Influences on the Seismic Response of a Gravity Dam with Different Foundation and Reservoir Modeling Assumptions
Abstract
:1. Introduction
2. Hydrodynamic Pressure Modelling Approaches
2.1. Westergaard Added Mass Method
2.2. Potential-Based Fluid Formulation
3. Viscoelastic Artificial Boundary and Earthquake Input Mechanisms
3.1. Viscoelastic Artificial Boundary Condition
3.2. Earthquake Input Mechanisms
3.3. Verification Test
4. General Description of the Numerical Example
4.1. General Information
4.2. Cases of the Numerical Analysis
5. Dynamic Characteristics
6. Dam-Foundation Interaction
6.1. Simulation Methods of Foundation
6.2. Sensitivity Analysis of Foundation Size
6.3. The Radiation Damping Effect of Infinite Foundation
6.3.1. Verification of the Foundation Model
6.3.2. The Radiation Damping Effect
7. Dam–Reservoir Interaction
7.1. Simulation Methods of Reservoir
7.2. Reservoir Water Length
8. Conclusions
- (1)
- The natural frequency of the dam decreases greatly in numerical analysis when the dam–foundation interaction is considered, and decreases slightly with the increase in the foundation size. The simulation methods of reservoir water have significant effects on the natural frequency of the dam, whereas the reservoir water lengths have no significant effect.
- (2)
- The dynamic interaction of the dam and the foundation cannot be ignored. The radiation damping effect should be considered in the dynamic numerical analysis. The viscoelastic artificial boundary foundation is more efficient than the massless foundation in simulating the radiation damping effect of the far-field foundation. It was found that a foundation range of 3 times the dam height in all directions, such as upstream, downstream, and depth, is the most reasonable range of the truncation boundary of the foundation.
- (3)
- The methods used for reservoir water simulation have no significant effects on the acceleration and displacement of the dam, but have a significant effect on the stress. Compared with the Westergaard added mass method, the potential-based fluid simulation method simultaneously takes into account the reservoir–dam and reservoir–foundation interactions. The static and dynamic water pressure was applied to the upstream foundation surface as the reservoir water, which may cause downward deformation of the foundation and consequently increase the normal tensile stress at the dam heel. It was found that a reservoir length of 3 times the dam height is feasible for the truncation boundary of the reservoirs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghaedi, K.; Hejazi, F.; Ibrahim, Z.; Khanzaei, P. Flexible foundation effect on seismic analysis of roller compacted concrete (RCC) dams using finite element method. KSCE J. Civ. Eng. 2017, 22, 1275–1287. [Google Scholar] [CrossRef]
- Bayraktar, A.; Hançer, E.; Akköse, M. Influence of base-rock characteristics on the stochastic dynamic response of dam–reservoir–foundation systems. Eng. Struct. 2005, 27, 1498–1508. [Google Scholar] [CrossRef]
- Ghaemian, M.; Noorzad, A.; Mohammadnezhad, H. Assessment of foundation mass and earthquake input mechanism effect on dam–reservoir–foundation system response. Int. J. Civ. Eng. 2019, 17, 473–480. [Google Scholar] [CrossRef]
- Salamon, J.W.; Wood, C.; Hariri-Ardebili, M.A.; Malm, R.; Faggiani, G. Seismic Analysis of Pine Flat Concrete Dam: Formulation and Synthesis of Results; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–97. [Google Scholar]
- Chopra, A. Earthquake analysis of concrete dams: Factors to be considered. In Proceedings of the Proceedings of the 10th National Conference in Earthquake Engineering, Anchorage, AK, USA, 21–25 July 2014. [Google Scholar]
- Hariri-Ardebili, M.A.; Kolbadi, S.M.S.; Kianoush, M. FEM-based parametric analysis of a typical gravity dam considering input excitation mechanism. Soil Dyn. Earthq. Eng. 2016, 84, 22–43. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Mirzabozorg, H. A comparative study of seismic stability of coupled arch dam-foundation-reservoir systems using infinite elements and viscous boundary models. Int. J. Struct. Stab. Dyn. 2013, 13, 1350032. [Google Scholar] [CrossRef]
- Burman, A.; Nayak, P.; Agrawal, P.; Maity, D. Coupled gravity dam–foundation analysis using a simplified direct method of soil–structure interaction. Soil Dyn. Earthq. Eng. 2012, 34, 62–68. [Google Scholar] [CrossRef]
- Wang, H.; Feng, M.; Yang, H. Seismic nonlinear analyses of a concrete gravity dam with 3D full dam model. Bull. Earthq. Eng. 2012, 10, 1959–1977. [Google Scholar] [CrossRef]
- Lysmer, J.; Kuhlemeyer, R.L. Finite dynamic model for infinite media. J. Eng. Mech. Div. 1969, 95, 859–878. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A. Impact of foundation nonlinearity on the crack propagation of high concrete dams. Soil Mech. Found. Eng. 2014, 51, 72–82. [Google Scholar] [CrossRef]
- Liu, J.; Du, Y.; Du, X.; Wang, Z.; Wu, J. 3D viscous-spring artificial boundary in time domain. Earthq. Eng. Eng. Vib. 2006, 5, 93–102. [Google Scholar] [CrossRef]
- Liang, H.; Tu, J.; Guo, S.; Liao, J.; Li, D.; Peng, S. Seismic fragility analysis of a High Arch Dam-Foundation System based on seismic instability failure mode. Soil Dyn. Earthq. Eng. 2020, 130, 105981. [Google Scholar] [CrossRef]
- Song, C.; Wolf, J.P. The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Comput. Methods Appl. Mech. Eng. 1997, 147, 329–355. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, D.; Liu, L.; Ooi, E.T.; Eisenträger, S.; Song, C. A direct time-domain procedure for the seismic analysis of dam–foundation–reservoir systems using the scaled boundary finite element method. Comput. Geotech. 2021, 138, 104364. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Kianoush, M. Integrative seismic safety evaluation of a high concrete arch dam. Soil Dyn. Earthq. Eng. 2014, 67, 85–101. [Google Scholar] [CrossRef]
- Basu, U.; Chopra, A.K. Erratum to‘Perfectly matched layers for transient elastodynamics of unbounded domains’(Int. J. Numer. Meth. Engng 2004; 59:1039–1074). Int. J. Numer. Methods Eng. 2004, 61, 156–157. [Google Scholar] [CrossRef]
- Harirri-Ardebili, M.A.; Saouma, V.E. Impact of near-fault vs. far-field ground motions on the seismic response of an arch dam with respect to foundation type. Dam Eng. 2013, 24, 19–52. [Google Scholar]
- Pan, J.W.; Song, C.M.; Zhang, C.H. Simple model for gravity dam response considering radiation damping effects. J. Hydraul. Eng. 2010, 41, 493–498. [Google Scholar] [CrossRef]
- Chen, D.; Hou, C.; Wang, F. Influences on the seismic response of the gravity dam-foundation-reservoir system with different boundary and input models. Shock. Vib. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Lu, W.; Zhou, C.; Chen, M.; Yan, P. XFEM based seismic potential failure mode analysis of concrete gravity dam–water–foundation systems through incremental dynamic analysis. Eng. Struct. 2015, 98, 81–94. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Lu, W.; Yan, P.; Zhou, W.; Chen, M. A general definition of integrated strong motion duration and its effect on seismic demands of concrete gravity dams. Eng. Struct. 2016, 125, 481–493. [Google Scholar] [CrossRef]
- Gorai, S.; Maity, D. Seismic response of concrete gravity dams under near field and far field ground motions. Eng. Struct. 2019, 196, 109292. [Google Scholar] [CrossRef]
- Chen, D.-H.; Yang, Z.-H.; Wang, M.; Xie, J.-H. Seismic performance and failure modes of the Jin’anqiao concrete gravity dam based on incremental dynamic analysis. Eng. Fail. Anal. 2019, 100, 227–244. [Google Scholar] [CrossRef]
- Asghari, E.; Taghipour, R.; Bozorgnasab, M.; Moosavi, M. Seismic analysis of concrete gravity dams considering foundation mass effect. KSCE J. Civ. Eng. 2018, 22, 4988–4996. [Google Scholar] [CrossRef]
- Mirzabozorg, H.; Akbari, M.; Hariri-Ardebili, M.A. Wave passage and incoherency effects on seismic response of high arch dams. Earthq. Eng. Eng. Vib. 2012, 11, 567–578. [Google Scholar] [CrossRef]
- Westergaard, H.M. Water pressures on dams during earthquakes. Trans. Am. Soc. Civ. Eng. 1933, 98, 418–433. [Google Scholar] [CrossRef]
- Khiavi, M.P.; Sari, A. Evaluation of hydrodynamic pressure distribution in reservoir of concrete gravity dam under vertical vibration using an analytical solution. Math. Probl. Eng. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Amina, T.B.; Mohamed, B.; André, L.; Abdelmalek, B. Fluid–structure interaction of Brezina arch dam: 3D modal analysis. Eng. Struct. 2015, 84, 19–28. [Google Scholar] [CrossRef]
- Altunişik, A.C.; Sesli, H. Dynamic response of concrete gravity dams using different water modelling approaches: Westergaard, lagrange and euler. Comput. Concr. 2015, 16, 429–448. [Google Scholar] [CrossRef]
- Altunisik, A.C.; Sesli, H.; Hüsem, M.; Akköse, M. Performance Evaluation of gravity dams subjected to near- and far-fault ground motion using Euler approaches. Iran. J. Sci. Technol. Trans. Civ. Eng. 2018, 43, 297–325. [Google Scholar] [CrossRef]
- Bayraktar, A.; Türker, T.; Akköse, M.; Ateş, Ş. The effect of reservoir length on seismic performance of gravity dams to near- and far-fault ground motions. Nat. Hazards 2010, 52, 257–275. [Google Scholar] [CrossRef]
- Kartal, M.E.; Cavusli, M.; Sunbul, A.B. Assessing seismic response of a 2D roller-compacted concrete dam under variable reservoir lengths. Arab. J. Geosci. 2017, 10, 488. [Google Scholar] [CrossRef]
- Pelecanos, L.; Kontoe, S.; Zdravković, L. Numerical modelling of hydrodynamic pressures on dams. Comput. Geotech. 2013, 53, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Mandal, K.; Maity, D. Transient response of concrete gravity dam considering dam-reservoir-foundation interaction. J. Earthq. Eng. 2016, 22, 211–233. [Google Scholar] [CrossRef]
- Løkke, A.; Chopra, A.K. Direct finite element method for nonlinear earthquake analysis of 3-dimensional semi-unbounded dam-water-foundation rock systems. Earthq. Eng. Struct. Dyn. 2018, 47, 1309–1328. [Google Scholar] [CrossRef]
- Løkke, A.; Chopra, A.K. Direct finite element method for nonlinear earthquake analysis of concrete dams: Simplification, modeling, and practical application. Earthq. Eng. Struct. Dyn. 2019, 48, 818–842. [Google Scholar] [CrossRef]
- Chopra, A.K. Earthquake analysis of arch dams: Factors to be considered. J. Struct. Eng. 2012, 138, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-T.; Lv, D.-D.; Jin, F.; Zhang, C.-H. Earthquake damage analysis of arch dams considering dam–water–foundation interaction. Soil Dyn. Earthq. Eng. 2013, 49, 64–74. [Google Scholar] [CrossRef]
- Wang, J.-T.; Zhang, C.-H.; Jin, F. Nonlinear earthquake analysis of high arch dam-water-foundation rock systems. Earthq. Eng. Struct. Dyn. 2012, 41, 1157–1176. [Google Scholar] [CrossRef]
- Amini, A.; Motamedi, M.H.; Ghaemian, M. The Impact of dam-reservoir-foundation interaction on nonlinear response of concrete gravity dams. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2008; pp. 585–594. [Google Scholar]
- Clough, R.W. Reservoir interaction effects on the dynamic response of arch dams. In Proceedings of the US-PRC Bilateral workshop on Earthquake Engineering, Harbin, China, 27–31 August 1982; pp. 58–84. [Google Scholar]
- Sussman, T.; Sundqvist, J. Fluid–structure interaction analysis with a subsonic potential-based fluid formulation. Comput. Struct. 2003, 81, 949–962. [Google Scholar] [CrossRef]
- Yan, C.L. Study on the Mechanism of Strong Earthquake Failure of Concrete Gravity Dams Considering Material Tensile and Com-Pression Damage; Chain Institute of Water Resources and Hydropower Research: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. Design Code for Hydraulic Concrete Structures (SL 191-2008); China Water Power Press: Beijing, China, 2008; p. 23.
- Zeinizadeh, A.; Mirzabozorg, H.; Noorzad, A.; Amirpour, A. Hydrodynamic pressures in contraction joints including waterstops on seismic response of high arch dams. In Structures; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–14. [Google Scholar] [CrossRef]
- Mahmoodi, K.; Noorzad, A.; Mahboubi, A.; Alembagheri, M. Seismic performance assessment of a cemented material dam using incremental dynamic analysis. In Structures; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1187–1198. [Google Scholar] [CrossRef]
Cases | Dam | Foundation | Reservoir | ||||
---|---|---|---|---|---|---|---|
Simulation Methods | Foundation Sizes (H = Dam Height) | Simulation Methods | Reservoir Lengths | ||||
Upstream | Downstream | Depth | |||||
A-1 | Linear | RF | / | / | / | WAMR | / |
B-1 | Linear | MLF | 1H | 1H | 1H | WAMR | / |
B-2 | Linear | MLF | 1.5H | 1.5H | 1.5H | WAMR | / |
B-3 | Linear | MLF | 2H | 2H | 2H | WAMR | / |
B-4 | Linear | MLF | 3H | 3H | 3H | WAMR | / |
C-1 | Linear | VABF | 1H | 1H | 1H | WAMR | / |
C-2 | Linear | VABF | 1.5H | 1.5H | 1.5H | WAMR | / |
C-3 | Linear | VABF | 2H | 2H | 2H | WAMR | / |
C-4 | Linear | VABF | 3H | 3H | 3H | WAMR | / |
D-1 | Linear | VABF | 3H | 3H | 3H | IPFR | 3H |
D-2 | Linear | VABF | 3H | 3H | 3H | CPFR | 3H |
D-3 | Linear | MLF | 3H | 1H | 1H | WAMR | 3H |
D-4 | Linear | MLF | 3H | 1H | 1H | IPFR | 3H |
D-5 | Linear | MLF | 3H | 1H | 1H | CPFR | 3H |
D-6 | Linear | MLF | 4H | 1H | 1H | CPFR | 4H |
D-7 | Linear | MLF | 5H | 1H | 1H | CPFR | 5H |
Case | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th |
---|---|---|---|---|---|---|---|---|---|---|
A-1 | 1.926 | 4.261 | 6.951 | 7.251 | 10.147 | 12.751 | 14.612 | 15.029 | 16.732 | 17.064 |
B-1/C-1 | 1.286 | 2.943 | 3.306 | 5.082 | 7.949 | 10.771 | 11.046 | 12.752 | 13.752 | 14.344 |
B-2/C-2 | 1.247 | 2.838 | 3.032 | 4.994 | 7.906 | 10.681 | 11.023 | 12.726 | 13.730 | 14.310 |
B-3/C-3 | 1.223 | 2.747 | 2.892 | 4.941 | 7.881 | 10.633 | 11.011 | 12.713 | 13.719 | 14.295 |
B-4/C-4 | 1.194 | 2.582 | 2.775 | 4.877 | 7.853 | 10.583 | 10.997 | 12.701 | 13.709 | 14.280 |
D-1 | 1.294 | 1.968 | 2.405 | 3.183 | 3.574 | 5.263 | 5.710 | 7.394 | 9.151 | 10.025 |
D-2 | 1.243 | 1.474 | 1.921 | 2.607 | 3.022 | 3.227 | 3.912 | 4.510 | 4.843 | 4.997 |
D-3 | 1.282 | 2.919 | 3.303 | 5.047 | 7.927 | 10.770 | 11.032 | 12.750 | 13.747 | 14.344 |
D-4 | 1.387 | 2.976 | 3.492 | 3.499 | 4.304 | 5.580 | 5.993 | 7.548 | 9.222 | 10.116 |
D-5 | 1.322 | 1.751 | 2.152 | 2.810 | 3.392 | 3.484 | 3.986 | 4.903 | 4.929 | 5.150 |
D-6 | 1.322 | 1.708 | 1.970 | 2.415 | 2.962 | 3.419 | 3.484 | 3.907 | 4.595 | 4.903 |
D-7 | 1.322 | 1.681 | 1.871 | 2.185 | 2.604 | 3.060 | 3.440 | 3.484 | 3.856 | 4.407 |
Case | A-1 | B-1 | C-1 | |
---|---|---|---|---|
Simulation Methods of Foundation | RF | MLF | VABF | |
Downstream direction | Acceleration magnification factor | 5.894 | 4.680 | 2.112 |
Relative displacement (m) | 0.081 | 0.148 | 0.100 | |
Vertical direction | Acceleration magnification | 5.483 | 3.447 | 1.781 |
Relative displacement (m) | −0.031 | −0.037 | −0.022 | |
Dam stress (MPa) | Vertical normal tensile stress (σzz) | 7.369 | 9.227 | 3.042 |
Vertical normal compressive stress (σzz) | −8.255 | −20.05 | −15.08 | |
Principal tensile stress (σ1) | 7.969 | 16.64 | 10.56 | |
Principal compressive stress (σ3) | −10.03 | −28.00 | −24.89 |
Case | B-1 | B-2 | B-3 | B-4 | |
---|---|---|---|---|---|
Foundation Size | 1H | 1.5H | 2H | 3H | |
Downstream direction | Acceleration magnification factor | 4.680 | 5.057 | 5.789 | 3.477 |
Relative displacement (m) | 0.148 | 0.150 | 0.154 | 0.141 | |
Vertical direction | Acceleration magnification | 3.447 | 3.056 | 3.856 | 4.220 |
Relative displacement (m) | −0.037 | −0.038 | −0.048 | −0.042 | |
Dam stress (MPa) | Vertical normal tensile stress (σzz) | 9.227 | 9.903 | 8.770 | 6.754 |
Vertical normal compressive stress (σzz) | −20.05 | −20.79 | −21.15 | −18.72 | |
Principal tensile stress (σ1) | 16.64 | 16.37 | 13.70 | 10.66 | |
Principal compressive stress (σ3) | −28.00 | −29.52 | −27.21 | −28.01 |
Foundation Size | Downstream | Vertical | ||||
---|---|---|---|---|---|---|
M | N | O | M | N | O | |
1H | 25.185 (2.008) | 26.065 (2.078) | 24.103 (1.922) | 25.712 (2.050) | −27.683 (2.207) | 23.948 (1.909) |
1.5H | −25.773 (2.055) | 26.833 (2.139) | 23.757 (1.894) | −25.197 (2.009) | −26.204 (2.089) | −24.580 (1.960) |
2H | 25.141 (2.005) | −27.651 (2.205) | 23.269 (1.855) | 25.277 (2.015) | 26.125 (2.083) | 25.152 (2.005) |
3H | 25.451 (2.029) | −27.316 (2.178) | 23.394 (1.865) | 25.234 (2.012) | 26.589 (2.120) | 25.749 (2.053) |
Foundation Size | Downstream | Vertical | ||||
---|---|---|---|---|---|---|
M | N | O | M | N | O | |
1H | 3.506 (−24.6%) | 4.133 (−11.1%) | 4.121 (−11.3%) | 2.807 (−8.1%) | 3.410 (+11.6%) | 3.125 (+2.3%) |
1.5H | −4.259 (−8.4%) | −4.572 (−1.6%) | −3.819 (−17.8%) | 3.541 (+15.9%) | 2.898 (−5.2%) | 3.178 (+4.0%) |
2H | −4.200 (−9.6%) | −4.716 (+1.5%) | −5.092 (+9.6%) | 3.027 (−0.9%) | 3.031 (−0.8%) | 3.888 (+27.2%) |
3H | 4.493 (−3.3%) | −4.472 (−3.8%) | 4.509 (−3.0%) | 2.792 (−8.6%) | −3.267 (+6.9%) | 3.405 (+11.4%) |
Case | C-1 | C-2 | C-3 | C-4 | |
---|---|---|---|---|---|
Foundation Size | 1H | 1.5H | 2H | 3H | |
Downstream direction | Acceleration magnification factor | 2.112 | 2.052 | 1.992 | 1.910 |
Relative displacement (m) | 0.100 | 0.088 | 0.081 | 0.074 | |
Vertical direction | Acceleration magnification | 1.781 | 1.529 | 1.654 | 1.654 |
Relative displacement (m) | −0.022 | −0.023 | −0.024 | −0.022 | |
Dam stress (MPa) | Vertical normal tensile stress (σzz) | 3.042 | 2.524 | 2.368 | 2.403 |
Vertical normal compressive stress (σzz) | −15.08 | −13.78 | −12.97 | −12.03 | |
Principal tensile stress (σ1) | 10.56 | 7.719 | 6.361 | 4.698 | |
Principal compressive stress (σ3) | −24.89 | −23.45 | −22.39 | −21.19 |
Case | C-4 | D-1 | D-2 | D-3 | D-4 | D-5 | |
---|---|---|---|---|---|---|---|
Simulation Method of Foundation | VABF | MLF | |||||
Simulation Method of Reservoir Water | WAMR | IPFR | CPFR | WAMR | IPFR | CPFR | |
Downstream direction | Acceleration magnification factor | 1.910 | 2.429 | 2.219 | 4.575 | 4.833 | 5.249 |
Relative displacement (m) | 0.074 | 0.069 | 0.068 | 0.149 | 0.112 | 0.172 | |
Vertical direction | Acceleration magnification | 1.654 | 1.822 | 1.715 | 3.433 | 4.085 | 2.660 |
Relative displacement (m) | −0.022 | −0.017 | −0.018 | −0.037 | −0.032 | −0.027 | |
Dam stress (MPa) | Vertical normal tensile stress (σzz) | 2.403 | 5.477 | 6.374 | 8.122 | 9.161 | 11.224 |
Vertical normal compressive stress (σzz) | −12.03 | −8.797 | −9.121 | −20.27 | −11.84 | −13.65 | |
Principal tensile stress (σ1) | 4.698 | 12.11 | 13.98 | 14.48 | 15.07 | 17.91 | |
Principal compressive stress (σ3) | −21.19 | −19.09 | −19.50 | −27.99 | −22.55 | −24.76 | |
Hydrodynamic pressure of dam heel (KN/m2) | 716.8 | 429.8 | 371.4 | 1188 | 1127 | 994.3 |
Case | D-5 | D-6 | D-7 | |
---|---|---|---|---|
Reservoir Water Length | 3H | 4H | 5H | |
Downstream direction | Acceleration magnification factor | 5.249 | 4.275 | 4.303 |
Relative displacement (m) | 0.172 | 0.129 | 0.140 | |
Vertical direction | Acceleration magnification | 2.660 | 2.235 | 2.172 |
Relative displacement (m) | −0.027 | −0.027 | −0.024 | |
Dam stress (MPa) | Vertical normal tensile stress (σzz) | 11.224 | 9.52 | 10.15 |
Vertical normal compressive stress (σzz) | −13.65 | −12.25 | −11.96 | |
Principal tensile stress (σ1) | 17.91 | 15.23 | 15.62 | |
Principal compressive stress (σ3) | −24.76 | −24.11 | −23.35 | |
Hydrodynamic pressure of dam heel (KN/m2) | 994.3 | 704.0 | 615.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, H.; Zhang, Y.; Guo, L.; Wang, Y.; Thira Htun, T.T. Influences on the Seismic Response of a Gravity Dam with Different Foundation and Reservoir Modeling Assumptions. Water 2021, 13, 3072. https://doi.org/10.3390/w13213072
Wang C, Zhang H, Zhang Y, Guo L, Wang Y, Thira Htun TT. Influences on the Seismic Response of a Gravity Dam with Different Foundation and Reservoir Modeling Assumptions. Water. 2021; 13(21):3072. https://doi.org/10.3390/w13213072
Chicago/Turabian StyleWang, Chen, Hanyun Zhang, Yunjuan Zhang, Lina Guo, Yingjie Wang, and Thiri Thon Thira Htun. 2021. "Influences on the Seismic Response of a Gravity Dam with Different Foundation and Reservoir Modeling Assumptions" Water 13, no. 21: 3072. https://doi.org/10.3390/w13213072
APA StyleWang, C., Zhang, H., Zhang, Y., Guo, L., Wang, Y., & Thira Htun, T. T. (2021). Influences on the Seismic Response of a Gravity Dam with Different Foundation and Reservoir Modeling Assumptions. Water, 13(21), 3072. https://doi.org/10.3390/w13213072