Extending a Large-Scale Model to Better Represent Water Resources without Increasing the Model’s Complexity
Abstract
:1. Introduction
- Improve key components of GWAVA to better represent water management while maintaining low input data requirements and model complexity.
- Test the improvements in suitable basins to determine the success of the incorporated functionality.
- Use additional model output to gain insight into components of the basin water balance.
2. Methodology
2.1. Catchment Descriptions
2.2. Model Improvement
2.2.1. Representing Groundwater Processes
2.2.2. Regulated Reservoirs
2.3. Data Acquisition
2.4. Model Setup
- GWAVA—the original version of GWAVA [5]
- GWAVA-GW—the original version of GWAVA with groundwater coupling
- GWAVA-Res—the original version of GWAVA with the regulated reservoirs
- GWAVA 5.1—the original version of GWAVA with both the groundwater coupling and regulated reservoirs
2.5. Model Calibration
3. Model Evaluation
3.1. Kling-Gupta Efficiency (KGE)
3.2. Nash-Sutcliffe Efficiency (NSE)
3.3. Log-Nash Efficiency (LNE)
3.4. Bias
3.5. Model Skill
4. Results
4.1. Streamflow
4.2. Groundwater
4.3. Reservoirs
5. Discussion
6. Conclusions
- Key components of GWAVA were improved to better represent water management, while maintaining low input data requirements and model complexity.
- The model improvements successfully improved model performance in both the Narmada and Cauvery basins.
- Simulated groundwater and reservoir storage levels were output to gain further insight into components of the basin water balance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Input Data | Basin | Spatial Resolution | Temporal Resolution | Time Period | Source |
---|---|---|---|---|---|
Precipitation | C, N | 0.25 degree | Daily | 1951–2017 | Indian Meteorological Department [71] |
Maximum temperature | C, N | 0.25 degree | Daily | 1951–2016 | Indian Meteorological Department [71] |
Minimum temperature | C, N | 0.25 degree | Daily | 1951–2016 | Indian Meteorological Department [71] |
Streamflow gauged data | C, N | Basin | Daily | 1971–2014 | Water Resources Information System of India (India-WRIS) https://indiawris.gov.in/wris/#/ (accessed on 22 December 2018) |
Reservoir characteristics | C | Basin | 2018 | India-WRIS | |
N | Basin | 2020 | Narmada Control Authority, India-WRIS | ||
Reservoir inflow and outflow-data | C | Basin | Monthly | 1974–2017 | India-WRIS |
N | Basin | Monthly | 2007–2017 | Narmada Control Authority | |
Reservoir storage | C, N | Basin | Daily | 200–2010 | India-WRIS |
Water transfers | C | Basin | Annual | 2008 | Ashoka Trust for Research in Ecology and the Environment |
N | Basin | Annual | 2009 | Narmada Control Authority | |
Groundwater levels | C, N | District | Monthly | 1990–2017 | Central Groundwater Board, India |
Elevation | C, N | 0.003 degree | 2000 | NASA Shuttle Radar Mission Global 1 arc second V003 [72] | |
Geology | C, N | Asia | United States Geological Survey | ||
Specific yield | C, N | India | Central Groundwater Board, India | ||
Soil type | C | 0.008 degree | 1971–1981 | Harmonized World Soil Database v1.2 [73] | |
N | 1:10,000 | 1958–2020 | Soil and Land-use Survey of India https://www.india.gov.in/website-soil-and-land-use-survey-india (accessed on 7 April 2019) | ||
Soil properties | C, N | Global | 2010 | Table 2—Allen et al. (2010) [74] | |
Land Cover Land Use | C, N | 0.001 degree | 2005 | Decadal land-use and land cover across India 2005 [75] | |
Crops | C | Taluk | 2000 | National Remote Sensing Centre (NRSC) | |
N | 5 arcmin | 2010 | Portmann (2010) [76] | ||
Total and Rural Population | C, N | Village | 2001 | Census of India 2001 (http://sedac.ciesin.columbia.edu/data/set/india-india-village-level-geospatial-socio-econ-1991–2001) (accessed on 17 March 2019) | |
Livestock | C | 0.05 degree | 2005 | CGIR Livestock of the World v2 [77] | |
N | Rural villages, India | 2012 | 19th Livestock Census-2012. Government of India | ||
Conveyance losses | C, N | Village | 2011 | Household & Irrigation Census 2011-Town and Village directory (https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx) (accessed on 17 March 2019) | |
Return flow | C, N | Village | 2011 | Household & Irrigation Census 2011-Town and Village directory (https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx) (accessed on 17 March 2019) | |
Irrigation efficiency | C, N | Continental | 1986 | Irrigation and Drainage Paper (FAO) No 1 | |
Surface- water fraction | C | Village | 2011 | Household & Irrigation Census 2011-Town and Village directory (https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx) (accessed on 17 March 2019) | |
N | 5 arcmin | 2013 | Global Map of Irrigation Areas-version 5.0 http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/map-quality (accessed on 7 April 2019) | ||
Industrial demand | C | Karnataka | Currently unknown | Industrial Plot Information System-Karnataka Industrial Area Development Board (https://http://164.100.133.168/kiadbgisportal/) (accessed on 17 March 2019) | |
Livestock demand | C, N | India | 2006 | FAO (2018) [78] | |
Domestic demand | C | Village | 2001 | Household & Irrigation Census 2011-Town and Village directory (https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx) (accessed on 17 March 2019) | |
N | India | AQUASTAT [78] |
Demand Constraints | Cauvery | Narmada |
---|---|---|
Conveyance loss (%)—Urban | 23 | 15 |
Conveyance loss (%)—Rural | 25 | 15 |
Irrigation Efficiency (%) | 44 | 70 |
Return flow (%)—Urban | 62 | 45 |
Return flow (%)—Rural | 0 | 45 |
Demand per head (L/d)—Cattle | 77 | 40 |
Demand per head (L/d)—Sheep and goat | 5 | 4 |
Surface water abstraction (%)—Urban | 44 | 57 |
Surface water abstraction (%)—Rural | 62 | 57 |
Surface water abstraction (%)—Industrial | 80 | 80 |
Surface water abstraction (%)—Irrigation | 31 | 47 |
Appendix B
Sub-Catchment | Bias (%) | Monthly NSE | Monthly LNE | Monthly KGE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | G-GW | G-Res | G 5.1 | G | G-GW | G-Res | G 5.1 | G | G-GW | G-Res | G 5.1 | G | G-GW | G-Res | G 5.1 | |
Narmada | ||||||||||||||||
Manot | 11.37 | 4.24 | 11.37 | 4.24 | 0.95 | 0.92 | 0.92 | 0.93 | 0.78 | 0.86 | 0.78 | 0.86 | 0.83 | 0.84 | 0.83 | 0.83 |
Mohgaon | 2.77 | 8.26 | 2.77 | 3.4 | 0.87 | 0.83 | 0.83 | 0.83 | 0.73 | 0.85 | 0.73 | 0.85 | 0.86 | 0.8 | 0.86 | 0.8 |
Patan | 17.17 | −0.77 | 17.17 | 12.3 | 0.9 | 0.83 | 0.83 | 0.91 | 0.59 | 0.83 | 0.59 | 0.91 | 0.77 | 0.75 | 0.77 | 0.83 |
Belkeri | 33.9 | 2.94 | 33.9 | 2.46 | 0.84 | 0.85 | 0.85 | 0.84 | 0.6 | 0.62 | 0.6 | 0.71 | 0.39 | 0.81 | 0.39 | 0.8 |
Gadarwara | 7.03 | −1.8 | 7.03 | 1 | 0.92 | 0.82 | 0.82 | 0.83 | −0.45 | 0.71 | −0.45 | 0.83 | 0.87 | 0.7 | 0.87 | 0.72 |
Chhidgaon | −12.36 | −45 | −12.36 | −13.29 | 0.89 | 0.62 | 0.62 | 0.86 | −0.33 | 0.66 | −0.33 | 0.88 | 0.85 | 0.6 | 0.85 | 0.77 |
Kogaon | 30.39 | −19.5 | 30.39 | 2.03 | 0.79 | 0.74 | 0.74 | 0.79 | −0.32 | 0.68 | −0.32 | 0.76 | 0.57 | 0.66 | 0.57 | 0.72 |
Barmanghat | 17.8 | 3.9 | −2.88 | 3.2 | 0.74 | 0.7 | 0.82 | 0.81 | 0.51 | 0.78 | 0.8 | 0.81 | 0.58 | 0.75 | 0.74 | 0.82 |
Sandia | 6.73 | 7.55 | 3.24 | 9.11 | 0.84 | 0.77 | 0.93 | 0.84 | 0.51 | −0.04 | 0.84 | 0.88 | 0.72 | 0.82 | 0.85 | 0.77 |
Hoshangabad | 7.57 | −0.68 | 2.92 | 0.4 | 0.89 | 0.82 | 0.94 | 0.9 | 0.08 | −0.94 | 0.85 | 0.90 | 0.83 | 0.84 | 0.84 | 0.78 |
Handia | 14 | 4.75 | 11.17 | 9.92 | 0.89 | 0.82 | 0.95 | 0.91 | −0.33 | −1.94 | 0.84 | 0.90 | 0.81 | 0.84 | 0.82 | 0.77 |
Mandleshwar | 10.6 | 4.25 | 4.73 | 4.35 | 0.9 | 0.84 | 0.95 | 0.92 | 0.71 | −1.25 | 0.85 | 0.88 | 0.74 | 0.86 | 0.86 | 0.80 |
Garudeshwar | 16.09 | 12.74 | 4.43 | 13.4 | 0.9 | 0.78 | 0.94 | 0.9 | 0.18 | −1.8 | 0.84 | 0.89 | 0.74 | 0.83 | 0.85 | 0.80 |
Cauvery | ||||||||||||||||
Saklesphur | −37 | −46.4 | −37 | −46.4 | 0.77 | 0.57 | 0.77 | 0.57 | 0.31 | 0.81 | 0.31 | 0.81 | 0.59 | 0.53 | 0.59 | 0.53 |
Thimmanahali | −58.1 | −3.6 | −58.1 | −3.6 | 0.21 | 0.71 | 0.21 | 0.71 | 0.34 | 0.58 | 0.34 | 0.58 | 0.36 | 0.84 | 0.36 | 0.84 |
KMVadi | −21 | −50.3 | −21 | −50.3 | 0.21 | 0.14 | 0.21 | 0.14 | 0.14 | −0.07 | 0.14 | −0.07 | 0.29 | 0.25 | 0.29 | 0.25 |
Kudige | −43 | −50.7 | −43 | −50.7 | 0.67 | 0.55 | 0.67 | 0.55 | 0.70 | 0.70 | 0.70 | 0.70 | 0.53 | 0.48 | 0.53 | 0.48 |
Munthankera | −21.6 | −25.4 | −21.6 | −25.4 | 0.8 | 0.78 | 0.8 | 0.78 | 0.74 | 0.89 | 0.74 | 0.89 | 0.73 | 0.73 | 0.73 | 0.73 |
Thengumarahada | 1.2 | −22.3 | 1.2 | −22.3 | 0.07 | 0.43 | 0.07 | 0.43 | 0.22 | 0.59 | 0.22 | 0.59 | 0.50 | 0.57 | 0.50 | 0.57 |
T narasupiar | −13.4 | −12.0 | 3.6 | −11.6 | 0.66 | 0.6 | 0.75 | 0.6 | −9.83 | −1.6 | −0.4 | −1.2 | 0.77 | 0.75 | 0.83 | 0.75 |
Kollegal | −33.6 | −16.9 | −15.4 | −24.9 | 0.54 | 0.56 | 0.70 | 0.56 | −7.46 | −2.18 | 0.69 | 0.56 | 0.58 | 0.7 | 0.68 | 0.65 |
Tbekuppe | 2.6 | −5.4 | −12 | −5.4 | −0.81 | −0.09 | 0.62 | 0.49 | −23.97 | −0.72 | 0.53 | −0.72 | 0.21 | 0.41 | 0.38 | 0.41 |
TKHali | 4.1 | 7.3 | 3.4 | 7.3 | 0.36 | 0.43 | 0.4 | 0.43 | −1.68 | −0.29 | −0.91 | −0.29 | 0.57 | 0.52 | 0.61 | 0.52 |
Bilingudulu | −14.7 | −2.2 | 12.1 | −10.5 | 0.63 | 0.5 | 0.79 | 0.64 | 0.07 | −0.77 | 0.69 | 0.65 | 0.76 | 0.74 | 0.73 | 0.77 |
Urachikottai | −4.6 | −11.5 | 21.0 | 9.3 | 0.09 | −0.35 | 0.13 | 0.57 | 0.07 | −0.77 | 0.69 | 0.71 | 0.56 | 0.34 | 0.56 | 0.66 |
Kodumodi | −14.5 | −22.7 | 20.0 | −5.9 | 0.14 | −0.3 | 0.52 | 0.64 | −1.56 | −3.80 | 0.41 | 0.51 | 0.52 | 0.25 | 0.56 | 0.76 |
Musiri | −5.8 | −6.8 | 18.2 | −2.1 | 0.15 | −0.45 | 0.14 | 0.66 | −0.81 | −1.69 | −0.12 | 0.37 | 0.58 | 0.33 | 0.28 | 0.79 |
References
- Döll, P.; Douville, H.; Güntner, A.; Schmied, H.M.; Wada, Y. Modelling Freshwater Resources at the Global Scale, Challenges and Prospects. Surv. Geophys. 2016, 37, 195–221. [Google Scholar] [CrossRef] [Green Version]
- Vorosmarty, C.J.; Hoekstra, A.Y.; Bunn, S.E.; Conway, D.; Gupta, J. Fresh Water Goes Global. Science 2015, 349, 478–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Gupta, H.; Springer, E.; Wagener, T. Linking Science with Environmental Decision Making, Experiences from An Integrated Modelling Approach to Supporting Sustainable Water Resources Management. Environ. Model. Softw. 2008, 23, 846–858. [Google Scholar] [CrossRef]
- Kingston, D.; Massei, N.; Dieppois, B.; Hannah, D.; Hartmann, A.; Lavers, D.; Vidal, J.P. Moving Beyond the Catchment Scale, Value and Opportunities in Large-Scale Hydrology to Understand Our Changing World. Hydrol. Process. 2020, 34, 2292–2298. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J.S. The Global Groundwater Crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Mackellar, N.C.; Dadson, S.J.; New, M.; Wolski, P. Evaluation of the JULES Land-Surface Model in Simulating Catchment Hydrology in Southern Africa. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 11093–11128. [Google Scholar]
- Clark, M.P.; Fan, Y.; Lawrence, D.M.; Adam, J.C.; Bolster, D.; Gochis, D.J.; Hooper, R.P.; Kumar, M.; Leung, L.R.; Mackay, D.S.; et al. Improving the Representation of Hydrologic Processes in Earth System Models. Water Resour. Res. 2015, 51, 5929–5956. [Google Scholar] [CrossRef]
- Pokhrel, Y.N.; Hanasaki, N.; Wada, Y.; Kim, H. Recent Progresses in incorporating Human Land–Water Management into Global Land-Surface Models toward their integration into Earth System Models. Wiley Interdiscip. Rev. Water 2016, 3, 548–574. [Google Scholar] [CrossRef] [Green Version]
- Scheidegger, J.M.; Jackson, C.R.; Muddu, S.; Tomar, S.K.; Filgueira, R. integration of 2D Lateral Groundwater Flow into the Variable infiltration Capacity (VIC) Model and Effects on Simulated Fluxes for Different Grid Resolutions and Aquifer Diffusivities. Water 2021, 13, 663. [Google Scholar] [CrossRef]
- Hanasaki, N.; Yoshikawa, S.; Pokhrel, Y.; Kanae, S. A Global Hydrological Simulation to Specify the Sources of Water Used by Humans. Hydrol. Earth Syst. Sci. 2018, 22, 789–817. [Google Scholar] [CrossRef] [Green Version]
- Sutanudjaja, E.H.; Van Beek, R.; Wanders, N.; Wada, Y.; Bosmans, J.H.; Drost, N.; Van Der Ent, R.J.; De Graaf, I.E.; Hoch, J.M.; De Jong, K.; et al. PCR-GLOBWB 2, A 5 Arcmin Global Hydrological and Water Resources Model. Geosci. Model Dev. 2018, 11, 2429–2453. [Google Scholar] [CrossRef] [Green Version]
- Burek, P.; Satoh, Y.; Kahil, T.; Tang, T.; Greve, P.; Smilovic, M.; Guillaumot, L.; Zhao, F.; Wada, Y. Development of the Community Water Model (Cwatm V1. 04)–A High-Resolution Hydrological Model for Global and Regional Assessment of integrated Water Resources Management. Geosci. Model Dev. 2020, 13, 3267–3298. [Google Scholar] [CrossRef]
- Müller Schmied, H.; Cáceres, D.; Eisner, S.; Flörke, M.; Herbert, C.; Niemann, C.; Peiris, T.A.; Popat, E.; Portmann, F.T.; Reinecke, R.; et al. The Global Water Resources and Use Model Watergap V2. 2d, Model Description and Evaluation. Geosci. Model Dev. 2021, 14, 1037–1079. [Google Scholar] [CrossRef]
- Droppers, B.; Franssen, W.H.; Van Vliet, M.T.; Nijssen, B.; Ludwig, F. Simulating Human Impacts on Global Water Resources Using VIC-5. Geosci. Model Dev. 2020, 13, 5029–5052. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MOD-FLOW-2005, the US Geological Survey Modular Groundwater Model, the Groundwater Flow Process; US Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; Mcdowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The Global Abundance and Size Distribution of Lakes, Ponds, and Impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Gao, H.; Naz, B.S.; Kao, S.C.; Voisin, N. integrating A Reservoir Regulation Scheme into A Spatially Distributed Hydrological Model. Adv. Water Resour. 2016, 98, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Haddeland, I.; Skaugen, T.; Lettenmaier, D.P. Anthropogenic Impacts on Continental Surface Water Fluxes. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Döll, P.; Kaspar, F.; Lehner, B. A Global Hydrological Model for Deriving Water Availability indicators, Model Tuning and Validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Hanasaki, N.; Kanae, S.; Oki, T. A Reservoir Operation Scheme for Global River Routing Models. J. Hydrol. 2006, 327, 22–41. [Google Scholar] [CrossRef]
- Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K. An integrated Model for the Assessment of Global Water Resources–Part 1, Model Description and input Meteorological forcing. Hydrol. Earth Syst. Sci. 2008, 12, 1007–1025. [Google Scholar] [CrossRef] [Green Version]
- Biemans, H.; Haddeland, I.; Kabat, P.; Ludwig, F.; Hutjes, R.W.; Heinke, J.; Von Bloh, W.; Gerten, D. Impact of Reservoirs on River Discharge and Irrigation Water Supply During the 20th Century. Water Resour. Res. 2011, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wu, Y. Advancing Representation of Hydrologic Processes in the Soil and Water Assessment Tool (SWAT) through the integration of the topographic MODEL (TOPMODEL) Features. J. Hydrol. 2012, 420, 319–328. [Google Scholar] [CrossRef]
- Yassin, F.; Razavi, S.; Elshamy, M.; Davison, B.; Sapriza-Azuri, G.; Wheater, H. Representation and Improved Parameterization of Reservoir Operation in Hydrological and Land-Surface Models. Hydrol. Earth Syst. Sci. 2019, 23, 3735–3764. [Google Scholar] [CrossRef] [Green Version]
- Tefs, A.A.; Stadnyk, T.A.; Koenig, K.A.; Dery, S.J.; Macdonald, M.K.; Slota, P.; Crawford, J.; Hamilton, M. Simulating River Regulation and Reservoir Performance in A Continental-Scale Hydrologic Model. Environ. Model. Softw. 2021, 141, 105025. [Google Scholar] [CrossRef]
- Meigh, J.R.; Mckenzie, A.A.; Sene, K.J. A Grid-Based Approach to Water Scarcity Estimates for Eastern and Southern Africa. Water Resour. Manag. 1999, 13, 85–115. [Google Scholar] [CrossRef]
- Madhusoodhanan, C.G.; Sreeja, K.G.; Eldho, T.I. Climate Change Impact Assessments on the Water Resources of India under Extensive Human interventions. Ambio 2016, 45, 725–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Hipel, K.W.; Schweizer, V. Strategic insights into the Cauvery River Dispute in India. Sustainability 2020, 12, 1286. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity, Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar]
- Bhave, A.G.; Conway, D.; Dessai, S.; Stainforth, D.A. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India. Water Resour. Res. 2018, 54, 708–728. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M.; Molden, D. Wake Up to Realities of River Basin Closure. Int. J. Water Resour. Dev. 2008, 24, 201–215. [Google Scholar] [CrossRef]
- Patel, S.S.; Ramachandran, P. A Comparison of Machine Learning Techniques for Modelling River Flow Time Series, The Case of Upper Cauvery River Basin. Water Resour. Manag. 2015, 29, 589–602. [Google Scholar] [CrossRef]
- Horan, R.; Wable, P.S.; Srinivasan, V.; Baron, H.E.; Keller, V.J.; Garg, K.K.; Rickards, N.; Simpson, M.; Houghton-Carr, H.A.; Rees, H.G. Modelling Small-Scale Storage interventions in Semi-Arid India at the Basin Scale. Sustainability 2021, 13, 6129. [Google Scholar] [CrossRef]
- Horan, R.; Gowri, R.; Wable, P.S.; Baron, H.; Keller, V.D.; Garg, K.K.; Mujumdar, P.P.; Houghton-Carr, H.; Rees, G. A Comparative Assessment of Hydrological Models in the Upper Cauvery Catchment. Water 2021, 13, 151. [Google Scholar] [CrossRef]
- Raju, B.K.; Nandagiri, L. Assessment of Variable Source Area Hydrological Models in Humid Tropical Watersheds. Int. J. River Basin Manag. 2018, 16, 145–156. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate Change Impact Assessment on Hydrology of Indian River Basins. Curr. Sci. 2006, 90, 346–353. [Google Scholar]
- Singh, A.; Gosain, A.K. Climate Change Impact Assessment Using GIS-Based Hydrological Modelling. Water Int. 2011, 36, 386–397. [Google Scholar] [CrossRef]
- Bhuvaneswari, K.; Geethalakshmi, V.; Lakshmanan, A.; Srinivasan, R.; Sekhar, N.U. the Impact of El Nino/Southern Oscillation on Hydrology and Rice Productivity in the Cauvery Basin, India, Application of the Soil and Water Assessment Tool. Weather Clim. Extrem. 2013, 2, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Mandal, U.; Sahoo, S.; Munusamy, S.B.; Dhar, A.; Panda, S.N.; Kar, A.; Mishra, P.K. Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique. Water Resour. Manag. 2016, 30, 4293–4310. [Google Scholar] [CrossRef]
- Geetha, K.; Mishra, S.K.; Eldho, T.I.; Rastogi, A.K.; Pandey, R.P. SCS-CN-Based Continuous Simulation Model for Hydrologic forecasting. Water Resour. Manag. 2008, 22, 165–190. [Google Scholar] [CrossRef]
- Parvez, M.B.; Inayathulla, M. Estimation of Surface Runoff by Soil Conservation Service Curve Number Model for Upper Cauvery Karnataka. Int. J. Sci. Res. Multidiscip. Stud. 2019, 5, 11. [Google Scholar]
- Raje, D.; Priya, P.; Krishnan, R. Macroscale Hydrological Modelling Approach for Study of Large-Scale Hydrologic Impacts Under Climate Change in Indian River Basins. Hydrol. Process. 2014, 28, 1874–1889. [Google Scholar] [CrossRef]
- Gupta, H.; Chakrapani, G.J. Temporal and Spatial Variations in Water Flow and Sediment Load in Narmada River Basin, India, Natural and Man-Made Factors. Environ. Geol. 2005, 48, 579–589. [Google Scholar] [CrossRef]
- Thomas, T.; Gunthe, S.S.; Ghosh, N.C.; Sudheer, K.P. Analysis of Monsoon Rainfall Variability Over Narmada Basin in Central India, Implication of Climate Change. J. Water Clim. Chang. 2015, 6, 615–627. [Google Scholar] [CrossRef]
- Nayak, T.; Verma, M.K.; Bindu, S.H. SCS Curve Number Method in Narmada Basin. Int. J. Geomat. Geosci. 2012, 3, 219–228. [Google Scholar]
- Rai, P.K.; Chaubey, P.K.; Mohan, K.; Singh, P. Geoinformatics for Assessing the inferences of Quantitative Drainage Morphometry of the Narmada Basin in India. Appl. Geomat. 2017, 9, 167–189. [Google Scholar] [CrossRef]
- Jain, S.K.; Storm, B.; Bathurst, J.C.; Refsgaard, J.C.; Singh, R.D. Application of the SHE to Catchments in India Part 2. Field Experiments and Simulation Studies with the SHE on the Kolar Subcatchment of the Narmada River. J. Hydrol. 1992, 140, 25–47. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Mishra, S.K.; Pandey, A. Effects of Seasonal/Monthly Variation on Runoff Curve Number for Selected Watersheds of Narmada Basin. Int. J. Environ. Sci. 2013, 3, 2019–2030. [Google Scholar]
- Khare, D.; Patra, D.; Mondal, A.; Kundu, S. Impact of Land-use/Land Cover Change on Runoff in the Catchment of a Hydro Power Project. Appl. Water Sci. 2017, 7, 787–800. [Google Scholar] [CrossRef]
- Pathan, H.; Joshi, G.S. Estimation of Runoff Using SCS-CN Method and Arcgis for Karjan Reservoir Basin. Int. J. Appl. Eng. Res. 2019, 14, 2945–2951. [Google Scholar]
- Tiwari, D.; Tiwari, H.L.; Saini, R. Hydrological Modelling in Narmada Basin Using Remote Sensing and GIS with SWAT Model and Runoff Prediction in Patan Watershed. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4, 344–352. [Google Scholar]
- Rickards, N.; Thomas, T.; Kaelin, A.; Houghton-Carr, H.; Jain, S.K.; Mishra, P.K.; Nema, M.K.; Dixon, H.; Rahman, M.M.; Horan, R.; et al. Understanding Future Water Challenges in A Highly Regulated Indian River Basin—Modelling the Impact of Climate Change on the Hydrology of the Upper Narmada. Water 2020, 12, 1762. [Google Scholar] [CrossRef]
- Tomer, S.K.; Al Bitar, A.; Sekhar, M.; Zribi, M. MAPSM: A Spatio-Temporal Algorithm for Merging Soil Moisture from Active and Passive Microwave Remote Sensing. Remote Sens. 2016, 8, 990. [Google Scholar] [CrossRef] [Green Version]
- Mcdonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model; US Geological Survey: Reston, VA, USA, 1988. [Google Scholar]
- Subash, Y.; Sekhar, M.; Tomer, S.; Sharma, A. A Framework for Assessment of Climate Change Impacts on the Groundwater System. In Sustainable Water Resources Management; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar]
- Mondal, A.; Narasimhan, B.; Sekhar, M.; Mujumdar, P.P. Hydrologic Modelling. Proc. Indian Natl. Sci. Acad. Part A Phys. Sci. 2016, 82, 817–832. [Google Scholar] [CrossRef]
- Sekhar, M.; Riotte, J.; Ruiz, L.; Jouquet, P.; Braun, J.J. Influences of Climate and Agriculture on Water and Biogeochemical Cycles, Kabini Critical Zone Observatory. Proc. Indian Natl. Sci. Acad. 2016, 82, 833–846. [Google Scholar] [CrossRef]
- Robert, M.; Thomas, A.; Sekhar, M.; Raynal, H.; Casellas, É.; Casel, P.; Chabrier, P.; Joannon, A.; Bergez, J.É. A Dynamic Model for Water Management at the Farm Level integrating Strategic, Tactical and Operational Decisions. Environ. Model. Softw. 2018, 100, 123–135. [Google Scholar] [CrossRef]
- De Bruin, A.; De Condappa, D.; Mikhail, M.; Tomer, S.K.; Sekhar, M.; Barron, J. Simulated Water Resource Impacts and Livelihood Implications of Stakeholder-Developed Scenarios in the Jaldhaka Basin, India. Water Int. 2012, 37, 492–508. [Google Scholar] [CrossRef]
- Baron, H.; Keller, V.; Horan, R.; Houghton-Carr, H.; Rees, G.; Collins, S.; Jackson, C.; Mujumdar, P.; Muddu, S.; Rajendran, R. Estimating current and future groundwater resources across the Cauvery basin using a macro-scale gridded water-resource model. In EGU General Assembly Conference Abstracts; European Geosciences Union: Munich, Germany, 2020. [Google Scholar]
- Hanasaki, N.; Inuzuka, T.; Kanae, S.; Oki, T. An Estimation of Global Virtual Water Flow and Sources of Water withdrawal for Major Crops and Livestock Products Using a Global Hydrological Model. J. Hydrol. 2010, 384, 232–244. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. An Operation-Based Scheme for a Multiyear and Multipurpose Reservoir to Enhance Macroscale Hydrologic Models. J. Hydrometeorol. 2012, 13, 270–283. [Google Scholar] [CrossRef]
- Wang, K.; Shi, H.; Chen, J.; Li, T. An Improved Operation-Based Reservoir Scheme integrated with Variable infiltration Capacity Model for Multiyear and Multipurpose Reservoirs. J. Hydrol. 2019, 57, 365–375. [Google Scholar] [CrossRef]
- Thomas, T.; Ghosh, N.C.; Sudheer, K.P. Optimal Reservoir Operation–A Climate Change Adaptation Strategy for Narmada Basin in Central India. J. Hydrol. 2021, 598, 126238. [Google Scholar] [CrossRef]
- Goswami, S.B.; Kar, S.C. Simulation of Water Cycle Components in the Narmada River Basin by forcing SWAT Model with CFSR Data. Meteorol. Hydrol. Water Manag. Res. Oper. Appl. 2018, 6, 13–25. [Google Scholar] [CrossRef]
- Pechlivanidis, I.G.; Arheimer, B. Large-Scale Hydrological Modelling by Using Modified PUB Recommendations, the India-HYPE Case. Hydrol. Earth Syst. Sci. 2015, 19, 4559–4579. [Google Scholar] [CrossRef] [Green Version]
- Nema, S.; Awasthi, M.K.; Nema, R.K. Conceptual Groundwater Modelling in an Alluvial Aquifer of Upper Narmada Basin. J. Soil Water Conserv. 2019, 18, 179–187. [Google Scholar] [CrossRef]
- Maheswaran, R.; Khosa, R. Wavelet–Volterra Coupled Model for Monthly Stream Flow forecasting. J. Hydrol. 2012, 450, 320–335. [Google Scholar] [CrossRef]
- Collins, S.L.; Loveless, S.E.; Muddu, S.; Buvaneshwari, S.; Palamakumbura, R.N.; Krabbendam, M.; Lapworth, D.J.; Jackson, C.R.; Gooddy, D.C.; Nara, S.N.; et al. Groundwater Connectivity of a Sheared Gneiss Aquifer in the Cauvery River Basin, India. Hydrogeol. J. 2020, 28, 1371–1388. [Google Scholar] [CrossRef] [Green Version]
- Hora, T.; Srinivasan, V.; Basu, N.B. the Groundwater Recovery Paradox in South India. Geophys. Res. Lett. 2019, 46, 9602–9611. [Google Scholar] [CrossRef]
- Pai, D.S.; Rajeevan, M.; Sreejith, O.P.; Mukhopadhyay, B.; Satbha, N.S. Development of a New High Spatial Resolution (0.25 × 0.25) Long Period (1901–2010) Daily Gridded Rainfall Data Set Over India and Its Comparison with Existing Data Sets Over the Region. Mausam 2014, 65, 1–8. [Google Scholar]
- NASA Jet Propulsion Laboratory (JPL), NASA Shuttle Radar Topography Mission Global 1 Arc Second Number, National Aeronautics and Space Administration, U.S. Government, NASA. Pasadena, CA, USA. 2013. Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 20 October 2018).
- Fischer, G.; Nachtergaele, F.; Prieler, S.; Van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture; International Institute for Applied Systems Analysis, Food and Agriculture Organization of the United Nations: Laxenburg, Austria; Rome, Italy, 2008; pp. 26–31. [Google Scholar]
- Allen, D.M.; Cannon, A.J.; Toews, M.W.; Scibek, J. Variability in Simulated Recharge Using Different GCMS. Water Resour. Res. 2010, 46, 1–18. [Google Scholar]
- Roy, P.S.; Meiyappan, P.; Joshi, P.K.; Kale, M.P.; Srivastav, V.K.; Srivasatava, S.K.; Behera, M.D.; Roy, A.; Sharma, Y.; Ramachandran, R.M.; et al. Decadal Land Use and Land Cover Classifications Across India, 1985, 1995, 2005; ORNL DAAC: Oak Ridge, TN, USA, 2016. [Google Scholar]
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000—Global Monthly Irrigated and Rainfed Crop Areas Around the Year 2000, A New High-Resolution Data Set for Agricultural and Hydrological Modelling. Glob. Biogeochem. Cycles 2010, 24, 1–24. [Google Scholar] [CrossRef]
- Robinson, T.P.; Wint, G.W.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the Global Distribution of Livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations, AQUASTAT. Food and Agriculture Organization of the United Nations. Available online: http//www.Fao.Org/Aquastat/Statistics/Query/index.Html?Lang=En (accessed on 19 January 2019).
Reservoir | Basin | Capacity (109 m3) | Simulated Average Annual Inflow (1010 m3/Year) | c | Equation | α | β |
---|---|---|---|---|---|---|---|
Hemavathy | Cauvery | 0.99 | 0.22 | 0.45 | 5 | 0.7 | 0.8 |
Krishna Raja Sagara (KRS) | Cauvery | 1.016 | 0.35 | 0.29 | 5 | 0.7 | 1 |
Kabini | Cauvery | 0.44 | 0.15 | 0.29 | 5 | 0.1 | 1 |
Bhavanisagar | Cauvery | 0.791 | 0.09 | 0.86 | 4 | 1 | |
Mettur | Cauvery | 2.64 | 0.70 | 0.38 | 5 | 1 | 0.1 |
Bargi | Narmada | 3.18 | 0.32 | 1.01 | 4 | 0.3 | |
Barna | Narmada | 0.539 | 0.21 | 0.26 | 5 | 0.3 | 0.3 |
Tawa | Narmada | 2.313 | 0.27 | 0.86 | 4 | 0.3 | |
Indira Sagar Project (ISP) | Narmada | 10 | 3.03 | 0.33 | 5 | 0.1 | 1 |
Omkareshwar Sagar Project (OSP) | Narmada | 0.987 | 1.40 | 0.07 | 5 | 0.1 | 1 |
Sardar Sarovar Project (SSP) | Narmada | 9.5 | 3.69 | 0.26 | 5 | 0.5 | 0.3 |
Karjan | Narmada | 0.63 | 3.89 | 0.02 | 5 | 0.1 | 0.3 |
Reservoir Outlet | Bias (%) | Daily NSE | ||
---|---|---|---|---|
GWAVA | GWAVA-Res | GWAVA | GWAVA-Res | |
Bargi | 17.8 | 3.2 | 0.53 | 0.62 |
Tawa | 7.57 | 0.4 | 0.74 | 0.7 |
SSP | 16.09 | 4.35 | 0.62 | 0.65 |
Kabini | −13.45 | 3.64 | 0.37 | 0.59 |
KRS | −33.69 | −15.43 | 0.38 | 0.52 |
Mettur | −4.69 | 9.35 | −0.25 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horan, R.; Rickards, N.J.; Kaelin, A.; Baron, H.E.; Thomas, T.; Keller, V.D.J.; Mishra, P.K.; Nema, M.K.; Muddu, S.; Garg, K.K.; et al. Extending a Large-Scale Model to Better Represent Water Resources without Increasing the Model’s Complexity. Water 2021, 13, 3067. https://doi.org/10.3390/w13213067
Horan R, Rickards NJ, Kaelin A, Baron HE, Thomas T, Keller VDJ, Mishra PK, Nema MK, Muddu S, Garg KK, et al. Extending a Large-Scale Model to Better Represent Water Resources without Increasing the Model’s Complexity. Water. 2021; 13(21):3067. https://doi.org/10.3390/w13213067
Chicago/Turabian StyleHoran, Robyn, Nathan J. Rickards, Alexandra Kaelin, Helen E. Baron, Thomas Thomas, Virginie D. J. Keller, Prabhas K. Mishra, Manish K. Nema, Sekhar Muddu, Kaushal K. Garg, and et al. 2021. "Extending a Large-Scale Model to Better Represent Water Resources without Increasing the Model’s Complexity" Water 13, no. 21: 3067. https://doi.org/10.3390/w13213067
APA StyleHoran, R., Rickards, N. J., Kaelin, A., Baron, H. E., Thomas, T., Keller, V. D. J., Mishra, P. K., Nema, M. K., Muddu, S., Garg, K. K., Pathak, R., Houghton-Carr, H. A., Dixon, H., Jain, S. K., & Rees, G. (2021). Extending a Large-Scale Model to Better Represent Water Resources without Increasing the Model’s Complexity. Water, 13(21), 3067. https://doi.org/10.3390/w13213067