Assessment of Water Quality for Aquaculture in Hau River, Mekong Delta, Vietnam Using Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Sampling and Analysis
2.3. Data Analysis
2.4. Multivariate Statistical Methods
2.5. Principal Component Analysis (PCA)
2.6. Cluster Analysis (CA)
3. Results and Discussion
3.1. Summary of Water Quality Parameters in An Giang and Can Tho Provinces
3.2. The Accumulation Factor and River Recovery Capacity (RRC) of the Water Quality Parameters
3.3. Principal Component Analysis (PCA)
3.4. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ackah, M.; Agyemang, O.; Anim, A.-K.; Osei, J.; Bentil, N.-O.; Kpattah, L.; Gyamfi, E.-T.; Hanson, J.-E.-K. Assessment of Groundwater Quality for Drinking and Irrigation: The Case Study of Teiman-Oyarifa Community, Ga East Municipality, Ghana. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 186–194. [Google Scholar]
- Mahmud, R.; Inoue, N.; Sen, R. Assessment of Irrigation Water Quality by Using Principal Component Analysis in an Arsenic Affected Area of Bangladesh. J. Soil. Nat. 2007, 1, 8–17. [Google Scholar]
- Ravindra, K.; Meenakshi, A.; Rani, M.; Kaushik, A. Seasonal variations in Physico-chemical characteristics of River Yamuna in Haryana and its ecological best-designated use. J. Environ. Monit. 2003, 5, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Tiri, A.; Belkhiri, L.; Boudoukha, A.; Lahbari, N. Characterization, and Evaluation of the Factors Affecting the Geochemistry of Surface Water of Koudiat Medouar Basin, Algeria. Afr. J. Environ. Sci. Technol. 2011, 5, 355–362. [Google Scholar]
- Shokuhi, R.; Hosinzadeh, E.; Roshanaei, G.; Alipour, M.; Hoseinzadeh, S. Evaluation of Aydughmush Dam Reservoir Water Quality by National Sanitation Foundation Water Quality Index (NSFWQI) and Water Quality Parameter Changes. Iran. J. Health Environ. 2012, 4, 439–450. [Google Scholar]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zou, Z.; An, Y. Water quality assessment in Qu River based on fuzzy water pollution index method. J. Environ. Sci. 2016, 50, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Shakir, H.A.; Qazi, J.I. Impact of Industrial and Municipal Discharges on Growth Coefficient and Condition Factor of Major Carps from Lahore Stretch of River Ravi. J. Anim. Plant Sci. 2013, 23, 167–173. [Google Scholar]
- Don-Pedro, K.N.; Oyewo, E.O.; Otitoloju, A.A. Trend of Heavy Metal Concentration in Lagos Lagoon Ecosystem, Nigeria. West Afr. J. Appl. Ecol. 2004, 5, 103–114. [Google Scholar] [CrossRef]
- Dixon, W.; Chiswell, B. Review of Aquatic Monitoring Program Design. Water Res. 1996, 30, 1935–1948. [Google Scholar] [CrossRef]
- Neumann, L.; Nguyen, M.; Moglia, M.; Cook, S.; Lipkin, F. Urban water systems in Can Tho, Vietnam. In Understanding the current context for climate change adaptation; Csiro: Canberra, Australia, 2011; p. 72. [Google Scholar]
- .Dasgupta, S.; Laplante, B.; Meisner, C.M.; Wheeler, D.; Jianping Yan, D. The Impact of Sea Level Rise on Developing Countries: A Comparative Analysis (SSRN Scholarly Paper No. ID 962790). Rochester, NY: Social Science Research Network. 2007. Available online: https://documents1.worldbank.org/curated/en/156401468136816684/pdf/wps4136.pdf(accessed on 15 August 2020).
- Thuy, N.T. Evaluation of Catfish (Pangasius hypophthalmus) By-Products as Protein Sources for Pigs in the Mekong Delta of Viet Nam; Swedish University of Agricultural Science: Uppsali, Sweden, 2010; p. 62. [Google Scholar]
- Vu, D.T.; Yamada, T.; Ishidaira, H. Assessing the impact of sea-level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci. Technol. 2018, 77, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Tran Anh, D.; Hoang, L.P.; Bui, M.D.; Rutschmann, P. Simulating future flows and salinity intrusion using the combined one-and two-dimensional hydrodynamic modeling—The case of Hau River, Vietnamese Mekong delta. Water 2018, 10, 897. [Google Scholar] [CrossRef] [Green Version]
- Quyen, N.T.K.; Berg, H.; Gallardo, W.; Da, C.T. Stakeholders’ perceptions of ecosystem services and Pangasius catfish farming development along the Hau River in the Mekong Delta, Vietnam. Ecosyst. Serv. 2017, 25, 2–14. [Google Scholar] [CrossRef]
- Tuan, L.A.; Hoang, T.T.; Vo, V.N. Water Resource Variation in the Hau River Mouth. J. Fish. Sci. Tech. Spec. Issues 2015, 50–56. Available online: file:///G:/My%20Drive/Detai%20NCKH/ODA/F5/Papers/Manuscripts/MS%201/Final%20submission/So%20Dac%20biet%20-%20Nam%202015%20(Tieng%20Anh).pdf (accessed on 15 August 2020).
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the Surface Water Quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, E.B.; Fernandez, L. Temporal Evolution of Groundwater Composition in an Alluvial Aquifer (Pisuerga River, Spain) by Principal Component Analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Singh, V.K.; Basant, N.; Sinha, S. Multi-way modeling of hydro-chemical data of an alluvial river system—A case study. Anal. Chim. Acta 2006, 571, 248–259. [Google Scholar] [CrossRef]
- Duan, M.; Du, X.; Peng, W.; Zhang, S.; Yan, L. Necessity of acknowledging background pollutants in management and assessment of unique basins. Water 2019, 11, 1103. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.D.; Savenije, H.H.G.; Pham, D.N.; Tang, D.T. Using Salt Intrusion Measurements to Determine the Freshwater Discharge Distribution over the Branches of a Multi-Channel Estuary: The Mekong Delta Case. Estuar. Coast. Shelf Sci. 2008, 77, 433–445. [Google Scholar] [CrossRef]
- Hung, L.M.; Hoang, T.B. The erosion of the river system in Mekong Delta and the contribution of science and technology to the prevention and mitigation of damage. J. Sci. Tech. 2017, 9. (In Vietnamese). Available online: https://vjol.info.vn/index.php/khcn/article/view/36953/30063 (accessed on 15 August 2020).
- Thanh, T.N. The Report on the Assessment of the Status of Water Resources and Water Resources Programs, Projects in the Area of Provinces and Cities: Can Tho, Vinh Long and Dong Thap. National Center for Planning and Investigation of Water Resources: National Center for Planning and Investigation of Water Resources, and the location in in Can Tho, Vinh Long and Dong Thap Cities in Vietnam. 2016. Available online: https://ewsdata.rightsindevelopment.org/files/documents/44/WB-P153544_ldILX8r.pdf (accessed on 15 August 2020).
- Giao, N.T. Evaluating the Current Water Quality Monitoring System on Hau River, Mekong Delta, Vietnam Using Multivariate Statistical Techniques. Appl. Environ. Res. 2020, 42, 14–25. [Google Scholar]
- APHA: The Association. Standard Methods for the Examination of Water and Wastewater, Release 2; APHA, The Association: Washington, DC, USA, 2000. [Google Scholar]
- Vietnam Environmental Protection Agency. National Technical Regulation for Surface Water Quality–QCVN 08: 2015/BTNMT; The National Government of Vietnam, Ministry of Environment and Natural Resources, 2015. Available online: http://cem.gov.vn/storage/documents/5d6f3ecb26484qcvn-08-mt2015btnmt.pdf (accessed on 15 August 2020).
- Fakayode, S.O. Impact assessment of industrial effluent on water quality of the receiving Alaro River in Ibadan, Nigeria. Afr. J. Environ. Assoc. Manag. 2005, 10, 1–13. [Google Scholar]
- Ragno, G.; Luca, M.D.; Ioele, G. An application of cluster analysis and multivariate classification methods to spring water monitoring data. Microchem. J. 2007, 87, 119–127. [Google Scholar] [CrossRef]
- Wu, M.L.; Wang, Y.S. Using Chemometrics to Evaluate Anthropogenic Effects in Daya Bay, China. Estuar. Coast. Shelf Sci. 2007, 72, 732–742. [Google Scholar] [CrossRef]
- Yu, S.; Shang, J.; Zhao, J.; Guo, H. Factor Analysis Ang Dynamics of Water Quality of the Songhua River, Northeast China. Water Air Soil Pollut. 2003, 144, 159–169. [Google Scholar] [CrossRef]
- Salah, E.A.M.; Turki, A.M.; Al-Othman, E.M. Assessment of Water Quality of Euphrates River Using Cluster Analysis. J. Environ. Prot. 2012, 3, 1629–1633. [Google Scholar] [CrossRef] [Green Version]
- Chounlamany, V.; Tanchuling, M.A.; Inoue, T. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods. Water Sci. Technol. 2017, 76, 1510–1522. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of Surface Water Quality Using Multivariate Statistical Techniques: A Case Study of the Fuji River Basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Kasmir, M.; Rosmiati, H. Water Quality Parameter Analysis for the Feasibility of Shrimp Culture in Takalar Regency, Indonesia. Mod. Appl. Sci. 2014, 8, 321. [Google Scholar]
- Bhateria, R.; Abdullah, A. Analyzing uncertainties in lake water: A review. Int. J. Environ. Sci. 2015, 5, 155–168. [Google Scholar]
- McGill, W.B.; Cole, C.V. Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 1981, 26, 267–286. [Google Scholar] [CrossRef]
- Volkoff, H.; Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 2020, 7, 307–320. [Google Scholar] [CrossRef]
- Miegel, R.P.; Pain, S.J.; Van Wettere, W.H.E.J.; Howarth, G.S.; Stone, D.A.J. Effect of water temperature on gut transit time, digestive enzyme activity and nutrient digestibility in yellowtail kingfish (Seriola lalandi). Aquaculture 2010, 308, 145–151. [Google Scholar] [CrossRef]
- Zwolsman, J.J.G.; van Bokhoven, A.J. Impact of Summer Droughts on Water Quality of the Rhine River—A Preview of Climate Change? Water Sci. Technol. 2007, 56, 45–55. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Zwolsman, J.J.G. Impact of Summer Droughts on the Water Quality of the Meuse River. J. Hyd. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Gandaseca, S.; Rosli, N.; Ngayop, J.; Arianto, C.I. Status of Water Quality Based on the Physico-Chemical Assessment on River Water at Wildlife Sanctuary Sibuti Mangrove Forest, Miri Sarawak. Am. J. Environ. Sci. 2011, 7, 269–275. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Devi, P. Water Quality Guidelines for the Management of Pond Fish Culture. Int. J. Environ. Sci. 2013, 3, 1980–2009. [Google Scholar]
- Wetzel, R.G. Limnology, Lake and River Ecology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2001; p. 1006. [Google Scholar]
- Hassan, F.-M.; Salman, J.-M.; Naji, A.-S. Water Quality and Phytoplankton Composition in Hilla River, Iraq. In Proceeding of 4th Conference of Environmental Science, Al-Hilla, Iraq, 5–6 December 2012; pp. 144–160. [Google Scholar]
- Hanrahan, G.; Gledhill, M.; House, W.A.; Worsfold, P.J. Evaluation of phosphorus concentrations in relation to annual and seasonal physico-chemical water quality parameters in a UK chalk stream. Water Res. 2003, 37, 3579–3589. [Google Scholar] [CrossRef]
- Clements, J.C.; Carver, C.E.; Mallet, M.A.; Comeau, L.A.; Mallet, A.L. CO2-induced low pH in an eastern oyster (Crassostrea virginica) hatchery positively affects reproductive development and larval survival but negatively affects larval shape and size, with no intergenerational linkages. ICES J. Mar. Sci. 2021, 78, 349–359. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality an Introduction, 2nd ed.; Boyd, C., Harvey, J.P., Eds.; Springer: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Abedin, M.J.; Bapary, M.A.J.; Rasul, M.G.; Majumdar, B.C.; Haque, M.M. Water Quality Parameters of Some Pangasius Ponds at Trishal Upazila, Mymensingh, Bangladesh. Eur. J. Biotechnol. Biosci. 2017, 5, 29–35. [Google Scholar]
- Hargreaves, J.S.; Tucker, C.S. Measuring Dissolved oxygen Concentration in Aquaculture. SRAC Publication, 2002; p. 4601. Available online: http://agrilife.org/fisheries2/files/2013/09/SRAC-Publication-No.-4601-Measuring-Dissolved-Oxygen-Concentration-in-Aquaculture.pdf (accessed on 15 August 2020).
- Boyd, C.E.; Torrans, E.L.; Tucker, C.S. Dissolved oxygen and aeration in ictalurid catfish aquaculture. J. World Aquac. Soc. 2018, 49, 7–70. [Google Scholar] [CrossRef]
- Das, J.; Acharya, B.C. Hydrology and Assessment of Lotic Water Quality in Cuttack City, India. Water Air Soil Pollut. 2003, 150, 163–175. [Google Scholar] [CrossRef]
- Yisa, J.; Jimoh, T. Analytical Studies on Water Quality Index of River Landzu. Am. J. Appl. Sci. 2010, 7, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Philminaq. Water Quality Criteria and Standards for Freshwater and Marine Aquaculture Abbreviations and Acronyms. In Mitigating Impact from Aquaculture in The Philippines; 2014; p. 34. Available online: http://aquaculture.asia/files/PMNQ%20WQ%20standard%202.pdf (accessed on 15 August 2020).
- Raburu, P.O.; Okeyo-Owuor, J.B. Impact of Agro-Industrial Activities on the Water Quality of River Nyando, Lake Victoria Basin, Kenya. In Proceedings of the 11th World Lakes Conference, Nairobi, Kenya, 31 October–4 November 2006; pp. 307–314. [Google Scholar]
- Tuan, L.A.; Hoanh, C.T.; Miller, F.; Sinh, B.T. Flood and Salinity Management in the Mekong Delta, Vietnam; 2016; Chapter 1; p. 68. Available online: https://www.researchgate.net/profile/Tuan-Le-72/publication/305377337_Flood_and_salinity_management_in_the_Mekong_Delta_Vietnam/links/5865262f08ae6eb871adb22e/Flood-and-salinity-management-in-the-Mekong-Delta-Vietnam.pdf (accessed on 15 August 2020).
- Lien, N.T.K.; Huy, L.Q.; Oanh, D.T.H.; Phu, T.Q.; Ut, V.N. Water quality in mainstream and tributaries of Hau River. Can Tho Univ. J. Sci. 2016, 43, 68–79. [Google Scholar]
- Kefford, B.J.; Papas, P.J.; Metzeling, L.; Nugegoda, D. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity? Environ. Pollut. 2004, 129, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Chea, R.; Grenouillet, G.; Lek, S. Evidence of water quality degradation in lower Mekong basin revealed by self-organizing map. PLoS ONE 2016, 11, e0145527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shammaa, Y.; Zhu, D.Z. Techniques for Controlling Total Suspended Solids in Stormwater Runoff. ’ Can. Water Resour. J. 2001, 26, 359–375. [Google Scholar] [CrossRef]
- Crim, J.F. Water Quality Changes Across an Urban-Rural Land Use Gradient in Streams of the West Georgia Piedmont; American Society of Agronomy (ASA): Madison, WI, USA, 2007; p. 130. [Google Scholar]
- Mwangi, F.N. Land Use Practices and Their Impact on the Water Quality of the Upper Kuils River (Western Cape Province, South-Africa); University of the Western Cape: Western Cape, South Africa, 2014; p. 144. [Google Scholar]
- Iscen, C.F.; Emiroglu, Ö.; Ilhan, S.; Arslan, N.; Yilmaz, V.; Ahiska, S. Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environ. Monit. Assess. 2007, 144, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Lee, H.; Kim, Y. Relationship between Coliform Bacteria and Water Quality Factors at Weir Stations in the Nakdong River, South Korea. Water 2019, 11, 1171. [Google Scholar] [CrossRef] [Green Version]
- Mulkerrins, D.; Dobson, A.D.; Colleran, E. Parameters affecting biological phosphate removal from wastewaters. Environ. Int. 2004, 30, 249–259. [Google Scholar] [CrossRef]
- Feher, I.C.; Moldovan, Z.; Oprean, I. Spatial and seasonal variation of organic pollutants in surface water using multivariate statistical techniques. Water Sci. Technol. 2016, 74, 1726–1735. [Google Scholar] [CrossRef]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Zeinalzadeh, K.; Rezaei, E. Determining Spatial and Temporal Changes of Surface Water Quality Using Principal Component Analysis. J. Hydrol Reg. Stud. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Bhat, S.A.; Meraj, G.; Yaseen, S.; Pandit, A.K. Statistical Assessment of Water Quality Parameters for Pollution Source Identification in Sukhnag Stream: An Inflow Stream of Lake Wular (Ramsar Site), Kashmir Himalaya. J. Ecosyst. 2014, 2014, 1–18. [Google Scholar] [CrossRef]
- Brogueira, M.J.; Graça, C. Identification of Similar Environmental Areas in Tagus Estuary by Using Multivariate Analysis. Ecol. Ind. 2006, 6, 508–515. [Google Scholar] [CrossRef]
Site Name | Code | Longitude (N) | Latitude (E) | Description |
---|---|---|---|---|
Vĩnh Ngươn | AG1 | 10°44.103′ | 105°06.33′ | fish cage area, cultured ponds, residences |
Cồn Khánh Hòa | AG2 | 10°41.406′ | 105°11.704′ | intensive fish culture area, mainly in the surrounding regions of the islet |
Vịnh Tre | AG3 | 10°37.117′ | 105°12.574′ | fish ponds and residences |
Cầu chữ S | AG4 | 10°34.875′ | 105°13.768′ | fish ponds and residences |
Bến đò Rạch Gọc | AG5 | 10°28.706′ | 105°20.358′ | fish ponds in Binh Thuy islet |
Bến đò Sơn Đốt | AG6 | 10°26.751′ | 105°23.408′ | fish ponds and residences |
Kênh Ông Cò | AG7 | 10°19.438′ | 105°19.811′ | fish ponds and residences |
Kênh Tây An | AG8 | 10°20.502′ | 105°26.956′ | fish ponds and residences |
Kênh Cái Sao 2 | AG9 | 10°18.576′ | 105°26.122′ | fish ponds and residences |
Kênh Cái Sao 1 | AG10 | 10°19.969′ | 105°27.644′ | fish ponds and agriculture activities |
Thạnh Mỹ-Vĩnh Thạnh | CT9 | 10°14.276′ | 105°24.164′ | fish ponds and residences |
Cái Sắn | CT8 | 10°17.659′ | 105°27.483′ | fish ponds and residences |
Bến phà Bò Ót | CT7 | 10°18′07.7″ | 105°30′40.9″ | fish culture area, residences, industrial zone |
Bến phà Trà Uối | CT6 | 10°17.201′ | 105°31.322′ | fish culture area, residences, industrial zone |
Thuận Hưng | CT5 | 10°13.290′ | 105°35.155′ | fish ponds, fish cages, and residences |
Thới An | CT 4 | 10°08.964′ | 105°39.236′ | fish culture area and residences |
Cồn Khương | CT 3 | 10°04.044′ | 105°46.671′ | fish culture area and residences |
Cái Cui | CT 2 | 09°59.564′ | 105°49.579′ | Industrial activities |
Cái Côn | CT 1 | 09°55.653′ | 105°53.990′ | Residences |
Parameter | AG1 | AG2 | AG3 | AG4 | AG5 | AG6 | AG7 | AG8 | AG9 | AG10 | Desirable Range [28] |
Temperature (°C) | 30.8 ± 1.23 a | 30.6 ± 1.48 a | 30.5 ± 1.31 a | 30.4 ± 1.24 a | 30.3 ± 1.38 a | 30.5 ± 1.35 a | 31.0 ± 1.27 a | 30.7 ± 1.34 a | 30.7 ± 1.21 a | 30.5 ± 1.35 a | 20–32 |
pH | 7.2 ± 0.21 bc | 7.4 ± 0.21 ab | 7.3 ± 0.26 abc | 7.4 ± 0.18 ab | 7.6 ± 0.20 a | 7.3 ± 0.26 abc | 7.0 ± 0.13 c | 7.0 ± 0.23 c | 7.0 ± 0.15 c | 7.4 ± 0.18 ab | 6.5–9 |
Alkalinity (mg/L) | 60.7 ± 14.39 a | 63.3 ± 16.89 a | 63.2 ± 17.99 a | 64.1 ± 16.76 a | 63.8 ± 15.48 a | 63.4 ± 15.79 a | 64.5 ± 16.3 a | 67.5 ± 18.72 a | 66.1 ± 16.39 a | 63.4 ± 15.38 a | 25–100 |
DISSOLVED OXYGEN (mg/L) | 4.8 ± 0.60 bcde | 5.6 ± 0.65 ab | 5.7 ± 0.73 a | 5.4 ± 0.57 abcd | 5.7 ± 0.39 a | 5.5 ± 0.62 abc | 4.0 ± 0.61 ef | 4.9 ± 0.86 abcde | 4.5 ± 0.74 def | 5.4 ± 0.63 abcd | 5–15 |
Sal (mg/L) | 141.5 ± 27.32 abcde | 138.7 ± 36.1 abcde | 148.4 ± 32.81 abc | 141.3 ± 26.73 abcde | 144.6 ± 32.5 abcd | 127.5 ± 25.63 cdef | 147.7 ± 26.77 abc | 136.8 ± 21.89 abcdef | 152.1 ± 41.3 ab | 153.6 ± 41 a | 0–5000 |
TSS (mg/L) | 37.9 ± 14.56 ab | 33.4 ± 24.15 ab | 45.0 ± 21.1 ab | 35.4 ± 12.58 ab | 30.1 ± 14.05 ab | 32.1 ± 22.92 ab | 48.5 ± 24.53 ab | 40.4 ± 21.16 ab | 41.3 ± 23.26 ab | 27.6 ± 10.71b | 25–150 |
TAN (mg/L) | 0.2 ± 0.10 ab | 0.1 ± 0.05 ab | 0.2 ± 0.07 ab | 0.2 ± 0.16 ab | 0.2 ± 0.09 ab | 0.2 ± 0.19 ab | 0.4 ± 0.23 a | 0.3 ± 0.17 ab | 0.2 ± 0.14 ab | 0.2 ± 0.16 ab | <0.01 |
BOD (mg/L) | 3 ± 0.56 cde | 3.0 ± 0.75 cde | 3.0 ± 0.54 cde | 2.7 ± 0.67 e | 2.9 ± 0.86 de | 2.9 ± 0.92 cde | 2.9 ± 0.75 cde | 2.7 ± 0.74 e | 3.0 ± 0.98 cde | 3.0 ± 1.11 cde | 1–2 |
NO3− (mg/L) | 0.2 ± 0.10 a | 0.2 ± 0.06 a | 0.2 ± 0.10 a | 0.2 ± 0.10 a | 0.2 ± 0.08 a | 0.2 ± 0.09 a | 0.2 ± 0.08 a | 0.2 ± 0.12 a | 0.2 ± 0.06 a | 0.2 ± 0.08 a | 0.1–4.5 |
PO43− (mg/L) | 0.2 ± 0.16 a | 0.1 ± 0.12 a | 0.2 ± 0.14 a | 0.2 ± 0.18 a | 0.1 ± 0.05 a | 0.1 ± 0.17 a | 0.1 ± 0.06 a | 0.2 ± 0.14 a | 0.2 ± 0.08 a | 0.2 ± 0.19 a | 0.05–0.5 |
TC (MPNx 103/100 mL) | 24.8 ± 25.66 a | 14.2 ± 13.26 a | 21.1 ± 33.96 a | 31.5 ± 36.7 a | 30.1 ± 39.2 a | 39.6 ± 53 a | 17.9 ± 30.2 a | 20.1 ± 15.64 a | 24.2 ± 23.62 a | 19.9 ± 17.47 a | 0.1–5 |
Parameter | CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | CT7 | CT8 | CT9 | ||
Temperature (°C) | 29.9 ± 1.94 a | 30.1 ± 1.22 a | 30.2 ± 1.25 a | 30.3 ± 1.15 a | 30.5 ± 1.16 a | 30.4 ± 1.25 a | 30.5 ± 1.35 a | 30.5 ± 1.06 a | 30.5 ± 1.08 a | 20–32 | |
pH | 7.4 ± 0.36 ab | 7.4 ± 0.27 ab | 7.2 ± 0.24 bc | 7.2 ± 0.21 bc | 7.2 ± 0.22 bc | 7.3 ± 0.16 abc | 7.3 ± 0.15 abc | 7.2 ± 0.29 bc | 7.2 ± 0.29 bc | 6.5–9 | |
Alkalinity (mg/L) | 63.4 ± 15.74 a | 66.3 ± 12.98 a | 64.0 ± 14.43 a | 65.4 ± 14.38 a | 63.6 ± 14.28 a | 62.4 ± 16.85 a | 64.9 ± 12.66 a | 63.4 ± 15.37 a | 63.4 ± 15.37 a | 25–100 | |
DISSOLVED OXYGEN (mg/L) | 4.2 ± 0.72 ef | 4.6 ± 0.93 def | 4.6 ± 0.53 cde | 4.7 ± 0.57 cde | 4.2 ± 0.77 ef | 4.6 ± 0.44 cde | 4.6 ± 0.39 cde | 4.6 ± 0.52 de | 3.7 ± 0.34 f | 5–15 | |
Sal (mg/L) | 131.0 ± 26.14 abcdef | 122.8 ± 30.55 def | 113.6 ± 28.72 f | 126.8 ± 37 cdef | 128.2 ± 23.82 bcdef | 124.3 ± 28.77 cdef | 127.6 ± 21.91 bcdef | 117.3 ± 32.41 ef | 129.8 ± 27.53 abcdef | 0–5000 | |
TSS (mg/L) | 45.9 ± 31.06 ab | 46.3 ± 22.78 ab | 24.7 ± 10.98 b | 37.6 ± 21.14 ab | 33.0 ± 19.54 ab | 31.7 ± 19.84 ab | 37.5 ± 22.04 ab | 49.5 ± 20.93 ab | 57.9 ± 25.31 a | 25–150 | |
TAN (mg/L) | 0.1 ± 0.16 b | 0.1 ± 0.09 b | 0.1 ± 0.09 b | 0.2 ± 0.18 ab | 0.2 ± 0.14 ab | 0.2 ± 0.13 ab | 0.2 ± 0.19 ab | 0.2 ± 0.12 ab | 0.3 ± 0.24 ab | <0.01 | |
BOD (mg/L) | 4.7 ± 1.09 a | 4.6 ± 0.80 a | 4.4 ± 1.04 ab | 4.1 ± 1.18 abc | 3.5 ± 1.07 abcde | 4.0 ± 0.75 abcd | 3.7 ± 0.81 abcde | 3.9 ± 0.93 abcde | 3.3 ± 0.54 bcde | 1–2 | |
NO3− (mg/L) | 0.2 ± 0.07 a | 0.3 ± 0.06 a | 0.3 ± 0.07 a | 0.3 ± 0.079 a | 0.2 ± 0.07 a | 0.2 ± 0.04 a | 0.2 ± 0.07 a | 0.2 ± 0.11 a | 0.2 ± 0.08 a | 0.1–4.5 | |
PO43− (mg/L) | 0.2 ± 0.18 a | 0.2 ± 0.21 a | 0.2 ± 0.15 a | 0.2 ± 0.15 a | 0.2 ± 0.12 a | 0.2 ± 0.19 a | 0.3 ± 0.21 a | 0.2 ± 0.18 a | 0.3 ± 0.22 a | 0.05–0.5 | |
TC (MPNx103/100 mL) | 28.6 ± 37.5 a | 19.3 ± 15.96 a | 25.6 ± 44 a | 23.2 ± 35.6 a | 24.9 ± 32.65 a | 19.58 ± 26.49 a | 19.14 ± 15.68 a | 26.7 ± 37.4 a | 19.66 ± 16.54 a | 0.1–5 |
Parameter | Temp | pH | Alk | Dissolved Oxygen | Sal | TSS | TAN | BOD | NO3− | PO43− | TC |
---|---|---|---|---|---|---|---|---|---|---|---|
AF | 0.98 | 1.02 | 1.05 | 0.84 | 0.91 | 1.29 | 0.65 | 1.53 | 1.21 | 1.52 | 1.23 |
RRC (%) | −2.36 | 1.55 | 4.39 | −18.76 | −10.39 | 22.69 | −54.79 | 34.71 | 16.87 | 34.18 | 18.54 |
Parameter | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Temp | 0.395 | 0.081 | 0.29 | −0.266 | 0.309 | −0.323 | 0.51 | −0.158 | −0.078 | 0.288 | 0.331 |
pH | 0.276 | −0.42 | −0.312 | 0.023 | −0.211 | 0.236 | 0.315 | 0.177 | −0.462 | 0.333 | −0.308 |
Alk | 0.419 | 0.441 | −0.209 | −0.108 | 0.044 | −0.023 | 0.031 | −0.385 | 0.09 | −0.201 | −0.612 |
DO | 0.516 | −0.235 | −0.072 | 0.108 | −0.138 | 0.303 | −0.272 | −0.392 | −0.072 | −0.288 | 0.484 |
Sal | 0.288 | 0.232 | 0.466 | −0.078 | 0.018 | −0.028 | −0.375 | 0.45 | −0.509 | −0.16 | −0.103 |
TSS | −0.275 | −0.066 | 0.215 | −0.559 | −0.389 | −0.02 | −0.251 | −0.471 | −0.217 | 0.27 | −0.074 |
TAN | −0.294 | 0.243 | 0.241 | 0.454 | −0.214 | 0.076 | 0.434 | −0.307 | −0.431 | −0.262 | 0.031 |
BOD | −0.171 | −0.026 | −0.557 | −0.129 | 0.239 | −0.504 | −0.128 | −0.059 | −0.473 | −0.253 | 0.158 |
NO3− | 0.127 | 0.297 | −0.21 | −0.223 | −0.707 | −0.183 | 0.221 | 0.323 | 0.156 | −0.162 | 0.253 |
PO43− | −0.187 | 0.288 | −0.173 | −0.458 | 0.29 | 0.668 | 0.184 | 0.116 | −0.117 | −0.135 | 0.179 |
TC | −0.035 | −0.528 | 0.253 | −0.322 | 0.02 | −0.08 | 0.273 | 0.05 | 0.114 | −0.638 | −0.221 |
Eigenvalue | 1.87 | 1.66 | 1.49 | 1.16 | 1.02 | 0.8 | 0.78 | 0.66 | 0.63 | 0.56 | 0.38 |
Variation (%) | 17 | 15.1 | 13.6 | 10.5 | 9.3 | 7.3 | 7.1 | 6 | 5.7 | 5.1 | 3.5 |
Cumulative variation (%) | 17 | 32 | 45.6 | 56.1 | 65.4 | 72.7 | 79.8 | 85.7 | 91.4 | 96.5 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutea, F.G.; Nelson, H.K.; Au, H.V.; Huynh, T.G.; Vu, U.N. Assessment of Water Quality for Aquaculture in Hau River, Mekong Delta, Vietnam Using Multivariate Statistical Analysis. Water 2021, 13, 3307. https://doi.org/10.3390/w13223307
Mutea FG, Nelson HK, Au HV, Huynh TG, Vu UN. Assessment of Water Quality for Aquaculture in Hau River, Mekong Delta, Vietnam Using Multivariate Statistical Analysis. Water. 2021; 13(22):3307. https://doi.org/10.3390/w13223307
Chicago/Turabian StyleMutea, Fridah Gacheri, Howard Kasigwa Nelson, Hoa Van Au, Truong Giang Huynh, and Ut Ngoc Vu. 2021. "Assessment of Water Quality for Aquaculture in Hau River, Mekong Delta, Vietnam Using Multivariate Statistical Analysis" Water 13, no. 22: 3307. https://doi.org/10.3390/w13223307
APA StyleMutea, F. G., Nelson, H. K., Au, H. V., Huynh, T. G., & Vu, U. N. (2021). Assessment of Water Quality for Aquaculture in Hau River, Mekong Delta, Vietnam Using Multivariate Statistical Analysis. Water, 13(22), 3307. https://doi.org/10.3390/w13223307