinska, A. Environmental risk related to presence and mobility of As, Cd and Tl in soils in the vicinity of a metallurgical plant -Long-term observations. Chemosphere 2019, 236, 124308. [Google Scholar] [CrossRef]
- Yan, H.-X.; Kong, D.-D.; Li, X.-Y.; Fan, Z.-W.; Yang, M.-H. Pollution level and health risk assessment of heavy metals and hazardous elements in Bombyx Batryticatus. Zhongguo Zhong Yao Za Zhi 2019, 44, 5051–5057. [Google Scholar] [PubMed]
- WHO. Drinking Water, Fact Sheet No. 391. Media Centre. Available online: http://www.who.int/mediacentre/factsheets (accessed on 28 August 2021).
- Topuz, B. Simultaneous Spectrometric Determination of Cu(II), Co(II), and Ni(II) in Pharmaceutical and Environmental Samples with XAD-4/DMMDTC Solid-Phase Extraction System. Biol. Trace Elem. Res. 2020, 194, 295–302. [Google Scholar] [CrossRef]
- Lei, C.; Gao, J.; Ren, W.; Xie, Y.; Abdalkarim, S.Y.H.; Wang, S.; Ni, Q.; Yao, J. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr. Polym. 2018, 205, 35–41. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Liu, C.; Jiang, Y.; Yu, G.; Mu, X.; Wang, X. Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem. Commun. 2012, 48, 7350–7352. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Parihar, R.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- Li, H.; Dai, Q.; Yang, M.; Li, F.; Liu, X.; Zhou, M.; Qian, X. Heavy metals in submicronic particulate matter (PM1) from a Chinese metropolitan city predicted by machine learning models. Chemosphere 2020, 261, 127571. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, T.C.; Eren, A.D.; Spierings, J.; de Boer, J.; Ito, K.; Foolen, J. Solid-phase silica-based extraction leads to underestimation of residual DNA in decellularized tissues. Xenotransplantation 2020, 28, e12643. [Google Scholar] [CrossRef] [PubMed]
- Moradi Shahrebabak, S.; Saber-Tehrani, M.; Faraji, M.; Shabanian, M.; Aberoomand-Azar, P. Magnetic solid phase extraction based on poly(beta-cyclodextrin-ester) functionalized silica-coated magnetic nanoparticles (NPs) for simultaneous extraction of the malachite green and crystal violet from aqueous samples. Environ. Monit. Assess. 2020, 192, 1–13. [Google Scholar] [CrossRef]
- Kojidi, M.H.; Aliakbar, A. Synthesis of graphene oxide-based poly(p-aminophenol) composite and its application in solid phase extraction of trace amount of Ni(II) from aquatic samples. Environ. Monit. Assess. 2019, 191, 145. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Francisco, J.E.; Feiteira, F.N.; Da Silva, W.A.; Pacheco, W. Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples. Environ. Sci. Pollut. Res. 2019, 26, 19588–19597. [Google Scholar] [CrossRef]
- Li, B.; Chen, Z.; Li, Y.; Yang, W.; Wang, W. Visualization analysis of graphene and its composites for heavy metal wastewater applications. Environ. Sci. Pollut. Res. 2019, 26, 27752–27760. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Shan, C.; Pan, B. Effect of 3-D distribution of ZVI nanoparticles confined in polymeric anion exchanger on EDTA-chelated Cu(II) removal. Environ. Sci. Pollut. Res. 2019, 26, 10013–10022. [Google Scholar] [CrossRef]
- Chen, D.; Wang, L.; Ma, Y.; Yang, W. Super-adsorbent material based on functional polymer particles with a multilevel porous structure. NPG Asia Mater. 2016, 8, e301. [Google Scholar] [CrossRef]
- Kim, S.; Lee, T.G. Removal of Cr(VI) from aqueous solution using functionalized poly(GMA-co-EGDMA)-graft-poly(allylamine). React. Funct. Polym. 2018, 134, 133–140. [Google Scholar] [CrossRef]
- Zhu, F.; Li, L.; Li, N.; Liu, W.; Liu, X.; He, S. Selective solid phase extraction and preconcentration of Cd(II) in the solution using microwave-assisted inverse emulsion-suspension Cd(II) ion imprinted polymer. Microchem. J. 2021, 164, 106060. [Google Scholar] [CrossRef]
- Dahaghin, Z.; Mousavi, H.Z.; Boutorabi, L. Application of magnetic ion-imprinted polymer as a new environmentally-friendly nonocomposite for a selective adsorption of the trace level of Cu(II) from aqueous solution and different samples. J. Mol. Liq. 2017, 243, 380–386. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.-L.; Xu, W.-H.; Huang, X.-J.; Liu, J.-H.; Xu, A.-W. Stable Organic–Inorganic Hybrid of Polyaniline/α-Zirconium Phosphate for Efficient Removal of Organic Pollutants in Water Environment. ACS Appl. Mater. Interfaces 2012, 4, 2686–2692. [Google Scholar] [CrossRef]
- Cheng, W.; Rechberger, F.; Niederberger, M. Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties. ACS Nano 2016, 10, 2467–2475. [Google Scholar] [CrossRef]
- Li, J.-R.; Wang, X.; Yuan, B.; Fu, M.-L.; Cui, H.-J. Robust removal of heavy metals from water by intercalation chalcogenide [CH3NH3]2xMnxSn3−xS6·0.5H2O. Appl. Surf. Sci. 2014, 320, 112–119. [Google Scholar] [CrossRef]
- Gao, M.-R.; Xu, Y.-F.; Jiang, J.; Yu, S.-H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Wang, X.; Yuan, B.; Fu, M.-L. Layered chalcogenide for Cu2+ removal by ion-exchange from wastewater. J. Mol. Liq. 2014, 200, 205–212. [Google Scholar] [CrossRef]
- Elsaesser, A.; Howard, C.V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 2012, 64, 129–137. [Google Scholar] [CrossRef]
- Buchman, J.T.; Hudson-Smith, N.V.; Landy, K.M.; Haynes, C.L. Understanding Nanoparticle Toxicity Mechanisms to Inform Redesign Strategies to Reduce Environmental Impact. Acc. Chem. Res. 2019, 52, 1632–1642. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 1997, 107, 8554–8560. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 1968, 45, 581. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ. 1968, 45, 643. [Google Scholar] [CrossRef]
- Rabinovich, D. Descriptive Inorganic Chemistry (Rayner-Canham, Geoff). J. Chem. Educ. 1998, 75, 697. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Husain, F.M.; Khan, R.A. Graphene oxide lamellar membrane with enlarged inter-layer spacing for fast preconcentration and determination of trace metal ions. RSC Adv. 2021, 11, 11889–11899. [Google Scholar] [CrossRef]
- Ahmad, H.; Alharbi, W.; BinSharfan, I.I.; Khan, R.A.; Alsalme, A. Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions. Polymers 2020, 12, 2370. [Google Scholar] [CrossRef]
- Ozdemir, S.; Kılınç, E.; Acer, Ö.; Soylak, M. Simultaneous preconcentrations of Cu(II), Ni(II), and Pb(II) by SPE using E. profundum loaded onto Amberlite XAD-4. Microchem. J. 2021, 171, 106758. [Google Scholar] [CrossRef]
- Bajaj, S.; Jain, V.; Sharma, N.; Tiwari, S.; Saxena, R. Efficient lead preconcentration using two chemically functionalized carbon nanotubes in hyphenated flow injection-flame atomic absorption spectrometry system. J. Chromatogr. A 2021, 1638, 461888. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Peng, C.; He, M.; Chen, B.; Hu, B. Magnetic N-doped porous carbon for analysis of trace Pb and Cd in environmental water by magnetic solid phase extraction with inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2021, 184, 106273. [Google Scholar] [CrossRef]
Binding Mode | Bond Length | ||||
---|---|---|---|---|---|
C-S | C-O | Me-S | Me-O | ||
PSDMSA | 1.815 | 1.338 | - | - | |
Complex 1 | Pb-PSDMSA | 1.788 | 1.470 | 2.584 | 2.186 |
Cd-PSDMSA | 1.519 | 1.528 | 1.521 | 1.527 | |
Hg-PSDMSA | 1.519 | 1.528 | 1.521 | 1.527 | |
Complex 2 | Pb-PSDMSA | 1.819 | 1.430 | 2.504 | - |
Cd-PSDMSA | 1.519 | 1.338 | 1.521 | - | |
Hg-PSDMSA | 1.811 | 1.338 | 2.996 | - |
Binding Mode | Charge Transfer | E(2) | E(bind) | |
---|---|---|---|---|
Complex 1 | Pb-PSDMSA | LPO→LP*PbLPS→LP*Pb | 29.232 | −107.865 |
Cd-PSDMSA | LPO→LP*CdLPS→LP*Cd | 8.288 | −36.334 | |
Hg-PSDMSA | LPO→LP*HgLPS→LP*Hg | 5.241 | −29.984 | |
Complex 2 | Pb-PSDMSA | LPS→LP*PbLPS→LP*Pb | 33.416 | −118.227 |
Cd-PSDMSA | LPS→LP*CdLPS→LP*Cd | 21.826 | −42.164 | |
Hg-PSDMSA | LPS→LP*HgLPS→LP*Hg | 13.901 | −35.603 |
Foreign Ions | Co-Ions Added (×103 µg L−1) | Recovery % (RSD) a | ||
---|---|---|---|---|
Hg(II) | Pb(II) | Cd(II) | ||
CO32−, SO42−, PO42−, NO3− | 400 | 97.5 (1.25) | 96.1 (1.96) | 97.2 (1.88) |
Cl−, Br− | 650 | 98.5 (2.27) | 97.1 (2.16) | 99.6 (2.73) |
Na+, K+, Ca2+, Mg2+ | 600 | 98.5 (1.86) | 99.6 (2.14) | 98.3 (2.19) |
Co2+, Ni2+, Cu2+, Zn2+ | 150 | 96.8 (2.25) | 97.5 (3.12) | 97.3 (3.25) |
Samples | Analyte | Value after Preconcentration a (µg L−1) | Amount Spiked (µg) | Amount Found b | Value of t-Test | % Recovery |
---|---|---|---|---|---|---|
River Water | Hg(II) | 2.8 ± 0.07 | 5 10 | 7.7 ± 0.52 12.8 ± 0.41 | 0.48 0.55 | 98.7 100 |
Pb(II) | 5.6 ± 0.13 | 5 10 | 10.6 ± 0.89 15.45 ± 1.13 | 0.75 0.82 | 100 99.0 | |
Cd(II) | 3.7 ± 0.05 | 5 10 | 8.66 ± 0.58 13.68 ± 0.45 | 1.17 0.43 | 99.5 99.8 | |
Electroplating Wastewater | Hg(II) | 18.6 ± 0.83 | 5 10 | 23.5 ± 1.4 28.6 ± 1.8 | 1.04 0.95 | 98.8 100 |
Pb(II) | 24 ± 0.81 | 5 10 | 28.8 ± 0.7 34.0 ± 1.5 | 1.34 2.11 | 99.3 100 | |
Cd(II) | 28 ± 0.82 | 5 10 | 32.7 ± 0.84 38.1 ± 1.81 | 1.88 1.96 | 99.0 100.2 | |
Tap Water | Hg(II) | Not detected | 5 10 | 5.0 ± 0.73 10.02 ± 0.98 | 1.56 0.88 | 100 100.2 |
Pb(II) | Not detected | 5 10 | 5.0 ± 0.3 10.2 ± 0.1 | 0.85 0.49 | 100 102 | |
Cd(II) | Not detected | 5 10 | 5.1 ± 0.43 10.0 ± 1.91 | 1.45 1.41 | 102 100 |
Adsorbent | Metal Ions | Method | Preconcentration Limit | Preconcentration Factor (µg L−1) | Ref. |
---|---|---|---|---|---|
PSDMSA | Pb; Cd; Hg | SPE/ICP-OES | 0.74 | 900 | This work |
GO-APA | Pb; Cd; Cu | SPE/ICP-OES | 0.45; 0.45; 0.40 | 733; 733; 833 | [40] |
APBC | Cu; Pb; Cd | SPE/ICP-OES | 0.34; 0.37; 0.37 | 580; 540; 540 | [41] |
XAD-4 | Cu; Ni; Pb | SPE/ICP-OES | 0.31; 0.42; 0.43 | Not reported | [42] |
F-CNT | Pb | SPE/FAAS | 1.2 | 94 | [43] |
MNPC | Pb; Cd | SPE/ICP-MS | 0.49; 3.1 | Not reported | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haseen, U.; Ali, S.G.; Umar, K.; Ali, A.; Ahmad, H.; Khan, H.M. Dimercaptosuccinic Acid Functionalized Polystyrene Column for Trace Concentration Determination of Heavy Metal Ions: Experimental and Theoretical Calculation Studies. Water 2021, 13, 3056. https://doi.org/10.3390/w13213056
Haseen U, Ali SG, Umar K, Ali A, Ahmad H, Khan HM. Dimercaptosuccinic Acid Functionalized Polystyrene Column for Trace Concentration Determination of Heavy Metal Ions: Experimental and Theoretical Calculation Studies. Water. 2021; 13(21):3056. https://doi.org/10.3390/w13213056
Chicago/Turabian StyleHaseen, Uzma, Syed Ghazanfar Ali, Khalid Umar, Abuzer Ali, Hilal Ahmad, and Haris Manzoor Khan. 2021. "Dimercaptosuccinic Acid Functionalized Polystyrene Column for Trace Concentration Determination of Heavy Metal Ions: Experimental and Theoretical Calculation Studies" Water 13, no. 21: 3056. https://doi.org/10.3390/w13213056
APA StyleHaseen, U., Ali, S. G., Umar, K., Ali, A., Ahmad, H., & Khan, H. M. (2021). Dimercaptosuccinic Acid Functionalized Polystyrene Column for Trace Concentration Determination of Heavy Metal Ions: Experimental and Theoretical Calculation Studies. Water, 13(21), 3056. https://doi.org/10.3390/w13213056