Distribution, Formation and Human Health Risk of Fluorine in Groundwater in Songnen Plain, NE China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analysis Methods
2.3.1. Data Analysis Method
2.3.2. Instrumental Analysis
2.3.3. Saturation Index
2.3.4. Human Health Risk Assessment
2.4. Quality Assurance/Quality Control (QA/QC)
3. Results and Discussion
3.1. Hydrochemical Parameters and Types
3.2. Distributions of Fluorine
3.3. Formation and Influencing Factors of Fluorine in Groundwater
3.3.1. Dissolution and Precipitation of Minerals
3.3.2. Cation Exchange
3.3.3. Hydrochemical and Hydrological Influence Factors
3.4. Human Health Risk Assessment of Fluorine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuo, R.; Liu, X.; Yang, J.; Zhang, H.K.; Li, J.; Teng, Y.G.; Yue, W.F.; Wang, J.S. Distribution, origin and key influencing factors of fluoride groundwater in the coastal area, NE China. Hum. Ecol. Risk Assess. 2019, 25, 104–119. [Google Scholar] [CrossRef]
- Rajveer, S.D.; Manan, S. A holistic study on fluoride-contaminated groundwater models and its widespread effects in healthcare and irrigation. Environ. Sci. Pollut. Res. 2021, 28, 60329–60345. [Google Scholar] [CrossRef]
- Wang, J.W.; Zhang, C.X.; Liao, X.P.; Teng, Y.G.; Zhai, Y.Z.; Yue, W.F. Influence of surface-water irrigation on the distribution of organophosphorus pesticides in soil-water systems, Jianghan Plain, central China. J. Environ. Manag. 2021, 281, 111874. [Google Scholar] [CrossRef]
- Dar, M.A.; Sankar, K.; Dar, I.A. Fluorine contamination in groundwater: A major challenge. Environ. Monit. Assess. 2011, 173, 955–968. [Google Scholar] [CrossRef]
- Alekseyev, V.A.; Kochnova, L.N.; Cherkasova, E.V.; Tyutyunnik, O.A. Possible reasons for elevated fluorine concentrations in groundwaters of carbonate rocks. Geochem. Int. 2010, 48, 68–82. [Google Scholar] [CrossRef]
- Reimann, C.; Banks, D. Setting Action Levels for Drinking Water: Are We Protecting Our Health or Our Economy (or Our Backs!)? Sci. Total Environ. 2004, 332, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Finch, E.G.; Tomkins, A.G. Fluorine and chlorine behaviour during progressive dehydration melting: Consequences for granite geochemistry and metallogeny. J. Metamorph. Geol. 2017, 40, 739–757. [Google Scholar] [CrossRef]
- Sarah, E.; Smith, S.; Appold, M.S. Determination of fluorine concentrations in mineralizing fluids of the Hansonburg, New Mexico Ba-F-Pb district via SEM-EDS analysis of fluid inclusion decrepitates. J. Geochem. Explor. 2021, 230, 106861. [Google Scholar]
- Li, X.; Zhang, W.; Qin, Y.; Ma, T.; Zhou, J.; Du, S. Fe–colloid cotransport through saturated porous media under different hydrochemical and hydrodynamic conditions. Sci. Total Environ. 2019, 647, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Deepali, M.; Malpe, D.B.; Subba, R.N. Geochemical Assessment of Fluoride Enriched groundwater and health implications from a part of Yavtmal District, India. Hum. Eco. Risk Assess. 2020, 26, 673–694. [Google Scholar]
- Withanachchi, S.S.; Ghambashidze, G.; Kunchulia, I.; Urushadze, T.; Ploeger, A. Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia. Int. J. Environ. Res. Public Health 2018, 15, 621. [Google Scholar] [CrossRef] [Green Version]
- Zabala, M.E.; Manzano, M.; Vives, L. Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano Aquifer in the Del Azul Creek basin (Argentina). J. Hydrol. 2016, 541, 1067–1087. [Google Scholar] [CrossRef]
- Amini, M.; Mueller, K.; Abbaspour, K.C. Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ. Sci. Technol. 2008, 42, 3662–3668. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Qian, H.; Qu, W.G.; Zheng, L.; Feng, W.W.; Ren, W.H. Fluoride Occurrence and Human Health Risk in Drinking Water Wells from Southern Edge of Chinese Loess Plateau. Int. J. Environ. Res. Public Health 2019, 16, 1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standards for Drinking Water Quality (GB5749-2006); National Health Commission of the People’s Republic of China: Beijing, China, 2006.
- World Health Organisation (WHO). Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Raju, N.J. Prevalence of fluorosis in the fluoride enriched groundwater in semi-arid parts of eastern India: Geochemistry and health implications. Quat. Int. 2016, 443, 265–278. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, S.S.; Chen, D.; Yuan, X.K.; Lu, M.S.; Feng, Q.Y. Hydrogeochemistry of fluoride in shallow groundwater of the abandoned Yellow River delta, China. Hydrol. Res. 2021, 52, 572–584. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, X.F.; Weidong Xu, W.D.; Mian Song, M. Hydrogeochemistry of Fluorine in Groundwater in Humid Mountainous Areas: A Case Study at Xingguo County, Southern China. J. Chem. 2021, 2021, 5567353. [Google Scholar] [CrossRef]
- Saxena, V.; Ahmed, S. Dissolution of fluoride in groundwater: A water-rock interaction study. Environ. Geol. 2001, 40, 1084–1087. [Google Scholar]
- Zhai, Y.; Zheng, F.; Zhao, X.; Xia, X.; Teng, Y. Identification of hydrochemical genesis and screening of typical groundwater pollutants impacting human health: A case study in Northeast China. Environ. Pollut. 2019, 252, 1202–1215. [Google Scholar] [CrossRef]
- Su, X.; Wang, H.; Zhang, Y. Health risk assessment of nitrate contamination in groundwater: A case study of an agricultural area in Northeast China. Water Resour. Manag. 2013, 27, 3025–3034. [Google Scholar] [CrossRef]
- Yin, W.; Teng, Y.; Zhai, Y.; Hu, L.; Zhao, X.; Zhang, M. Suitability for developing riverside groundwater sources along Songhua River, Northeast China. Hum. Ecol. Risk Assess. 2018, 24, 2088–2100. [Google Scholar] [CrossRef]
- Jiang, L.; Guo, S.; Wang, G.; Kan, S.; Jiang, H. Changes in agricultural land requiremen ts for food provision in China 2003–2011: A comparison between urban and rural residents. Sci. Total Environ. 2020, 725, 138293. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Ma, T.; Zhou, J.; Li, X.; Liu, D.; Wang, Z.; Qin, Y.; Du, Q. Impacts of leachate of landfill on the groundwater hydrochemistry and size distributions and heavy metal components of colloids: A case study in NE China. Environ. Sci. Pollut. Res. 2019, 26, 5713–5723. [Google Scholar] [CrossRef]
- Zhai, Y.; Xia, X.; Yang, G.; Lu, H.; Ma, G.; Wang, G.; Teng, Y.; Yuan, W.; Shrestha, S. Trend, seasonality and relationships of aquatic environmental quality indicators and implications: An experience from Songhua River, NE China. Ecol. Eng. 2020, 145, 105706. [Google Scholar] [CrossRef]
- Ji, X.; Xie, R.; Hao, Y.; Lu, J. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed. Environ. Pollut. 2017, 229, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef]
- Zhu, W. Research on the Development Trend of Shallow Groundwater Quality in Songnen Plain, NE China; Jilin University: Changchun, China, 2011. [Google Scholar]
- Zhang, G.; Deng, W.; He, Y.; Ramsis, S. Hydrochemical characteristics and evolution laws of groundwater in Songnen Plain, Northeast China. Adv. Water Sci. 2006, 17, 20–28. [Google Scholar]
- Qian, C.; Wu, X.; Mu, W.P.; Fu, R.Z.; Zhu, G.; Wang, Z.R.; Wang, D.D. Hydrogeochemical characterization and suitability assessment of groundwater in an agro-pastoral area, Ordos Basin, NW China. Environ. Earth Sci. 2016, 75, 1356. [Google Scholar] [CrossRef]
- Jabal, M.S.A.; Abustan, I.; Rozaimy, M.R.; Al-Najar, H. Fluoride enrichment in groundwater of semi-arid urban area: Khan Younis City, southern Gaza Strip (Palestine). J. Afr. Earth Sci. 2014, 100, 259–266. [Google Scholar] [CrossRef]
- Li, P.; He, X.; Li, Y.; Xiang, G. Occurrence and Health Implication of Fluoride in Groundwater of Loess Aquifer in the Chinese Loess Plateau: A Case Study of Tongchuan, Northwest China. Expo. Health 2019, 11, 95–107. [Google Scholar] [CrossRef]
- Qasemi, M.; Afsharnia, M.; Zarei, A.; Farhang, M.; Allahdadi, M. Non-Carcinogenic Risk Assessment to Human Health Due to Intake of Fluoride in the Groundwater in Rural Areas of Gonabad and Bajestan, Iran: A Case Study. Hum. Ecol. Risk Assess 2019, 25, 1222–1233. [Google Scholar] [CrossRef]
- Katarzyna, O.; Iwona, S.; Joanna, S. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs. In E3S Web of Conferences; EDP Sciences: Paris, France, 2018; Volume 30, p. 01013. [Google Scholar]
- Xi, B.D.; Huo, S.L.; Chen, Q.; Chen, Y.Q.; Zan, F.Y.; Xia, X.F. U.S Water Quality Standard System and Its Revelation for China. Enuivon. Sci. Technol. 2011, 34, 100–103, 120. [Google Scholar]
- Marek, G.; Krystyna, Z.; Honorata, D.; Anna, S. Weed Infestation and Yielding of Potato Under Conditions of Varied Use of Herbicides and Bio-Stimulants. J. Ecol. Eng. 2018, 19, 191–196. [Google Scholar]
- Kutseva, N.K.; Kartashova, A.V.; Tchamaev, A.W. Standard and Methodological Provision of the Quality Control of Water. J. Anal. Chem. 2005, 60, 788–795. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Teng, Y.; Chen, H.; Wang, Y. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2019, 388, 121766. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Qian, C.; Zhu, G. Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region, northwest China. Appl. Geochem. 2018, 98, 404–417. [Google Scholar] [CrossRef]
- Li, Q.; Tao, H.F.; Aihemaitia, M.; Jiang, Y.W.; Su, Y.P.; Yang, W.X. Spatial distribution characteristics and enrichment factors of high-fluorine groundwater in the Kuitun River basin of Xinjiang Uygur Autonomous Region in China. Desalination Water Treat. 2021, 223, 208–217. [Google Scholar] [CrossRef]
- Rao, N.S.; Rao, P.S.; Dinakar, A.; Rao, P.V.N. Fluoride occurrence in the groundwater in a coastal region of Andhra Pradesh, India. Appl. Water Sci. 2017, 7, 1467–1478. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guo, H.M.; Xing, S.P.; Liu, H.Y. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater. J. Hydrol. 2021, 598, 126372. [Google Scholar] [CrossRef]
- Saxena, V.K.; Ahmed, S. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol. 2003, 43, 731–736. [Google Scholar] [CrossRef]
Parameters | Concentration | ||
---|---|---|---|
Minimum | Maximum | Mean | |
K+ (mg·L−1) | 0.85 | 234.18 | 8.55 |
Na+ (mg·L−1) | 4.51 | 1107.36 | 74.45 |
Ca2+ (mg·L−1) | 1.56 | 567.65 | 95.04 |
Mg2+ (mg·L−1) | 2.43 | 589.88 | 36.77 |
HCO3− (mg·L−1) | 11.61 | 1838.05 | 354.69 |
SO42− (mg·L−1) | 0.19 | 1198.79 | 86.93 |
Cl− (mg·L−1) | BDL | 1831.56 | 113.45 |
NO3− (mg·L−1) | BDL | 1751.89 | 100.23 |
TH (g·L−1) | 0.15 | 2.44 | 0.98 |
TDS (g·L−1) | 0.58 | 6.17 | 1.46 |
pH | 5.76 | 9.99 | 7.37 |
F− (mg·L−1) | BDL | 8.54 | 0.63 |
SI (Flourite) | −5.57 | −0.48 | −1.88 |
SI (Calcite) | −1.87 | −0.10 | −0.98 |
SI (Gypsum) | −6.01 | 3.11 | −0.79 |
SI (Halite) | −7.16 | −0.05 | −3.08 |
SI (Dolomite) | −2.80 | −0.35 | −1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zheng, N.; Liu, H.; Cao, X.; Teng, Y.; Zhai, Y. Distribution, Formation and Human Health Risk of Fluorine in Groundwater in Songnen Plain, NE China. Water 2021, 13, 3236. https://doi.org/10.3390/w13223236
Wang J, Zheng N, Liu H, Cao X, Teng Y, Zhai Y. Distribution, Formation and Human Health Risk of Fluorine in Groundwater in Songnen Plain, NE China. Water. 2021; 13(22):3236. https://doi.org/10.3390/w13223236
Chicago/Turabian StyleWang, Jianwei, Nengzhan Zheng, Hong Liu, Xinyi Cao, Yanguo Teng, and Yuanzheng Zhai. 2021. "Distribution, Formation and Human Health Risk of Fluorine in Groundwater in Songnen Plain, NE China" Water 13, no. 22: 3236. https://doi.org/10.3390/w13223236
APA StyleWang, J., Zheng, N., Liu, H., Cao, X., Teng, Y., & Zhai, Y. (2021). Distribution, Formation and Human Health Risk of Fluorine in Groundwater in Songnen Plain, NE China. Water, 13(22), 3236. https://doi.org/10.3390/w13223236