Research on the Application of Typical Biological Chain for Algal Control in Lake Ecological Restoration—A Case Study of Lianshi Lake in Yongding River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Data Sources
2.1.1. Overview of the Study Area
2.1.2. Data Sources
2.2. Ecopath Model
2.2.1. Principle of the Ecopath Model
2.2.2. Division of Function Groups
2.2.3. Parameter Setting
2.2.4. Model Balance Calculation
2.3. Fuzzy Comprehensive Evaluation Method
- (1)
- Establish a factor set.
- (2)
- Determine the membership function.
- (3)
- Establish a fuzzy relationship evaluation matrix.
- (4)
- Establish a weight vector.
- (5)
- Establish a fuzzy comprehensive evaluation matrix.
3. Results
3.1. Screening of Typical Biological Chains of Fuzzy Comprehensive Evaluation Coupled with Ecopath
3.2. Analysis of Typical Algal Control Biological Chain and Nutritional Structure and Function Response
4. Discussion
4.1. Development Characteristics of Lianshi Lake Ecosystem
4.2. Prospects of Ecopath Model in Lake Ecological Restoration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhai, Y.; Xia, X.; Yang, G.; Lu, H.; Ma, G.; Wang, G.; Teng, Y.; Yuan, W.; Shrestha, S. Trend, seasonality and relationships of aquatic environmental quality indicators and implications: An experience from Songhua River, NE China. Ecol. Eng. 2020, 145, 105706. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.; Kuster, T.; Lehmann, M.K.; Wu, Y.; et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Deng, X.; Zhan, J. Research progress on prevention and control strategies of lake eutrophication. Environ. Sci. Technol. 2010, 33, 92–98. (In Chinese) [Google Scholar]
- Davis, K.; Anderson, M.A.; Yates, M.V. Distribution of indicator bacteria in Canyon Lake, California. Water Res. 2005, 39, 1277–1288. [Google Scholar] [CrossRef]
- Razmi, A.M.; Barry, D.A.; Lemmin, U.; Bonvin, F.; Kohn, T.; Bakhtyar, R. Direct effects of dominant winds on residence and travel times in the wide and open lacustrine embayment: Vidy Bay (Lake Geneva, Switzerland). Aquat. Sci. 2014, 76, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Hipsey, M.R.; Antenucci, J.P.; Brookes, J. A generic, process-based model of microbial pollution in aquatic systems. Water Resour. Res. 2008, 44, 76–87. [Google Scholar] [CrossRef]
- Su, W.; Wu, J.; Zhu, B.; Chen, K.; Peng, W.; Hu, B. Health Evaluation and Risk Factor Identification of Urban Lakes—A Case Study of Lianshi Lake. Water 2020, 12, 1428. [Google Scholar] [CrossRef]
- Shan, B.; Wang, C.; Li, X. The formulation method and case study of river governance plan based on water quality objective management. Acta Sci. Circumstantiae 2015, 35, 2314–2323. (In Chinese) [Google Scholar] [CrossRef]
- Birk, S.; Bonne, W.; Borja, A.; Brucet, S.; Courrat, A.; Poikane, S.; Solimini, A.; van de Bund, W.; Zampoukas, N.; Hering, D. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 2012, 18, 31–41. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Zhu, Y.; Du, Q.; Teng, Y.; Zhai, Y. Design and Optimization of a Fully-Penetrating Riverbank Filtration Well Scheme at a Fully-Penetrating River Based on Analytical Methods. Water 2019, 11, 418. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Q.; Yao, J. Investigation of Residence and Travel Times in a Large Floodplain Lake with Complex Lake-River Interactions: Poyang Lake (China). Water 2015, 7, 1991–2012. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Straile, D.; van Nes, E.; Hosper, S.H. Climatic warming causes regime shifts in lake food webs. Limnol. Oceanogr. 2001, 46, 1780–1783. [Google Scholar] [CrossRef]
- Lewonin, R.C. The meaning of stability: Diversity and stability in ecological systems. Brookhaven Symp. Biol. 1969, 22, 13–24. [Google Scholar]
- Hrbáčke, J.; Dvořakova, M.; Kořínek, V.; Procházkóva, L. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. Int. Ver. Limnol. 1961, 14, 192–195. [Google Scholar] [CrossRef]
- Liu, J.; Xie, P. Uncover the mystery of the disappearance of cyanobacteria blooms in East Lake, Wuhan. Resour. Environ. Yangtze Basin 1999, 3, 85–92. (In Chinese) [Google Scholar]
- Olin, M.; Rask, M.; Ruuhijärvi, J.; Keskitalo, J.; Horppila, J.; Tallberg, P.; Taponen, T.; Lehtovaara, A.; Sammalkorpi, I. Effects of Biomanipulation on Fish and Plankton Communities in Ten Eutrophic Lakes of Southern Finland. Hydrobiologia 2006, 553, 67–88. [Google Scholar] [CrossRef]
- With, J.S.; Wright, D.I. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshw. Biol. 1984, 14, 371–383. [Google Scholar] [CrossRef]
- He, H.; Han, Y.; Li, Q.; Jeppesen, E.; Li, K.; Yu, J.; Liu, Z. Crucian Carp (Carassius carassius) Strongly Affect C/N/P Stoichiometry of Suspended Particulate Matter in Shallow Warm Water Eutrophic Lakes. Water 2019, 11, 524. [Google Scholar] [CrossRef] [Green Version]
- Rakshit, N.; Banerjee, A.; Mukherjee, J.; Chakrabarty, M.; Borrett, S.R.; Ray, S. Comparative study of food webs from two different time periods of Hooghly Matla estuarine system, India through network analysis. Ecol. Model. 2017, 356, 25–37. [Google Scholar] [CrossRef]
- Vladimir, R.; Xueying, M.; Natallia, M.; Elena, S.; Dzmitry, L.; Andrei, M.; Erik, J.; Xiufeng, Z. Omnivorous Carp (Carassius gibelio) Increase Eutrophication in Part by Preventing Development of Large-Bodied Zooplankton and Submerged Macrophytes. Water 2021, 13, 1497. [Google Scholar]
- Gu, J.; He, H.; Jin, H.; Yu, J.; Jeppesen, E.; Nairn, R.W.; Li, K. Synergistic negative effects of small-sized benthivorous fish and nitrogen loading on the growth of submerged macrophytes—Relevance for shallow lake restoration. Sci. Total Environ. 2018, 610–611, 1572–1580. [Google Scholar] [CrossRef]
- He, H.; Hu, E.; Yu, J.; Luo, X.; Li, K.; Jeppesen, E.; Liu, Z. Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study. Environ. Sci. Pollut. Res. 2016, 24, 5012–5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Xian, Y.; Ye, C.; Wang, Y.; Wei, W.; Xi, H.; Zheng, B. Wetland ecosystem status and restoration using the Ecopath with Ecosim (EWE) model. Sci. Total Environ. 2019, 658, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Christensen, V.; Pauly, D. ECOPATH II—A software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model. 1992, 61, 169–185. [Google Scholar] [CrossRef]
- Christensen, V.; Walters, C.J.; Pauly, D. Ecopath with Ecosim: A User’s Guide; Fisheries Centre, University of British Columbia: Penang, Malaysia, 2005; Available online: https://www.researchgate.net/publication/267193103_Ecopath_with_Ecosim_A_User’s_Guide (accessed on 15 April 2021).
- Huang, X.; Bing, X.; Zhang, X. Application of EwE model in evaluating fishery water ecosystem. J. Hydroecology 2011, 32, 125–129. (In Chinese) [Google Scholar] [CrossRef]
- Song, B. Research on the Ecosystem Model of Taihu Lake Fishery and Environment. Ph.D. Thesis, East China Normal University, Shanghai, China. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=2004087212.nh&DbName=CDFD2004 (accessed on 2 June 2021). (In Chinese).
- Yu, J.; Liu, J.; Wang, L. Analysis of Structure and Function of Qiandao Lake Ecosystem Based on Ecopath Model. Acta Hydrobiol. Sin. 2021, 45, 308–317. (In Chinese) [Google Scholar]
- Feng, D. Research on ECOPATH Model of Dianshan Lake Ecosystem Structure and Energy Flow Characteristics. Master’s Thesis, East China Normal University, Shanghai, China. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1011131168.nh&DbName=CMFD2011 (accessed on 18 June 2021). (In Chinese).
- Xian, Y.; Ye, C.; Li, C. Construction and Analysis of EWE Model of Lake Buffer Zone Wetland Ecosystem in Zhushan Bay. Chin. J. Appl. Ecol. 2016, 27, 2101–2110. (In Chinese) [Google Scholar] [CrossRef]
- Park, R.A. A generalized model for simulating lake ecosystems. Simulation 1974, 23, 33–50. [Google Scholar] [CrossRef]
- Yan, Y.; Liang, Y. Energy flow of benthic fauna in Biandan Pond. Acta Ecol. Sin. 2003, 3, 527–538. (In Chinese) [Google Scholar]
- Halfon, E.; Schito, N.; Ulanowicz, R.E. Energy flow through the Lake Ontario food web: Conceptual model and an attempt at mass balance. Ecol. Model. 1996, 86, 1–36. [Google Scholar] [CrossRef]
- Li, Y.; Liu, E.; Wang, H. Analysis of the Structure and Function of Taihu Lake Ecosystem Based on Ecopath Model. Chin. J. Appl. Ecol. 2014, 25, 2033–2040. (In Chinese) [Google Scholar] [CrossRef]
- Song, G.; Hu, M.; Liu, Q. Using Stable Isotope Technology to Study the Feeding Habits and Nutritional Levels of Gillnet Catch in Qiandao Lake in Autumn. J. Shanghai Ocean. Univ. 2014, 23, 117–122. (In Chinese) [Google Scholar]
- Liu, Q. Qiandao Lake Water Conservation Fishery and Its Impact on Lake Ecosystem. Ph.D. Thesis, East China Normal University, Shanghai, China. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=2005086209.nh&DbName=CDFD2005 (accessed on 30 May 2021). (In Chinese).
- Scavia, D. Documentation of CLEANX a generalized model for simulating the open-water ecosystems of lakes. Simulation 1974, 2, 51–56. [Google Scholar] [CrossRef]
- Christensen, V.; Walters, C.; Ahrens, R. Databasedriven models of the world’s Large Marine Ecosystems. Ecol. Model. 2009, 9, 1984–1996. [Google Scholar] [CrossRef]
- Libralato, S.; Christensen, V.; Pauly, D. A method for identifying keystone species in food web models. Ecol. Model. 2006, 195, 153–171. [Google Scholar] [CrossRef]
- Valls, A.; Coll, M.; Christensen, V. Keystone species: Toward an operational concept for marine biodiversity conservation. Ecol. Monogr. 2015, 85, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Power, M.E.; Tilman, D.; Estes, J.A.; Menge, B.A.; Bond, W.J. Challenges in the Quest for Keystones. BioScience 1996, 46, 609–620. [Google Scholar] [CrossRef]
- Jiang, X.H.; Zhang, D.Y. Discussion on the functions of model in ecology. Resour. Ecol. Environ. Net. Res. 1992, 2, 30–34. [Google Scholar]
- Polovina, J.J. Model of a coral reef ecosystem. Coral Reefs. 1984, 3, 1–11. [Google Scholar] [CrossRef]
- Chen, T.; Shen, D.; Jin, Y.; Li, H.; Yu, Z.; Feng, H.; Long, Y.; Yin, J. Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model. Appl. Energy 2017, 208, 666–677. [Google Scholar] [CrossRef]
No. | Function Group | Abbreviation for Composition | Included Types |
---|---|---|---|
1 | Other piscivorous | OthP | Horsemouth, yellow catfish |
2 | Common carp | Comc | Common carp |
3 | Crucian carp | Cruc | Crucian carp |
4 | Bighead carp | Bigc | Bighead carp |
5 | Silver carp | Silc | Silver carp |
6 | Herbivorous fish | HerF | Grass carp, bream |
7 | Other fish | OthF | Wheat ear fish, tortoisefish |
8 | Macrocrustaceans | Macc | Green prawns, prawns, Chinese mitten crabs, etc. |
9 | Other benthos | OthB | Hydrophilia, Ceratobranchus, Longbrachium, Fanchus, Chironomus, Chironomidae, etc. |
10 | Zooplankton | Zoop | Protozoa, rotifers, cladocerans, copepods, etc. |
11 | Phytoplankton | Phyt | Cyanobacteria, green algae, euglena, dinoflagellate, cryptophytes, golden algae, etc. |
12 | Submerged macrophytes | SubM | Potamogeton, Myriophyllum, Hydrilla verticillata, Ceratophyllum, etc. |
13 | Other macrophytes | OthM | Reeds, cattails, etc. |
14 | Detritus | Detr | Organic detritus |
No. | Prey/Predator | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | OthP | 0.007 | |||||||||
2 | Comc | 0.15 | |||||||||
3 | Cruc | 0.27 | |||||||||
4 | Bigc | ||||||||||
5 | Silc | ||||||||||
6 | HerF | 0.07 | 0.006 | ||||||||
7 | OthF | ||||||||||
8 | Macc | 0.38 | |||||||||
9 | OthB | 0.073 | 0.13 | 0.230 | |||||||
10 | Zoop | 0.82 | 0.24 | 0.501 | 0.213 | 0.620 | 0.350 | 0.005 | 0.009 | ||
11 | Phyt | 0.048 | 0.361 | 0.620 | 0.300 | 0.022 | 0.801 | ||||
12 | SubM | 0.002 | 0.09 | 0.997 | 0.003 | 0.101 | |||||
13 | OthM | 0.01 | 0.003 | ||||||||
14 | Detr | 0.04 | 0.67 | 0.138 | 0.167 | 0.141 | 0.350 | 0.872 | 0.190 | ||
15 | Sum | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Function Group | Biomass (t/km2) | Production/ Biomass | Consumption/Biomass | Eco-Nutrition Efficiency | Production/ Consumption | Proportion of Unassimilated Food |
---|---|---|---|---|---|---|
OthP | 0.13 | 1.670 | 6.1 | 0.026 | 0.274 | 0.200 |
Comc | 0.5 | 0.960 | 10.7 | 0.248 | 0.090 | 0.200 |
Cruc | 0.5 | 1.130 | 12.3 | 0.379 | 0.092 | 0.200 |
Bigc | 1.8 | 0.990 | 6.9 | 0.001 | 0.143 | 0.200 |
Silc | 1.2 | 1.100 | 8.0 | 0.001 | 0.138 | 0.200 |
HerF | 0.27 | 0.987 | 7.1 | 0.778 | 0.139 | 0.410 |
OthF | 2.3 | 2.155 | 11.0 | 0.001 | 0.196 | 0.410 |
Macc | 1.58 | 3.090 | 41.0 | 0.062 | 0.075 | 0.700 |
OthB | 16.141 | 4.130 | 206.5 | 0.099 | 0.020 | 0.940 |
Zoop | 7.85 | 20.680 | 413.6 | 0.606 | 0.050 | 0.650 |
Phyt | 47.42 | 185.000 | 0.308 | |||
SubM | 1460 | 1.250 | 0.186 | |||
OthM | 64 | 1 | 0.001 | |||
Detr | 3.230 | 0.272 |
No. | Function Group | Biomass | Relative Total Impact | |||
---|---|---|---|---|---|---|
1 | OthP | 0.13 | 0.0000809 | 0.899516 | −0.04603 | 0.622 |
2 | Comc | 0.50 | 0.000311 | 0.147707 | −0.83073 | 0.122 |
3 | Cruc | 0.50 | 0.000311 | 0.197666 | −0.7042 | 0.17 |
4 | Bigc | 1.80 | 0.00112 | 0.054332 | −1.26543 | 0.0531 |
5 | Silc | 1.20 | 0.000747 | 0.017978 | −1.74559 | 0.0175 |
6 | HerF | 0.27 | 0.000168 | 0.429709 | −0.3669 | 0.425 |
7 | OthF | 2.30 | 0.001431 | 0.845322 | −0.0736 | 0.749 |
8 | Macc | 1.58 | 0.000983 | 0.361432 | −0.4424 | 0.328 |
9 | OthB | 16.14 | 0.010045 | 1.077714 | 0.028119 | 0.867 |
10 | Zoop | 7.85 | 0.004885 | 0.882764 | −0.05628 | 0.701 |
11 | Phyt | 47.42 | 0.02951 | 0.914433 | −0.05186 | 0.844 |
12 | SubM | 1460 | 0.90857 | 1.014112 | −1.03283 | 1 |
13 | OthM | 64 | 0.039828 | 0.007863 | −2.12205 | 0.00724 |
Serial Number | Function Group | |||||
---|---|---|---|---|---|---|
1 | OthP | 0.026 | 0.520 | 0.171 | 3.303 | 0.622 |
2 | Comc | 0.248 | 0.126 | 0.048 | 2.958 | 0.122 |
3 | Cruc | 0.379 | 0.130 | 0.186 | 2.242 | 0.17 |
4 | Bigc | 0.000 | 0.219 | 0.255 | 2.506 | 0.053 |
5 | Silc | 0.000 | 0.208 | 0.171 | 2.215 | 0.018 |
6 | HerF | 0.778 | 0.308 | 0.000 | 2.000 | 0.425 |
7 | OthF | 0.000 | 0.497 | 0.125 | 2.863 | 0.749 |
8 | Macc | 0.062 | 0.336 | 0.232 | 2.353 | 0.328 |
9 | OthB | 0.099 | 0.500 | 0.005 | 2.005 | 0.867 |
10 | Zoop | 0.606 | 0.167 | 0.009 | 2.009 | 0.701 |
11 | phyt | 0.308 | - | 0.000 | 1.000 | 0.844 |
12 | SubM | 0.186 | - | 0.000 | 1.000 | 1 |
13 | OthM | 0.000 | - | 0.000 | 1.000 | 0.007 |
14 | Detritus | 0.272 | - | 0.251 | 1.000 | - |
Zoop Group Project Evaluation Index | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ |
---|---|---|---|---|---|---|---|---|---|
0.257 | 0.338 | 0.260 | 0.251 | 0.330 | 0.297 | 0.457 | 0.457 | 0.457 | |
0.328 | 0.388 | 0.396 | 0.341 | 0.272 | 0.271 | 0.332 | 0.188 | 0.193 | |
0.631 | 0.79 | 0.759 | 0.624 | 0.584 | 0.572 | 0.765 | 0.521 | 0.533 | |
0.058 | 0.046 | 0.062 | 0.137 | 0.122 | 0.076 | 0.067 | 0.09 | 0.132 | |
0.418 | 0.323 | 0.360 | 0.389 | 0.380 | 0.439 | 0.319 | 0.247 | 0.279 |
Index | Current State | 1.5 Times | 2 Times | 3 Times | 4 Times | Unit |
---|---|---|---|---|---|---|
Zoop biomass | 7.85 | 11.775 | 15.7 | 23.55 | 31.4 | t/km2/year |
Macc biomass | 1.58 | 2.37 | 3.16 | 4.74 | 6.32 | t/km2/year |
Phyt Eco-nutrition efficiency | 0.308 | 0.458 | 0.607 | 0.906 | 1.204 | - |
SubM Eco-nutrition efficiency | 0.186 | 0.186 | 0.186 | 0.186 | 0.186 | - |
The amount of material flowing into the second trophic level from primary producers | 3043 | 4353 | 5663 | 8283 | 10904 | t/km2/year |
The amount of debris flowing into the primary producer | 7618 | 6308 | 4998 | 2378 | −241.9 | t/km2/year |
Total primary production/total respiratory volume (TPP/TR) | 9.224 | 6.461 | 4.972 | 3.403 | 2.587 | - |
Finn’s cycle index (FCI) | 13.59% | 14.33% | 15.23% | 17.51% | 20.38% | - |
Finn’s average energy flow path length (FCL) | 2.854 | 2.993 | 3.132 | 3.410 | 3.688 | - |
Connection coefficient (CI) | 0.225 | 0.226 | 0.226 | 0.226 | 0.226 | - |
System omnivorous degree (SOI) | 0.092 | 0.092 | 0.093 | 0.093 | 0.094 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Cui, X.; Luo, H.; Peng, W.; Gao, Y. Research on the Application of Typical Biological Chain for Algal Control in Lake Ecological Restoration—A Case Study of Lianshi Lake in Yongding River. Water 2021, 13, 3079. https://doi.org/10.3390/w13213079
Zhang P, Cui X, Luo H, Peng W, Gao Y. Research on the Application of Typical Biological Chain for Algal Control in Lake Ecological Restoration—A Case Study of Lianshi Lake in Yongding River. Water. 2021; 13(21):3079. https://doi.org/10.3390/w13213079
Chicago/Turabian StyleZhang, Pengfei, Xiaoyu Cui, Huihuang Luo, Wenqi Peng, and Yunxia Gao. 2021. "Research on the Application of Typical Biological Chain for Algal Control in Lake Ecological Restoration—A Case Study of Lianshi Lake in Yongding River" Water 13, no. 21: 3079. https://doi.org/10.3390/w13213079
APA StyleZhang, P., Cui, X., Luo, H., Peng, W., & Gao, Y. (2021). Research on the Application of Typical Biological Chain for Algal Control in Lake Ecological Restoration—A Case Study of Lianshi Lake in Yongding River. Water, 13(21), 3079. https://doi.org/10.3390/w13213079