Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region
Abstract
:1. Introduction
- -
- to find which climates and environments cause the highest SSY values in the Caucasus region;
- -
- to evaluate what factors most control SSY in the Caucasus region.
2. Materials and Methods
2.1. Study Area
2.2. The Sediment Yield Data
2.3. Potential Controlling Factors
2.4. Uncertainty Assessment
2.5. Statistical Analyses
3. Results
3.1. Database Overview
3.2. Correlation Analyses
3.3. Partial Least Squares Analyses
4. Discussion
4.1. SSY Overview
4.2. Controlling Factors
4.3. Uncertainties and Further Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Issaka, S.; Ashraf, M.A. Impact of Soil Erosion and Degradation on Water Quality: A Review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.E.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural Water Pollution: Key Knowledge Gaps and Research Needs. Curr. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Owens, P.N. Soil Erosion and Sediment Dynamics in the Anthropocene: A Review of Human Impacts during a Period of Rapid Global Environmental Change. J. Soils Sediments 2020, 20, 4115–4143. [Google Scholar] [CrossRef]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global Phosphorus Shortage Will Be Aggravated by Soil Erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef] [PubMed]
- Beusen, A.H.W.; Dekkers, A.L.M.; Bouwman, A.F.; Ludwig, W.; Harrison, J. Estimation of Global River Transport of Sediments and Associated Particulate C, N, and P. Glob. Biogeochem. Cycles 2005, 19, GB4S05. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Beusen, A.H.W.; Billen, G. Human Alteration of the Global Nitrogen and Phosphorus Soil Balances for the Period 1970–2050. Glob. Biogeochem. Cycles 2009, 23, GB0A04. [Google Scholar] [CrossRef]
- Richards, K. Drainage Basin Structure, Sediment Delivery and the Response to Environmental Change. Geol. Soc. Lond. Spec. Publ. 2002, 191, 149–160. [Google Scholar] [CrossRef]
- Najafi, S.; Dragovich, D.; Heckmann, T.; Sadeghi, S.H. Sediment Connectivity Concepts and Approaches. Catena 2021, 196, 104880. [Google Scholar] [CrossRef]
- Mano, V.; Nemery, J.; Belleudy, P.; Poirel, A. Assessment of Suspended Sediment Transport in Four Alpine Watersheds (France): Influence of the Climatic Regime. Hydrol. Process. 2009, 23, 777–792. [Google Scholar] [CrossRef]
- Gusarov, A.V.; Sharifullin, A.G.; Komissarov, M.A. Contemporary Long-Term Trends in Water Discharge, Suspended Sediment Load, and Erosion Intensity in River Basins of the North Caucasus Region, SW Russia. Hydrology 2021, 8, 28. [Google Scholar] [CrossRef]
- Tsyplenkov, A.S.; Golosov, V.N.; Belyakova, P.A. How Did the Suspended Sediment Load Change in the North Caucasus during the Anthropocene? Hydrol. Process. 2021, 35, e14403. [Google Scholar] [CrossRef]
- Tsyplenkov, A.; Vanmaercke, M.; Golosov, V. Contemporary Suspended Sediment Yield of Caucasus Mountains. Proc. Int. Assoc. Hydrol. Sci. 2019, 381, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Tsyplenkov, A.; Vanmaercke, M.; Golosov, V.; Chalov, S. Suspended Sediment Budget and Intra-Event Sediment Dynamics of a Small Glaciated Mountainous Catchment in the Northern Caucasus. J. Soils Sediments 2020, 20, 3266–3281. [Google Scholar] [CrossRef]
- Tsyplenkov, A.; Vanmaercke, M.; Collins, A.L.; Kharchenko, S.; Golosov, V. Elucidating Suspended Sediment Dynamics in a Glacierized Catchment after an Exceptional Erosion Event: The Djankuat Catchment, Caucasus Mountains, Russia. Catena 2021, 203, 105285. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Verstraeten, G.; de Vente, J.; Ocakoglu, F. Sediment Yield in Europe: Spatial Patterns and Scale Dependency. Geomorphology 2011, 130, 142–161. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Kettner, A.J.; Syvitski, J.P.M.; Fekete, B.M. WBMsed, a Distributed Global-Scale Riverine Sediment Flux Model: Model Description and Validation. Comput. Geosci. 2013, 53, 80–93. [Google Scholar] [CrossRef]
- Poesen, J. Soil Erosion in the Anthropocene: Research Needs: Soil Erosion in the Anthropocene. Earth Surf. Process. Landf. 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Govers, G.; Verstraeten, G. Quantifying Human Impacts on Catchment Sediment Yield: A Continental Approach. Glob. Planet. Chang. 2015, 130, 22–36. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Higgitt, D.L.; Lu, X.X. Sediment Delivery to the Three Gorges: 1. Catchment Controls. Geomorphology 2001, 41, 143–156. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Milliman, J.D. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. J. Geol. 2007, 115, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vanmaercke, M.; Kettner, A.J.; Eeckhaut, M.V.D.; Poesen, J.; Mamaliga, A.; Verstraeten, G.; Rãdoane, M.; Obreja, F.; Upton, P.; Syvitski, J.P.M.; et al. Moderate Seismic Activity Affects Contemporary Sediment Yields. Prog. Phys. Geogr. Earth Environ. 2014, 38, 145–172. [Google Scholar] [CrossRef] [Green Version]
- Vanacker, V.; von Blanckenburg, F.; Govers, G.; Molina, A.; Campforts, B.; Kubik, P.W. Transient River Response, Captured by Channel Steepness and Its Concavity. Geomorphology 2015, 228, 234–243. [Google Scholar] [CrossRef] [Green Version]
- DiBiase, R.A.; Whipple, K.X.; Heimsath, A.M.; Ouimet, W.B. Landscape Form and Millennial Erosion Rates in the San Gabriel Mountains, CA. Earth Planet. Sci. Lett. 2010, 289, 134–144. [Google Scholar] [CrossRef]
- Campforts, B.; Schwanghart, W.; Govers, G. Accurate Simulation of Transient Landscape Evolution by Eliminating Numerical Diffusion: The TTLEM 1.0 Model. Earth Surf. Dyn. 2017, 5, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W.; Kuhn, N.J. TopoToolbox: A Set of Matlab Functions for Topographic Analysis. Environ. Model. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Kober, F.; Zeilinger, G.; Hippe, K.; Marc, O.; Lendzioch, T.; Grischott, R.; Christl, M.; Kubik, P.W.; Zola, R. Tectonic and Lithological Controls on Denudation Rates in the Central Bolivian Andes. Tectonophysics 2015, 657, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, J.; Moosdorf, N. The New Global Lithological Map Database GLiM: A Representation of Rock Properties at the Earth Surface. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Korup, O. Rock Type Leaves Topographic Signature in Landslide-Dominated Mountain Ranges. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Portenga, E.W.; Bierman, P.R. Understanding Earth’s Eroding Surface with 10Be. GSA Today 2011, 21, 4–10. [Google Scholar] [CrossRef]
- Molnar, P.; Anderson, R.S.; Anderson, S.P. Tectonics, Fracturing of Rock, and Erosion. J. Geophys. Res. Earth Surf. 2007, 112, F03014. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Obreja, F.; Poesen, J. Seismic Controls on Contemporary Sediment Export in the Siret River Catchment, Romania. Geomorphology 2014, 216, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Vanmaercke, M.; Ardizzone, F.; Rossi, M.; Guzzetti, F. Exploring the Effects of Seismicity on Landslides and Catchment Sediment Yield: An Italian Case Study. Geomorphology 2017, 278, 171–183. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Martínez-Murillo, J.F.; Vanmaercke, M.; Poesen, J. Scale-Dependency of Sediment Yield from Badland Areas in Mediterranean Environments. Prog. Phys. Geogr. Earth Environ. 2011, 35, 297–332. [Google Scholar] [CrossRef]
- Jeffery, M.L.; Yanites, B.J.; Poulsen, C.J.; Ehlers, T.A. Vegetation-Precipitation Controls on Central Andean Topography. J. Geophys. Res. Earth Surf. 2014, 119, 1354–1375. [Google Scholar] [CrossRef] [Green Version]
- Carretier, S.; Regard, V.; Vassallo, R.; Aguilar, G.; Martinod, J.; Riquelme, R.; Pepin, E.; Charrier, R.; Hérail, G.; Farías, M.; et al. Slope and Climate Variability Control of Erosion in the Andes of Central Chile. Geology 2013, 41, 195–198. [Google Scholar] [CrossRef]
- Hallet, B.; Hunter, L.; Bogen, J. Rates of Erosion and Sediment Evacuation by Glaciers: A Review of Field Data and Their Implications. Glob. Planet. Chang. 1996, 12, 213–235. [Google Scholar] [CrossRef]
- Hoffmann, T.; Thorndycraft, V.R.; Brown, A.G.; Coulthard, T.J.; Damnati, B.; Kale, V.S.; Middelkoop, H.; Notebaert, B.; Walling, D.E. Human Impact on Fluvial Regimes and Sediment Flux during the Holocene: Review and Future Research Agenda. Glob. Planet. Chang. 2010, 72, 87–98. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of Plant Roots on the Resistance of Soils to Erosion by Water: A Review. Prog. Phys. Geogr. Earth Environ. 2005, 29, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Vanacker, V.; von Blanckenburg, F.; Govers, G.; Molina, A.; Poesen, J.; Deckers, J.; Kubik, P. Restoring Dense Vegetation Can Slow Mountain Erosion to near Natural Benchmark Levels. Geology 2007, 35, 303–306. [Google Scholar] [CrossRef]
- Mozzherin, V.V.; Sharifullin, A.G. Estimation of Current Denudation Rate of the Mountains Based on the Suspended Sediment Runoff of the Rivers (the Tien Shan, the Pamir-Alai, the Caucasus, and the Alps as an Example). Geomorphol. RAS 2015, 1, 15–23. [Google Scholar] [CrossRef]
- Stokes, C.R. Caucasus Mountains. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 127–128. ISBN 978-90-481-2642-2. [Google Scholar]
- Horvath, E.; Field, W.O.; Field, W.O. The Caucasus. In Mountain Glaciers of the Northern Hemisphere; Corps of Engineers, US Army, Technical Information Analysis Center, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1975. [Google Scholar]
- Volodicheva, N. The Caucasus. In The Physical Geography of Northern Eurasia; Shahgedanova, M., Ed.; Oxford University Press: Oxford, UK, 2002; pp. 350–376. [Google Scholar]
- Hinderer, M.; Kastowski, M.; Kamelger, A.; Bartolini, C.; Schlunegger, F. River Loads and Modern Denudation of the Alps—A Review. Earth-Sci. Rev. 2013, 118, 11–44. [Google Scholar] [CrossRef]
- Dedkov, A.P.; Moszherin, V.I. Erosion and Sediment Runoff on the Earth; Izd-vo Kazansk. un-ta: Kazan, Russia, 1984; p. 264. [Google Scholar]
- Dedkov, A.P.; Moszherin, V.I. Erosion and Sediment Yield in Mountain Regions of the World. Eros. Debris Flows Environ. Mt. Reg. 1992, 209, 29–36. [Google Scholar]
- Jaoshvili, S. The Rivers of the Black Sea; European Environmental Agency: København, Denmark, 2002; p. 58. [Google Scholar]
- Vezzoli, G.; Garzanti, E.; Limonta, M.; Radeff, G. Focused Erosion at the Core of the Greater Caucasus: Sediment Generation and Dispersal from Mt. Elbrus to the Caspian Sea. Earth-Sci. Rev. 2020, 200, 102987. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-Resolution Mapping of the World’s Reservoirs and Dams for Sustainable River-Flow Management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Isachenko, A.G. Landscape and Physico-Geographical Zoning; Vysshaya Shkola: Moscow, Russia, 1991; ISBN 5-06-001731-1. (In Russian) [Google Scholar]
- Baston, D. Exactextractr: Fast Extraction from Raster Datasets Using Polygons. 2021. Available online: http://cran.auckland.ac.nz/web/packages/exactextractr/exactextractr.pdf (accessed on 12 October 2021).
- Data Visualization Design Agency & Cartography Firm. Available online: https://stamen.com/ (accessed on 3 November 2021).
- Boulton, S.J.; Stokes, M. Which DEM Is Best for Analyzing Fluvial Landscape Development in Mountainous Terrains? Geomorphology 2018, 310, 168–187. [Google Scholar] [CrossRef]
- Wobus, C.; Whipple, K.X.; Kirby, E.; Snyder, N.; Johnson, J.; Spyropolou, K.; Crosby, B.; Sheehan, D. Tectonics from Topography: Procedures, Promise, and Pitfalls. In Tectonics, Climate, and Landscape Evolution; Geological Society of America: Boulder, CO, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W.; Scherler, D. Short Communication: TopoToolbox 2—MATLAB-Based Software for Topographic Analysis and Modeling in Earth Surface Sciences. Earth Surf. Dyn. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W.; Scherler, D. Bumps in River Profiles: Uncertainty Assessment and Smoothing Using Quantile Regression Techniques. Earth Surf. Dynam. 2017, 5, 821–839. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef] [Green Version]
- Nobre, A.D.; Cuartas, L.A.; Hodnett, M.; Rennó, C.D.; Rodrigues, G.; Silveira, A.; Waterloo, M.; Saleska, S. Height Above the Nearest Drainage—A Hydrologically Relevant New Terrain Model. J. Hydrol. 2011, 404, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Giardini, D.; Grünthal, G.; Shedlock, K.M.; Zhang, P. The GSHAP Global Seismic Hazard Map. Ann. Geophys. 1999, 42. [Google Scholar] [CrossRef]
- Shedlock, K.M.; Giardini, D.; Grunthal, G.; Zhang, P. The GSHAP Global Seismic Hazard Map. Seismol. Res. Lett. 2000, 71, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, J.; Moosdorf, N.; Lauerwald, R.; Hinderer, M.; West, A.J. Global Chemical Weathering and Associated P-Release—The Role of Lithology, Temperature and Soil Properties. Chem. Geol. 2014, 363, 145–163. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchner, J.; Yin, H.; Frantz, D.; Kuemmerle, T.; Askerov, E.; Bakuradze, T.; Bleyhl, B.; Elizbarashvili, N.; Komarova, A.; Lewińska, K.E.; et al. Land-Cover Change in the Caucasus Mountains since 1987 Based on the Topographic Correction of Multi-Temporal Landsat Composites. Remote Sens. Environ. 2020, 248, 111967. [Google Scholar] [CrossRef]
- Raup, B.; Racoviteanu, A.; Khalsa, S.J.S.; Helm, C.; Armstrong, R.; Arnaud, Y. The GLIMS Geospatial Glacier Database: A New Tool for Studying Glacier Change. Glob. Planet. Chang. 2007, 56, 101–110. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, H.; Holm, S. Sample Based Estimation of Landscape Metrics; Accuracy of Line Intersect Sampling for Estimating Edge Density and Shannon’s Diversity Index. Environ. Ecol. Stat. 2011, 18, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting Landscape Metrics as Indicators of Spatial Heterogeneity—A Comparison among Greek Landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35. [Google Scholar] [CrossRef]
- Dušek, R.; Popelková, R. Theoretical View of the Shannon Index in the Evaluation of Landscape Diversity. AUC Geogr. 2017, 47, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Jae Lim, K.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global Rainfall Erosivity Assessment Based on High-Temporal Resolution Rainfall Records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tielidze, L.G.; Wheate, R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). Cryosphere 2018, 12, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Available online: https://doi.org/10.7927/H49C6VHW (accessed on 9 November 2021).
- Steegen, A.; Govers, G. Correction Factors for Estimating Suspended Sediment Export from Loess Catchments. Earth Surf. Process. Landf. 2001, 26, 441–449. [Google Scholar] [CrossRef]
- Harmel, D.; Cooper, J.; Slade, M.; Haney, R.; Arnold, G. Cumulative Uncertainty in Measured Streamflow and Water Quality Data for Small Watersheds. Trans. ASABE 2006, 49, 689–701. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Radoane, M.; Govers, G.; Ocakoglu, F.; Arabkhedri, M. How Long Should We Measure? An Exploration of Factors Controlling the Inter-Annual Variation of Catchment Sediment Yield. J. Soils Sediments 2012, 12, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Purinton, B.; Bookhagen, B. Validation of Digital Elevation Models (DEMs) and Comparison of Geomorphic Metrics on the Southern Central Andean Plateau. Earth Surf. Dyn. 2017, 5, 211–237. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, K.G. Accuracy Assessment of ALOS AW3D30 DSM and Comparison to ALOS PRISM DSM Created with Classical Photogrammetric Techniques. Eur. J. Remote Sens. 2020, 53, 39–52. [Google Scholar] [CrossRef]
- Iervolino, I. Probabilities and Fallacies: Why Hazard Maps Cannot Be Validated by Individual Earthquakes. Earthq. Spectra 2013, 29, 1125–1136. [Google Scholar] [CrossRef] [Green Version]
- Kossobokov, V.G.; Nekrasova, A.K. Global Seismic Hazard Assessment Program Maps Are Erroneous. Seism. Instrum. 2012, 48, 162–170. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning, 1st ed.; Springer Texts in Statistics; Springer: New York, NY, USA, 2013; Volume 103, ISBN 978-1-4614-7137-0. [Google Scholar]
- Romaszko, J.; Skutecki, R.; Bocheński, M.; Cymes, I.; Dragańska, E.; Jastrzębski, P.; Morocka-Tralle, I.; Jalali, R.; Jeznach-Steinhagen, A.; Glińska-Lewczuk, K. Applicability of the Universal Thermal Climate Index for Predicting the Outbreaks of Respiratory Tract Infections: A Mathematical Modeling Approach. Int. J. Biometeorol. 2019, 63, 1231–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, M.S.; Chaloud, D.J. Partial Least Square Analyses of Landscape and Surface Water Biota Associations in the Savannah River Basin. ISRN Ecol. 2011, 2011, e571749. [Google Scholar] [CrossRef] [Green Version]
- Onderka, M.; Wrede, S.; Rodný, M.; Pfister, L.; Hoffmann, L.; Krein, A. Hydrogeologic and Landscape Controls of Dissolved Inorganic Nitrogen (DIN) and Dissolved Silica (DSi) Fluxes in Heterogeneous Catchments. J. Hydrol. 2012, 450–451, 36–47. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Gabrielyan, G.K. The Intensity of Denudation in the Caucasus. Geomorphol. RAS 1971, 1, 22–27. [Google Scholar]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Hsieh, M.-L.; Willett, S.D.; Hu, J.-C.; Horng, M.-J.; Chen, M.-C.; Stark, C.P.; et al. Links between Erosion, Runoff Variability and Seismicity in the Taiwan Orogen. Nature 2003, 426, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Turowski, J.M.; Lague, D.; Hovius, N. Cover Effect in Bedrock Abrasion: A New Derivation and Its Implications for the Modeling of Bedrock Channel Morphology. J. Geophys. Res. 2007, 112, F04006. [Google Scholar] [CrossRef] [Green Version]
- Turowski, J.M.; Hovius, N.; Meng-Long, H.; Lague, D.; Men-Chiang, C. Distribution of Erosion across Bedrock Channels. Earth Surf. Process. Landf. 2008, 33, 353–363. [Google Scholar] [CrossRef]
- Turowski, J.M.; Rickenmann, D.; Dadson, S.J. The Partitioning of the Total Sediment Load of a River into Suspended Load and Bedload: A Review of Empirical Data. Sedimentology 2010, 57, 1126–1146. [Google Scholar] [CrossRef]
- Navratil, O.; Evrard, O.; Esteves, M.; Legout, C.; Ayrault, S.; Némery, J.; Mate-Marin, A.; Ahmadi, M.; Lefèvre, I.; Poirel, A.; et al. Temporal Variability of Suspended Sediment Sources in an Alpine Catchment Combining River/Rainfall Monitoring and Sediment Fingerprinting: Temporal variability of suspended sediment sources in mountains. Earth Surf. Process. Landf. 2012, 37, 828–846. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Tweed, F.S. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Glob. Planet. Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef]
- Gobejishvili, R.; Lomidze, N.; Tielidze, L. Late Pleistocene (Würmian) Glaciations of the Caucasus. In Developments in Quaternary Sciences; Ehlers, J., Gibbard, P.L., Hughes, P.D., Eds.; Quaternary Glaciations—Extent and Chronology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15, Chapter 12; pp. 141–147. [Google Scholar]
- Church, M.; Slaymaker, O. Disequilibrium of Holocene Sediment Yield in Glaciated British Columbia. Nature 1989, 337, 452–454. [Google Scholar] [CrossRef]
- Vinogradova, N.N.; Krylenko, I.V.; Sourkov, V.V. Some Regularities of Channel Formation in the Upper Course of Mountain Rivers (Baksan River as an Example). Geomorphol. RAS 2007, 2, 49–56. [Google Scholar] [CrossRef]
- Kronvang, B.; Andersen, H.E.; Larsen, S.E.; Audet, J. Importance of Bank Erosion for Sediment Input, Storage and Export at the Catchment Scale. J. Soils Sediments 2013, 13, 230–241. [Google Scholar] [CrossRef]
- Summerfield, M.A.; Hulton, N.J. Natural Controls of Fluvial Denudation Rates in Major World Drainage Basins. J. Geophys. Res. Solid Earth 1994, 99, 13871–13883. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of Active Tectonics in Erosional Landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Forte, A.M.; Whipple, K.X.; Bookhagen, B.; Rossi, M.W. Decoupling of Modern Shortening Rates, Climate, and Topography in the Caucasus. Earth Planet. Sci. Lett. 2016, 449, 282–294. [Google Scholar] [CrossRef] [Green Version]
- Gabet, E.J.; Mudd, S.M. A Theoretical Model Coupling Chemical Weathering Rates with Denudation Rates. Geology 2009, 37, 151–154. [Google Scholar] [CrossRef]
- Belyaev, V.R.; Wallbrink, P.J.; Golosov, V.N.; Murray, A.S.; Sidorchuk, A.Y. A Comparison of Methods for Evaluating Soil Redistribution in the Severely Eroded Stavropol Region, Southern European Russia. Geomorphology 2005, 65, 173–193. [Google Scholar] [CrossRef]
- Golosov, V.N.; Collins, A.L.; Dobrovolskaya, N.G.; Bazhenova, O.I.; Ryzhov, Y.V.; Sidorchuk, A.Y. Soil Loss on the Arable Lands of the Forest-Steppe and Steppe Zones of European Russia and Siberia during the Period of Intensive Agriculture. Geoderma 2021, 381, 114678. [Google Scholar] [CrossRef]
- Golosov, V.N. Redistribution of Sediment within Small Catchments of the Temperate Zone. In Erosion and Sediment Yield: Global and Regional Perspectives, Proceedings of the Exeter Symposium, Exeter, UK, 15–19 July 1996; IAHS Press: Wallingford, UK, 1996; Volume 236, pp. 339–346. [Google Scholar]
- Lenzi, M.A.; Mao, L.; Comiti, F. Interannual Variation of Suspended Sediment Load and Sediment Yield in an Alpine Catchment. Hydrol. Sci. J. 2003, 48, 899–915. [Google Scholar] [CrossRef]
- Laraque, A.; Bernal, C.; Bourrel, L.; Darrozes, J.; Christophoul, F.; Armijos, E.; Fraizy, P.; Pombosa, R.; Guyot, J.L. Sediment Budget of the Napo River, Amazon Basin, Ecuador and Peru. Hydrol. Process. 2009, 23, 3509–3524. [Google Scholar] [CrossRef] [Green Version]
- Regüés, D.; Gallart, F. Seasonal Patterns of Runoff and Erosion Responses to Simulated Rainfall in a Badland Area in Mediterranean Mountain Conditions (Vallcebre, Southeastern Pyrenees). Earth Surf. Process. Landf. 2004, 29, 755–767. [Google Scholar] [CrossRef]
- Larionov, G.A. Soil Erosion and Deflation; Lomonosov Moscow State University: Moscow, Russia, 1993; ISBN 5-211-02467-2. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A Review of Erosion and Sediment Transport Models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Balthazar, V.; Vanacker, V.; Girma, A.; Poesen, J.; Golla, S. Human Impact on Sediment Fluxes within the Blue Nile and Atbara River Basins. Geomorphology 2013, 180–181, 231–241. [Google Scholar] [CrossRef]
Variable | Description | Units | Source | Uncertainty |
---|---|---|---|---|
A | Catchment area (reported) | km2 | Source of SSY data | - |
DEM | Catchment elevation Cv (Coefficient of variance) | - | AW3D30 | 1% 1 |
Ksn | Normalized steepness index | m0.9 | [56] | 1% 1 |
HAND | Height above the nearest drainage | m | [59] | 5% 1 |
PGA | Peak ground acceleration with an exceedance probability of 10% in 50 years. | m s−2 | [61,62] | 20% 1 |
CWR | Chemical weathering rate | t km−2 year−1 | [28,63] | 5%, as defined by [63] |
SAND | A mean sand fraction in intrinsic topsoil (0–30 cm) | % | [64] | 9%, as defined by [64] |
CANOPY | Forest canopy height | m | [67] | 12%, as defined by [67] |
BARREN | Fraction of barren lands | % | [65] | 29%, as defined by [65] |
CROPLAND | Fraction of cropland | 8%, as defined by [65] | ||
FOREST | Fraction of forest area | 15%, as defined by [65] | ||
GLACIER | Fraction of glacierized area in 1960 | % | [66] | 5%, as defined by [74] |
SHDI | Shannon’s Diversity Index | - | [68] | 19% as overall accuracy of landuse map [65] |
P | Mean annual precipitation 1958–2018 | mm | [72] | 9.1% as defined by [72] |
AET | Mean annual air temperature 1958–2018 | °C | 0.32 °C as defined by [72] | |
SRAD | Mean annual downward solar radiation flux at the surface 1958–2018 | W m−2 | 8.3% as defined by [72] | |
Q | Mean annual cumulative streamflow | Mm | 36% as defined by [72] | |
GLORED | Rainfall erosivity | MJ mm ha−1 h−1 year−1 | [73] | 10% 1 |
POP | Mean catchment population density averaged for 2000–2020 | Persons km−2 | [75] | 15% 1 |
KG | Köppen-Geiger climate class | Dummy variable | [51] | - |
LZ | Isachenko landscape province | Dummy variable | [52] | - |
Group | n | Min | Max | Median | IQR | Mean | SD | SE | CI |
---|---|---|---|---|---|---|---|---|---|
All data | 244 | 5 | 4100 | 214 | 378 | 426 | 570 | 36.5 | 71.9 |
Elevation zone (m a.s.l.) | |||||||||
<500 | 108 | 5 | 1691 | 214 | 273 | 310 | 296 | 28.4 | 56.4 |
500–1000 | 73 | 7.9 | 4100 | 214 | 588 | 534 | 755 | 88.3 | 176 |
1000–1500 | 42 | 9 | 3510 | 251 | 410 | 490 | 686 | 106 | 214 |
>1500 | 21 | 14.3 | 1846 | 195 | 732 | 516 | 577 | 126 | 263 |
Köppen-Geiger climate class | |||||||||
Cfa | 48 | 9 | 1000 | 152 | 144 | 214 | 212 | 30.5 | 61.4 |
Cfb | 13 | 72 | 572 | 290 | 134 | 296 | 136 | 37.6 | 81.9 |
Csa | 4 | 25 | 150 | 128 | 57.5 | 108 | 57.8 | 28.9 | 92 |
Dfa | 2 | 142 | 1540 | 841 | 699 | 841 | 989 | 699 | 8882 |
Dfb | 100 | 5 | 4100 | 168 | 357 | 372 | 577 | 57.7 | 114 |
Dfc | 51 | 9 | 3510 | 433 | 837 | 746 | 704 | 98.6 | 198 |
Dsa | 1 | 100 | 100 | 100 | 0 | 100 | - | - | - |
Dsb | 4 | 14.3 | 200 | 56.1 | 95.7 | 81.6 | 85.6 | 42.8 | 136 |
ET | 21 | 98 | 2706 | 320 | 537 | 574 | 639 | 139 | 291 |
Isachenko landscape province | |||||||||
1b | 22 | 5 | 416 | 90 | 111 | 113 | 101 | 21.5 | 44.7 |
2a | 39 | 67 | 638 | 174 | 93 | 207 | 123 | 19.6 | 39.7 |
2b | 50 | 38 | 1728 | 348 | 494 | 538 | 472 | 66.8 | 134 |
2c | 10 | 103 | 2515 | 722 | 287 | 958 | 721 | 228 | 516 |
2e | 25 | 50 | 4100 | 1131 | 775 | 1340 | 1014 | 203 | 419 |
2f | 32 | 88 | 1100 | 405 | 210 | 437 | 223 | 39.5 | 80.6 |
2g | 6 | 24 | 215 | 178 | 106 | 147 | 79.2 | 32.3 | 83.1 |
3f | 5 | 150 | 364 | 290 | 20 | 281 | 79.1 | 35.4 | 98.3 |
5d | 26 | 14.3 | 490 | 67.4 | 59 | 84.7 | 97.9 | 19.2 | 39.6 |
5e | 12 | 7.9 | 340 | 55.5 | 49.5 | 79.9 | 90.8 | 26.2 | 57.7 |
5f | 11 | 59 | 1500 | 160 | 153 | 297 | 415 | 125 | 279 |
6d | 3 | 23.2 | 200 | 150 | 88.4 | 124 | 91.1 | 52.6 | 226 |
6f | 3 | 25 | 145 | 110 | 60 | 93.3 | 61.7 | 35.6 | 153 |
Variable | Mean | Lower | Upper |
---|---|---|---|
HAND | 0.52 | 0.5 | 0.54 |
BARREN | 0.48 | 0.45 | 0.51 |
Ksn | 0.46 | 0.44 | 0.48 |
GLACIER | 0.36 | 0.34 | 0.38 |
PGA | 0.35 | 0.26 | 0.43 |
Q | 0.28 | 0.23 | 0.33 |
SAND | 0.27 | 0.18 | 0.35 |
P | 0.25 | 0.21 | 0.29 |
CANOPY | 0.2 | 0.17 | 0.23 |
GLORED | 0.17 | 0.13 | 0.21 |
AREA | 0.16 | 0.14 | 0.18 |
FOREST | 0.09 | 0.07 | 0.12 |
AET | −0.02 | −0.06 | 0.02 |
SRAD | −0.05 | −0.16 | 0.06 |
POP | −0.08 | −0.11 | −0.04 |
CROP | −0.29 | −0.32 | −0.26 |
CWR | −0.37 | −0.4 | −0.33 |
Statistic | Component 1 | Component 2 | Component 3 | Component 4 |
---|---|---|---|---|
PLSR model A | ||||
Q2 cum | 0.328 | 0.461 | 0.486 | 0.496 |
R2Y cum | 0.343 | 0.501 | 0.536 | 0.552 |
R2X cum | 0.248 | 0.331 | 0.514 | 0.738 |
PLSR model B | ||||
Q2 cum | 0.407 | 0.493 | 0.514 | 0.506 |
R2Y cum | 0.438 | 0.577 | 0.624 | 0.640 |
R2X cum | 0.150 | 0.231 | 0.336 | 0.439 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golosov, V.; Tsyplenkov, A. Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region. Water 2021, 13, 3173. https://doi.org/10.3390/w13223173
Golosov V, Tsyplenkov A. Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region. Water. 2021; 13(22):3173. https://doi.org/10.3390/w13223173
Chicago/Turabian StyleGolosov, Valentin, and Anatoly Tsyplenkov. 2021. "Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region" Water 13, no. 22: 3173. https://doi.org/10.3390/w13223173
APA StyleGolosov, V., & Tsyplenkov, A. (2021). Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region. Water, 13(22), 3173. https://doi.org/10.3390/w13223173