Ecological Network Analysis of a Virtual Water System in Tibet, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Flow Quantification
2.4. Establishment of Virtual Water Network Model
2.5. Methodologies
2.5.1. Information-Based ENA
2.5.2. Network Control Analysis
2.5.3. Network Utility Analysis
3. Results and Discussion
3.1. Stability Analysis of Virtual Water Network
3.2. Network Control Conditions by Network Control Analysis
3.3. Ecological Relationships Distribution by Network Utility Analysis
3.4. Comparison with Related Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Yang, Z.F. Quantifying the sustainability of water use systems: Calculating the balance between network efficiency and resilience. Ecol. Model. 2011, 222, 1771–1780. [Google Scholar] [CrossRef]
- Wu, F.; Zhuang, Z.; Liu, H.L.; Shiac, Y.C. Evaluation of Water Resources Carrying Capacity Using Principal Component Analysis: An Empirical Study in Huai’an, Jiangsu, China. Water 2021, 13, 2587. [Google Scholar] [CrossRef]
- Bernabé-Crespo, M.B.; Peña-Ramos, J.A. The Management of Water Resources in a Disputed Border: The Case of Gazivoda Reservoir (Kosovo). Front. J. Soc. Technol. Environ. Sci. 2019, 8, 319–340. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Recent Progress in Low-Impact Development in South Korea: Water Management Policies, Challenges and Opportunities. Water 2018, 10, 435. [Google Scholar] [CrossRef] [Green Version]
- Peña-Ramos, J.A.; Bagus, P.; Fursova, D. Water conflicts in central Asia: Some recommendations on the non-conflictual use of water. Sustainability 2021, 13, 3479. [Google Scholar] [CrossRef]
- Peña-Ramos, J.A.; Luis, F.R.R. Past, Present, and Future Conflicts over Freshwater. Int. J. Environ. Sustain. 2021, 17, 19–31. [Google Scholar] [CrossRef]
- Chen, W.; Wu, S.; Lei, Y.; Li, S. Virtual water export and import in China’s foreign trade: A quantification using input-output tables of China from 2000 to 2012. Resour. Conserv. Recycl. 2018, 132, 278–290. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Pfisher, S.; Yu, Y.; Sun, L. Virtual scarce water in China. Environ. Sci. Technol. 2014, 48, 7704–7713. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K. Assessment of regional trade and virtual water flows in China. Ecol. Econ. 2007, 61, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Zhang, X.; Bao, H.; Skitmore, M. Review of social water cycle research in a changing environment. Renew. Sust. Energy Rev. 2016, 63, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Mei, Y.; Xiao, W. Establishment of the ecological relationships and properties of the Lhasa River Basin water resources system, China. Sustain. Cities Soc. 2019, 47, 101477. [Google Scholar] [CrossRef]
- Yang, Z.; Mao, X.; Zhao, X.; Chen, B. Ecological network analysis on global virtual water trade. Environ. Sci. Technol. 2012, 46, 1796–1803. [Google Scholar] [CrossRef]
- He, C.; Huang, G.; Liu, L.; Xu, X.; Li, Y. Evolution of virtual water metabolic network in developing regions: A case study of Guangdong province. Ecol. Indicat. 2020, 108, 105750. [Google Scholar] [CrossRef]
- Allen, J.A. Virtual water: A strategic resource global solutions to regional deficits. Groundwater 1998, 36, 545–546. [Google Scholar] [CrossRef]
- Cui, D.; Zeng, W.; Ma, B.; Zhuo, Y.; Xie, Y. Ecological network analysis of an urban water metabolic system: Integrated metabolic processes of physical and virtual water. Sci. Total Environ. 2021, 787, 147432. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xie, Y.; Cai, Y.; Li, L.; Wang, B.; Yang, Z. Environmentally-extended input-output and ecological network analysis for Energy-Water-CO2 metabolic system in China. Sci. Total Environ. 2021, 758, 143931. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The water footprint of coffee and tea consumption in the Netherlands. Ecol. Econ. 2007, 64, 109–118. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, H.; Yang, Z.; Chen, B.; Yan, Q. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River Basin in China. Environ. Sci. Technol. 2010, 44, 9150–9156. [Google Scholar] [CrossRef]
- Mubako, S.; Lahiri, S.; Lant, C. Input–output analysis of virtual water transfers: Case study of California and Illinois. Ecol. Econ. 2013, 93, 230–238. [Google Scholar] [CrossRef]
- Mao, X.; Yang, Z. Ecological network analysis for virtual water trade system: A case study for the Baiyangdian Basin in Northern China. Ecol. Inform. 2012, 10, 17–24. [Google Scholar] [CrossRef]
- Hannon, B. The structure of ecosystems. J. Theor. Biol. 1973, 41, 535–546. [Google Scholar] [CrossRef]
- Patten, B.C.; Bosserman, R.W.; Finn, J.T.; Cale, W.G. Propagation of Cause in Ecosystems. In Systems Analysis and Simulation in Ecology; Patten, B.C., Ed.; Academic Press: New York, NY, USA, 1976; pp. 457–579. ISBN 978-0-12-547204-3. [Google Scholar]
- Ulanowicz, R.E.; Goerner, S.J.; Lietaer, B.; Gomez, R. Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecol. Complex. 2009, 6, 27–36. [Google Scholar] [CrossRef]
- Yang, Z.; Mao, X. Wetland system network analysis for environmental flow allocations in the Baiyangdian Basin, China. Ecol. Model. 2011, 222, 3785–3794. [Google Scholar] [CrossRef]
- Bodini, A.; Bondavalli, C. Towards a sustainable use of water resources: A whole-ecosystem approach using network analysis. Int. J. Environ. Pollut. 2002, 18, 463–485. [Google Scholar] [CrossRef]
- Mao, X.; Yang, Z. Functional assessment of interconnected aquatic ecosystems in the Baiyangdian Basin—An ecological-network-analysis based approach. Ecol. Model. 2011, 222, 3811–3820. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, Y.; Qi, Z. Evaluating the ecological state of Chinese Lake Baiyangdian (BYD) based on Ecological Network Analysis. Ecol. Indicat. 2021, 127, 107788. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, B.; Feng, K.; Hubacek, K. Ecological network analysis for carbon metabolism of eco-industrial parks: A case study of a typical eco-industrial park in Beijing. Environ. Sci. Technol. 2015, 49, 7254–7264. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B. Information-based ecological network analysis for carbon emissions. Appl. Energy 2019, 238, 45–53. [Google Scholar] [CrossRef]
- Guan, Y.; Bai, J.; Tian, X.; Zhi, L.; Yu, Z. Integrating ecological and socio-economic systems by carbon metabolism in a typical wetland city of China. J. Clean. Prod. 2021, 279, 123342. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Yu, X. Characteristics of Tianjin’s material metabolism from the perspective of ecological network analysis. J. Clean. Prod. 2019, 239, 118115. [Google Scholar] [CrossRef]
- Zheng, B.; Huang, G.; Liu, L.; Zhai, M.; Guan, Y. Metabolism of urban wastewater: Ecological network analysis for Guangdong Province, China. J. Clean. Prod. 2019, 217, 510–519. [Google Scholar] [CrossRef]
- Guo, R.; Zhu, X.; Chen, B.; Yue, Y. Ecological network analysis of the virtual water network within China’s electric power system during 2007–2012. Appl. Energy 2016, 168, 110–121. [Google Scholar] [CrossRef]
- Pizzol, M.; Scotti, M.; Thomsen, M. Network Analysis as a tool for assessing environmental sustainability: Applying the ecosystem perspective to a Danish Water Management System. J. Environ. Manag. 2013, 118, 21–31. [Google Scholar] [CrossRef]
- Hai, R.; Shi, H.; Zhang, B.; Zhai, Y.; Li, Y.; Wang, W. An ecological information analysis-based approach for assessing the sustainability of water use systems: A case study of the Huaihe River Basin, China. Clean Technol. Environ. Policy 2015, 17, 2197–2211. [Google Scholar] [CrossRef]
- Kharrazi, A.; Akiyama, T.; Yu, Y.; Li, J. Evaluating the evolution of the Heihe River basin using the ecological network analysis: Efficiency, resilience, and implications for water resource management policy. Sci. Total Environ. 2016, 576, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Bodini, A. Building a systemic environmental monitoring and indicators for sustainability: What has the ecological network approach to offer? Ecol. Indicat. 2012, 15, 140–148. [Google Scholar] [CrossRef]
- Fath, B.D.; Patten, B.C. Review of the foundations of network environ analysis. Ecosystems 1999, 2, 167–179. [Google Scholar] [CrossRef]
- Ulanowicz, R.E. Quantitative methods for ecological network analysis. Comp. Biol. Chem. 2004, 28, 321–339. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Chen, B.; Zhang, L.; Zhang, Y.; Su, M. An ecological network perspective in improving reserve design and connectivity: A case study of Wuyishan nature reserve in China. Ecol. Model. 2015, 306, 185–194. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B. Ecological network analysis for a virtual water network. Environ. Sci. Technol. 2015, 49, 6722–6730. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Gao, X.; Hao, T.; Liu, E.; Wang, X. Multi-basin water use network model for evaluating evolution of water resource systems toward sustainable water use. J. Clean. Prod. 2021, 281, 124855. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Fath, B.D. Ecological network analysis of an urban water metabolic system: Model development, and a case study for Beijing. Sci. Total Environ. 2010, 408, 4702–4711. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, G.; Liu, L.; Zheng, B.; Zhang, X. A multi-source virtual water metabolism model for urban systems. J. Clean. Prod. 2020, 275, 124107. [Google Scholar] [CrossRef]
- Wu, X.J.; Li, Y.P.; Liu, J.; Huang, G.H.; Ding, Y.K.; Sun, J.; Zhang, H. Identifying optimal virtual water management strategy for Kazakhstan: A factorial ecologically-extended input-output model. J. Environ. Manag. 2021, 297, 113303. [Google Scholar] [CrossRef]
- Vega, C.D.L.; Schückel, U.; Horn, S.; Kröncke, I.; Asmus, R.; Asmus, H. How to include ecological network analysis results in management? A case study of three tidal basins of the Wadden Sea, south-eastern North Sea. Ocean. Coast. Manag. 2018, 163, 401–416. [Google Scholar] [CrossRef]
- Immerzeel, W.; Stoorvogel, J.; Antle, J. Can payments for ecosystem services secure the water tower of Tibet. Agric. Syst. 2008, 96, 52–63. [Google Scholar] [CrossRef]
- Wu, Z.; Mei, Y.; Chen, J.; Hu, T.; Xiao, W. Attribution Analysis of Dry Season Runoff in the Lhasa River Using an Extended Hydrological Sensitivity Method and a Hydrological Model. Water 2019, 11, 1187. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Hu, S.; Li, F.; Cao, X.; Tang, Z. Carbon and Water Footprints of Tibet: Spatial Pattern and Trend Analysis. Sustainability 2020, 12, 3294. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.; Wang, S.; Chen, B. Virtual water analysis for the Jing-Jin-Ji region based on multiregional input-output model. Acta Ecol. Sin. 2018, 38, 788–799. (In Chinese) [Google Scholar]
- Zhang, G.; Huang, G.; Liu, L.; Niu, G.; Li, J.; McBean, E. Ecological network analysis of an urban water metabolic system based on input-output model: A case study of Guangdong, China. Sci. Total Environ. 2019, 670, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, H.; Fath, B.D.; Liu, H.; Yang, Z.; Liu, G.; Su, M. Ecological network analysis of an urban metabolic system based on input–output tables: Model development and case study for Beijing. Sci. Total Environ. 2014, 468–469, 642–653. [Google Scholar] [CrossRef]
- Leontief, W. Environmental repercussions and the economic structure: An input–output approach. Rev. Econ. Stat. 1970, 52, 262–271. [Google Scholar] [CrossRef]
- Rhee, H.C.; Chung, H.S. Change in CO2 emission and its transmissions between Korea and Japan using international input-output analysis. Ecol. Econ. 2006, 58, 788–800. [Google Scholar] [CrossRef]
- Matamba, L.; Kazanci, C.; Schramski, J.R.; Blessing, M.; Alexander, P.; Patten, B.C. Throughflow analysis: A stochastic approach. Ecol. Model. 2009, 220, 3174–3181. [Google Scholar] [CrossRef]
- Kharrazi, A.; Rovenskaya, E.; Fath, B.D.; Yarime, M.; Kraines, S. Quantifying the sustainability of economic resource networks: An ecological information-based approach. Ecol. Econ. 2013, 90, 177–186. [Google Scholar] [CrossRef]
- Kharrazi, A.; Fath, B.D.; Katzmair, H. Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence. Sustainability 2016, 8, 935. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 1955, 36, 533–536. [Google Scholar] [CrossRef]
- Fath, B.D.; Asmus, H.; Asmus, R.; Baird, D.; Borrett, S.R.; de Jonge, V.N.; Ludovisi, N.; Niquil, N.; Scharler, U.M.; Schückel, U.; et al. Ecological network analysis metrics: The need for an entire ecosystem approach in management and policy. Ocean. Coast. Manag. 2019, 174, 1–14. [Google Scholar] [CrossRef]
- Li, A.; Zheng, H. Energy security and sustainable design of urban systems based on ecological network analysis. Ecol. Indicat. 2021, 129, 107903. [Google Scholar] [CrossRef]
- Finn, J.T. Flow analysis of models of the Hubbard Brook ecosystem. Ecology 1980, 61, 562–571. [Google Scholar] [CrossRef]
- Safi, G.; Giebels, D.; Arroyo, N.L.; Heymans, J.J.; Preciado, I.; Raoux, A.; Schückel, U.; Tecchio, S.; de Jonge, V.N.; Niquil, N. Vitamine ENA: A framework for the development of ecosystem-based indicators for decision makers. Ocean. Coast. Manag. 2019, 174, 116–130. [Google Scholar] [CrossRef]
- Muhtar, P.; Xia, J.; Muyibul, Z.; Zihriya, B.; Abliz, A.; Zhang, M. Evaluating the evolution of oasis water metabolism using ecological network analysis: A synthesis of structural and functional properties. J. Clean. Prod. 2021, 280, 124422. [Google Scholar] [CrossRef]
- Patten, B.C. Network perspectives on ecological indicators and actuators: Enfolding, observability, and controllability. Ecol. Indicat. 2006, 6, 6–23. [Google Scholar] [CrossRef]
- Fath, B.D. Community-level relations and network mutualism. Ecol. Model. 2007, 208, 56–67. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yang, Z.F.; Chen, B.; Zhang, Y. Ecological network determination of sectoral linkages, utility relations and structural characteristics on urban ecological economic system. Ecol. Model. 2011, 222, 2825–2834. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yang, Z.; Liu, H.; Zhang, J. Ecological relationship analysis of the urban metabolic system of Beijing, China. Environ. Pollut. 2012, 170, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Zhang, Y.; Wu, Q.; Liu, L. Analysis of the ecological relationships of urban carbon metabolism based on the eight nodes spatial network model. J. Clean. Prod. 2017, 140, 1644–1651. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B. Energy–water nexus of wind power generation systems. Appl. Energy 2016, 169, 1–13. [Google Scholar] [CrossRef]
- Lobanova, G.; Fath, B.D.; Rovenskaya, E. Exploring simple structural configurations for optimal network mutualism. Commun. Nonlinear Sci. 2009, 14, 1461–1485. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Fath, B.D.; Chen, B.; Scharler, U.M. Network environ analysis for socio-economic water system. Ecol. Indicat. 2014, 47, 80–88. [Google Scholar] [CrossRef]
- Mao, X.; Yuan, D.; Wei, X.; Chen, Q.; Yan, C.; He, L. Network Analysis for a Better Water Use Configuration in the Baiyangdian Basin, China. Sustainability 2015, 7, 1730–1741. [Google Scholar] [CrossRef] [Green Version]
Fang et al. | Mao et al. | This Paper | |
---|---|---|---|
Location | Ganzhou District | Baiyangdian Basin | Tibet Autonomous Region |
Method | Network environ analysis | Ecological network analysis | Ecological network analysis coupling with the I-O model |
Results | Network structure influenced flow circulation. The network is dependent on large boundary water input. Three indices, the cycling index, indirect-to-direct ratio, and average path length show that water consumption efficiency is lower than the natural system. | The water use system encounters a lasting degradation in system organization with AMI decreases in an annual rate of 0.6%, while annual growth rate of ascendency and total system throughput are 10.1% and 11.3%, respectively. | The network is more efficient with less redundancy. Agriculture is the largest controller while energy supply is the largest dependent. The network is mutualistic and synergistic overall although exploitation and control relationships are dominant. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Mei, Y. Ecological Network Analysis of a Virtual Water System in Tibet, China. Water 2021, 13, 3246. https://doi.org/10.3390/w13223246
Chen J, Mei Y. Ecological Network Analysis of a Virtual Water System in Tibet, China. Water. 2021; 13(22):3246. https://doi.org/10.3390/w13223246
Chicago/Turabian StyleChen, Junhong, and Yadong Mei. 2021. "Ecological Network Analysis of a Virtual Water System in Tibet, China" Water 13, no. 22: 3246. https://doi.org/10.3390/w13223246
APA StyleChen, J., & Mei, Y. (2021). Ecological Network Analysis of a Virtual Water System in Tibet, China. Water, 13(22), 3246. https://doi.org/10.3390/w13223246