A Tale of Two Deltas: Dam-Induced Hydro-Morphological Evolution of the Volta River Delta (Ghana) and Yellow River Delta (China)
Abstract
:1. Introduction
2. Study Area
2.1. The Volta River
2.2. The Yellow River
3. Data Collection and Methods
3.1. Hydrological Data
3.2. Hydrological Data Analysis
3.3. Remote Sensing Data
3.4. Methods for Extracting Shorelines
4. Results
4.1. Hydrological Alteration
4.2. Morphological Evolution
4.3. Changing Fluvial and Wave Forcings
5. Discussion
5.1. Dam Effects on Hydrological Alterations
5.2. How Hydrological Alterations Affect Delta Morphology
5.3. Conceptual Model Showing the Processes of Dam-Influenced Delta Evolution
6. Conclusions
- The annual river discharge and sediment load, and their inter-annual variations, decreased significantly for both the Volta River Delta (1936–2018) and Yellow River Delta (1950–2017). The changes can be correlated with the construction of major dams, which can be further divided into two and four phases, respectively, corresponding to the construction of the major dams in the two rivers.
- The annual sediment load of the Volta River Delta was subject to an abrupt decrease to <10% of the pre-dam level due to the construction of the Akosombo Dam in 1964 and stabilized afterward, whereas that of the Yellow River Delta decreased substantially yet more gradually to ~10% of the pre-dam level in the 1950s by 2017. The difference can be attributed to the much greater reservoir capacity and more downstream location of the dam in the Volta River.
- The contrasting patterns of hydrological alterations of the two deltas resulted in different evolution patterns of the shorelines and delta areas. While the shoreline of the Volta River Delta appeared to attain a quasi-equilibrium at the latter stage of the post-Akosombo Dam period (1975–2018) after intense shoreline retreat in the 1960s, the progradation-erosion patterns of the shoreline change in the Yellow River Delta (1977–2017) were more dynamic. However, it is foreseeable that if the trend of sediment reduction persists, it may potentially turn the net delta progradation to erosion, and further into a new quasi-equilibrium like that of the Volta River Delta.
- The Volta River Delta has been wave-dominated since 1936 and has become more wave-dominated due to the abrupt decrease of sediment load in 1964. The relatively strong wave forcing substantially reworks the river delta and drives the river delta toward a new equilibrium. On the contrary, the Yellow River Delta has started shifting to become wave-dominated since 2017 due to a more gradual decreasing trend of sediment load and river avulsions, which has changed the local wave climate. The relatively weak wave forcing of the Yellow River Delta suggests a longer timescale is required to potentially attain a new equilibrium.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate change: Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Adger, W.N.; Hutton, C.W.; Hanson, S.E. Delta Challenges and Trade-Offs from the Holocene to the Anthropocene. In Deltas in the Anthropocene; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X.; Wang, Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Glob. Planet. Chang. 2007, 57, 331–354. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vorosmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Chang. 2007, 57, 261–282. [Google Scholar] [CrossRef]
- Nienhuis, J.H.; Ashton, A.D.; Edmonds, D.A.; Hoitink, A.J.F.; Kettner, A.J.; Rowland, J.C.; Törnqvist, T.E. Global-scale human impact on delta morphology has led to net land area gain. Nature 2020, 577, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Besset, M.; Anthony, E.J.; Bouchette, F. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review. Earth-Sci. Rev. 2019, 193, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Hoitink, A.; Wang, Z.; Vermeulen, B.; Huismans, Y.; Kästner, K. Tidal controls on river delta morphology. Nat. Geosci. 2017, 10, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Shao, D.; Wang, Z.B.; Nardin, W.; Rajput, P.; Yang, W.; Sun, T.; Cui, B.S. Long-term cumulative effects of intra-annual variability of unsteady river discharge on the progradation of delta lobes: A modeling perspective. J. Geophys. Res. Earth Surf. 2019, 124, 960–973. [Google Scholar] [CrossRef] [Green Version]
- Stanley, D.J.; Warne, A.G. Nile delta in its destruction phase. J. Coast. Res. 1998, 14, 795–825. [Google Scholar] [CrossRef]
- Stanley, D.J.; Warne, A.G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 1994, 265, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Ghoneim, E.; Mashaly, J.; Gamble, D.; Halls, J.; AbuBakr, M. Nile Delta exhibited a spatial reversal in the rates of shoreline retreat on the Rosetta promontory comparing pre- and post-beach protection. Geomorphology 2015, 228, 1–14. [Google Scholar] [CrossRef]
- Bentley, S.J.; Blum, M.D.; Maloney, J.; Pond, L.; Paulsell, R. The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth-Sci. Rev. 2016, 153, 139–174. [Google Scholar] [CrossRef] [Green Version]
- Van Metre, P.C.; Horowitz, A.J. An 80-year record of sediment quality in the lower Mississippi River. Hydrol. Process. 2013, 27, 2438–2448. [Google Scholar] [CrossRef]
- Blum, M.D.; Roberts, H.H. The Mississippi Delta Region: Past, Present, and Future. Annu. Rev. Earth Planet. Sci. 2012, 40, 655–683. [Google Scholar] [CrossRef]
- Amenuvor, M.; Gao, W.; Li, D.; Shao, D. Effects of Dam Regulation on the Hydrological Alteration and Morphological Evolution of the Volta River Delta. Water 2020, 12, 646. [Google Scholar] [CrossRef] [Green Version]
- Ly, C.K. The role of the Akosombo Dam on the Volta River in causing coastal erosion in central and eastern Ghana (West Africa). Mar. Geol. 1980, 37, 323–332. [Google Scholar] [CrossRef]
- Cui, B.L.; Li, X.Y. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology 2011, 127, 32–40. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, H.Q.; Ran, L.; Shi, C.; Su, T. Hydrological controls on the evolution of the Yellow River Delta: An evaluation of the relationship since the Xiaolangdi Reservoir became fully operational. Hydrol. Process. 2018, 32, 3633–3649. [Google Scholar] [CrossRef]
- Ly, C.K. Sources of beach sand from the central and eastern coasts of Ghana, West Africa. Mar. Geol. 1981, 44, 229–240. [Google Scholar] [CrossRef]
- Bosboom, J.; Stive, M.J. Coastal Dynamics I: Lectures Notes CIE4305; Delft University of Technology: Delft, The Netherlands, 2012. [Google Scholar]
- Addo, K.A.; Nicholls, R.J.; Codjoe, S.N.A.; Abu, M. A Biophysical and Socioeconomic Review of the Volta Delta, Ghana. J. Coast. Res. 2018, 34, 1216–1226. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chen, S.; Dong, P.; Li, X. Temporal and spatial evolution of the coastal profiles along the Yellow River Delta over last three decades. GeoJournal 2008, 71, 185–199. [Google Scholar] [CrossRef]
- Deng, J.; Harff, J.; Li, Y.; Zhao, Y.; Zhang, H. Morphodynamics at the coastal zone in the Laizhou Bay, Bohai Sea. J. Coast. Res. 2016, 74, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Roest, L.W.M. The Coastal System of the Volta Delta, Ghana: Strategies and Opportunities for Development; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Darby, S.E.; Addo, K.A.; Hazra, S.; Rahman, M.M.; Nicholls, R.J. Fluvial sediment supply and relative sea-level rise. In Deltas in the Anthropocene; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 103–126. [Google Scholar]
- Andreini, M.; van de Giesen, N.; Van Edig, A.; Fosu, M.; Andah, W. Volta Basin Water Balance; ZEF Discussion Papers on Development Policy 21; Center for Development Research (ZEF), University of Bonn: Bonn, Germany, 2000. [Google Scholar]
- Syvitski, J.P. Deltas at risk. Sustain. Sci. 2008, 3, 23–32. [Google Scholar] [CrossRef]
- Evadzi, P.I.K.; Zorita, E.; Hünicke, B. Quantifying and Predicting the Contribution of Sea-Level Rise to Shoreline Change in Ghana: Information for Coastal Adaptation Strategies. J. Coast. Res. 2017, 33, 1283–1291. [Google Scholar] [CrossRef]
- Barry, B.; Obuobie, E.; Andreini, M.; Andah, W.; Pluquet, M. The Volta river basin. In Comprehensive Assessment of Water Management in Agriculture; Comparative Study of River Basin Development and Management; International Water Management Institute: Battaramulla, Sri Lanka, 2005. [Google Scholar]
- Boateng, I.; Bray, M.; Hooke, J. Estimating the fluvial sediment input to the coastal sediment budget: A case study of Ghana. Geomorphology 2012, 138, 100–110. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Friesen, J. Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002. Phys. Chem. Earth 2006, 31, 1180–1188. [Google Scholar] [CrossRef]
- Giardino, A.; Schrijvershof, R.; Nederhoff, C.M.; de Vroeg, H.; Brière, C.; Tonnon, P.K.; Caires, S.; Walstra, D.J.; Sosa, J.; van Verseveld, W.; et al. A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean Coast. Manag. 2018, 156, 249–265. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, N.; Wang, J. Satellite-observed Evolution Dynamics of the Yellow River Delta in 1984–2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6044–6050. [Google Scholar] [CrossRef]
- Kuenzer, C.; Ottinger, M.; Liu, G.; Sun, B.; Baumhauer, R.; Dech, S. Earth observation-based coastal zone monitoring of the Yellow River Delta: Dynamics in China’s second largest oil producing region over four decades. Appl. Geogr. 2014, 55, 92–107. [Google Scholar] [CrossRef]
- Luo, S.; Shao, D.; Long, W.; Liu, Y.; Sun, T.; Cui, B. Assessing ‘coastal squeeze’ of wetlands at the Yellow River Delta in China: A case study. Ocean Coast. Manag. 2018, 153, 193–202. [Google Scholar] [CrossRef]
- Cong, P.; Chen, K.; Qu, L.; Han, J. Dynamic changes in the wetland landscape pattern of the Yellow River Delta from 1976 to 2016 based on satellite data. Chin. Geogr. Sci. 2019, 29, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wu, X.; Bi, N.; Li, S.; Yuan, P.; Wang, A.; Syvitski, J.P.M.; Saito, Y.; Yang, Z.; Liu, S.; et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review. Glob. Planet. Chang. 2017, 157, 93–113. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, S.; Ji, H.; Fan, Y.; Li, P. The modern Yellow River Delta in transition: Causes and implications. Mar. Geol. 2021, 436, 106476. [Google Scholar] [CrossRef]
- Li, H.; Huang, C.; Liu, Q.; Liu, G. Accretion–Erosion Dynamics of the Yellow River Delta and the Relationships with Runoff and Sediment from 1976 to 2018. Water 2020, 12, 2992. [Google Scholar] [CrossRef]
- Fan, H.; Huang, H.; Zeng, T. Impacts of Anthropogenic Activity on the Recent Evolution of the Huanghe (Yellow) River Delta. J. Coast. Res. 2006, 22, 919–929. [Google Scholar] [CrossRef]
- Jiang, C.; Pan, S.; Chen, S. Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications. Geomorphology 2017, 293, 93–107. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Z.; Zhang, Y.; Ji, Y.; Wang, H.; Lv, K.; Lu, Z. Spatial and temporal shoreline changes of the southern Yellow River (Huanghe) Delta in 1976–2016. Mar. Geol. 2018, 395, 188–197. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Wu, X.; Bi, N.; Xu, J.; Nittrouer, J.A.; Yang, Z.; Saito, Y.; Wang, H. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976–2013): Dominant roles of riverine discharge and sediment grain size. Geomorphology 2017, 292, 115–127. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Shi, H.; Hu, C.; Wang, Y.; Liu, C.; Li, H. Analyses of trends and causes for variations in runoff and sediment load of the Yellow River. Int. J. Sediment Res. 2017, 32, 171–179. [Google Scholar] [CrossRef]
- Miao, C.; Kong, D.; Wu, J.; Duan, Q. Functional degradation of the water-sediment regulation scheme in the lower Yellow River: Spatial and temporal analyses. Sci. Total Environ. 2016, 551–552, 16–22. [Google Scholar] [CrossRef]
- Zeng, M.; Sun, X.; Fan, D. Numerical Simulation on Sediment Transportation in the Estuary and its Adjacent Areas during the Water and Sediment Regulation Period of the Huanghe River. J. Ocean Univ. China 2017, 47, 81–92. [Google Scholar] [CrossRef]
- Yu, L. The Huanghe (Yellow) River: A review of its development, characteristics, and future management issues. Cont. Shelf Res. 2002, 22, 389–403. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Bi, N.; Wang, H.; Wei, H.; Zhao, J.; Xie, L.; Zou, L.; Cui, R.; Li, S.; et al. Effect of human-controlled hydrological regime on the source, transport, and flux of particulate organic carbon from the lower Huanghe (Yellow River). Earth Surf. Process. Landf. 2015, 40, 1029–1042. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Borthwick, A.G.L.; Duan, Q.; Liu, H.; Sun, Q.; Ye, A.; Di, Z.; Gong, W. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. J. Hydrol. 2015, 520, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Mitosek, H.T. Climate variability and change within the discharge time-series-a statistical approach. Clim. Chang. 1995, 29, 101–116. [Google Scholar] [CrossRef]
- Caruso, B.; Newton, S.; King, R.; Zammit, C. Modelling climate change impacts on hydropower lake inflows and braided rivers in a mountain basin. Hydrol. Sci. J. 2017, 62, 928–946. [Google Scholar] [CrossRef]
- McKight, P.E.; Najab, J. Kruskal-Wallis test. In The Corsini Encyclopedia of Psychology and Behavioral Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Stahle, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar] [CrossRef]
- Xu, J.; Yan, Y. Effect of reservoir construction on suspended sediment load in a large river system: Thresholds and complex response. Earth Surf. Process. Landf. 2010, 35, 1666–1673. [Google Scholar] [CrossRef]
- Guo, C.; Jin, Z.; Guo, L.; Lu, J.; Ren, S.; Zhou, Y. On the cumulative dam impact in the upper Changjiang River: Streamflow and sediment load changes. CATENA 2020, 184, 104250. [Google Scholar] [CrossRef]
- Nienhuis, J.H.; Ashton, A.D.; Giosan, L. What makes a delta wave-dominated? Geology 2015, 43, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Nienhuis, J.; Nardin, W.; Wang, Z.B.; Shao, D.; Sun, T.; Cui, B. Wave Controls on Deltaic Shoreline-Channel Morphodynamics: Insights from a Coupled Model. Water Resour. Res. 2020, 56, e2020WR027298. [Google Scholar] [CrossRef]
- Gao, W.; Li, D.; Wang, Z.B.; Nardin, W.; Shao, D.; Sun, T.; Miao, C.; Cui, B. The Longitudinal Profile of a Prograding River and Its Response to Sea Level Rise. Geophys. Res. Lett. 2020, 47, e2020GL090450. [Google Scholar] [CrossRef]
- Addo, K.A. Assessment of the volta delta shoreline change. J. Coast. Zone Manag. 2015, 18, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.L.; Shi, B.; Fan, J.; Luo, X.; Tian, Q.; Yang, H.; Chen, S.; Zhang, Y.; Zhang, S.; Shi, X.; et al. Streamflow Decline in the Yellow River along with Socioeconomic Development: Past and Future. Water 2020, 12, 823. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Pan, S.; Chen, S. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta. Mar. Geol. 2020, 425, 106210. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Sang, Y.-F.; Ran, L.; Ma, Y. Effects of large upstream reservoir operations on cross-sectional changes in the channel of the lower Yellow River reach. Geomorphology 2021, 387, 107768. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Awange, J.L.; Kuhn, M.; Agutu, N.O.; Fukuda, Y. Analysis of hydrological variability over the Volta river basin using in-situ data and satellite observations. J. Hydrol. Reg. Stud. 2017, 12, 88–110. [Google Scholar] [CrossRef]
- Gyau-Boakye, P. Environmental impacts of the Akosombo dam and effects of climate change on the lake levels. Environ. Dev. Sustain. 2001, 3, 17–29. [Google Scholar] [CrossRef]
- Wang, G.; Wu, B.; Wang, Z.-Y. Sedimentation problems and management strategies of Sanmenxia Reservoir, Yellow River, China. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Chen, S.; Zhao, B.; Pan, S.; Jiang, C.; Ji, H. Shoreline dynamics of the active Yellow River delta since the implementation of Water-Sediment Regulation Scheme: A remote-sensing and statistics-based approach. Estuar. Coast. Shelf Sci. 2018, 200, 406–419. [Google Scholar] [CrossRef]
- Bi, N.H.; Wang, H.J.; Yang, Z.H. Recent changes in the erosion-accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Cont. Shelf Res. 2014, 90, 70–78. [Google Scholar] [CrossRef]
- Chu, Z.X.; Sun, X.G.; Zhai, S.K.; Xu, K.H. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Mar. Geol. 2006, 227, 13–30. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, H.Q.; Nanson, G.C.; Huang, C.; Liu, G. Progradation of the Yellow (Huanghe) River delta in response to the implementation of a basin-scale water regulation program. Geomorphology 2015, 243, 65–74. [Google Scholar] [CrossRef]
- Yang, S.L.; Luo, X.; Temmerman, S.; Kirwan, M.; Bouma, T.; Xu, K.; Zhang, S.; Fan, J.; Shi, B.; Yang, H. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline. Limnol. Oceanogr. 2020, 65, 1990–2009. [Google Scholar] [CrossRef] [Green Version]
- Bi, N.; Wang, H.; Wu, X.; Saito, Y.; Xu, C.; Yang, Z. Phase change in evolution of the modern Huanghe (Yellow River) Delta: Process, pattern, and mechanisms. Mar. Geol. 2021, 437, 106516. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Yin, Z.; Ottlé, C.; Ciais, P.; Zhou, F.; Wang, X.; Jan, P.; Dumas, P.; Peng, S.; Li, L.; Zhou, X.; et al. Irrigation, damming, and streamflow fluctuations of the Yellow River. Hydrol. Earth Syst. Sci. 2021, 25, 1133–1150. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Wang, S.; Feng, X.; Liu, Y. Yellow River water rebalanced by human regulation. Sci. Rep. 2019, 9, 9707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Lu, Z.; Jiang, S.; Chi, W.; Zhu, L.; Wang, H.; Lv, K.; Wang, B.; Yang, Z. The progradation and retrogradation of two newborn Huanghe (Yellow River) Delta lobes and its influencing factors. Mar. Geol. 2018, 400, 38–48. [Google Scholar] [CrossRef]
- Wu, X.; Bi, N.; Syvitski, J.; Saito, Y.; Xu, J.; Nittrouer, J.A.; Bianchi, T.S.; Yang, Z.; Wang, H. Can reservoir regulation along the Yellow River be a sustainable way to save a sinking delta? Earth’s Future 2020, 8, e2020EF001587. [Google Scholar] [CrossRef]
- Anthony, E.J.; Almar, R.; Aagaard, T. Recent shoreline changes in the Volta River delta, West Africa: The roles of natural processes and human impacts. Afr. J. Aquat. Sci. 2016, 41, 81–87. [Google Scholar] [CrossRef]
- Rossi, G. L’Erosion du Littoral dans le Golfe du Bénin: Un Example de Perturbation d’un Équilibre Morphodynamique. Z. Geomorphol. 1989, 73, 139–165. [Google Scholar]
Acquisition Date | Image Type | Band | Resolution (m) | Acquisition Date | Image Type | Band | Resolution (m) |
---|---|---|---|---|---|---|---|
1 October 1977 | MSS | 4 | 60 | 20 September 1996 | TM | 7 | 30 |
3 April 1979 | 9 August 1998 | ||||||
8 June 1980 | 25 June 1999 | ||||||
12 June 1981 | 30 June 2001 | ETM+ | 8 | 30 | |||
5 October 1984 | 29 September 2002 | ||||||
25 November 1985 | 27 May 2003 | ||||||
5 June 1986 | 13 June 2004 | ||||||
26 June 1988 | TM | 7 | 30 | 14 April 2005 | |||
27 August 1993 | 26 October 2012 | ||||||
17 October 1994 | 10 August 2013 | ||||||
18 September 1995 | 26 June 2017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Gao, W.; Shao, D.; Amenuvor, M.; Tong, Y.; Cui, B. A Tale of Two Deltas: Dam-Induced Hydro-Morphological Evolution of the Volta River Delta (Ghana) and Yellow River Delta (China). Water 2021, 13, 3198. https://doi.org/10.3390/w13223198
Li D, Gao W, Shao D, Amenuvor M, Tong Y, Cui B. A Tale of Two Deltas: Dam-Induced Hydro-Morphological Evolution of the Volta River Delta (Ghana) and Yellow River Delta (China). Water. 2021; 13(22):3198. https://doi.org/10.3390/w13223198
Chicago/Turabian StyleLi, Dongxue, Weilun Gao, Dongdong Shao, Mawusi Amenuvor, Yao Tong, and Baoshan Cui. 2021. "A Tale of Two Deltas: Dam-Induced Hydro-Morphological Evolution of the Volta River Delta (Ghana) and Yellow River Delta (China)" Water 13, no. 22: 3198. https://doi.org/10.3390/w13223198
APA StyleLi, D., Gao, W., Shao, D., Amenuvor, M., Tong, Y., & Cui, B. (2021). A Tale of Two Deltas: Dam-Induced Hydro-Morphological Evolution of the Volta River Delta (Ghana) and Yellow River Delta (China). Water, 13(22), 3198. https://doi.org/10.3390/w13223198