Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes
Abstract
:1. Introduction
2. Description of the Study Area
2.1. Study Area
2.2. Geology and Hydrogeology
3. Materials and Methods
3.1. Sample Collection and Analysis
3.2. Statistical Parameters
3.3. Assessment of Groundwater Quality
3.3.1. For Drinking
3.3.2. For Irrigation
- (a)
- Sodium Adsorption Ratio (SAR)
- (b)
- Soluble Sodium Percentage (SSP)
- (c)
- Permeability Index (PI)
- (d)
- Magnesium Ratio (MAR)
- (e)
- Kelly Ratio (KR)
3.4. Health Risk Assessment
4. Results and Discussion
4.1. Hydrochemical Parameters of Groundwater
4.2. Hydrogeochemical Facies
4.3. Hydrogeochemical Evolutional Processes
4.3.1. Formation Mechanism of Groundwater Chemistry
4.3.2. Silicate Weathering
4.4. Major Ion Sources and Hydrogeochemical Evolution
4.4.1. Ion Exchange
4.4.2. Correlation Analysis
4.4.3. Multivariate Analysis
4.5. Groundwater Suitability Evaluation
4.5.1. Water Quality Assessment for Drinking Purpose
4.5.2. Groundwater Suitability for Irrigation Purpose
4.6. Health Risk Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slukovskii, Z.; Dauvalter, V.; Guzeva, A.; Denisov, D.; Cherepanov, A.; Siroezhko, E. The hydrochemistry and recent sediment geochemistry of small lakes of Murmansk, Arctic Zone of Russia. Water 2020, 12, 1130. [Google Scholar] [CrossRef] [Green Version]
- Egbi, C.D.; Anornu, G.; Appiah-Adjei, E.K.; Ganyaglo, S.Y.; Dampare, S.B. Evaluation of water quality using hydrochemistry, stable isotopes, and water quality indices in the Lower Volta River Basin of Ghana. Environ. Develop. Sustain. 2019, 21, 3033–3063. [Google Scholar] [CrossRef]
- Qu, B.; Zhang, Y.; Kang, S.; Sillanpää, M. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”. Sci. Total Environ. 2019, 649, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.S.; Shah, T.; Akhtar, M. The Groundwater Economy of Pakistan; IWMI: Lahore, Pakistan, 2003; Volume 64. [Google Scholar]
- Memon, S.A.; Sheikh, I.A.; Talpur, M.A.; Mangrio, M.A. Impact of deficit irrigation strategies on winter wheat in semi-arid climate of sindh. Agric. Water Manag. 2021, 243, 106389. [Google Scholar] [CrossRef]
- Soomro, A.; Memon, A.; Gadehi, M.; No, E.-S.B. Use of groundwater for agricultural production in Deh Desvi of Thano Boola Khan, Jamshoro, Sindh. Pak. J. Agric. Agril. Engg. Vet. Sci 2010, 26, 60–69. [Google Scholar]
- Buschmann, J.; Berg, M.; Stengel, C.; Winkel, L.; Sampson, M.L.; Trang, P.T.; Viet, P.H. Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environ. Int. 2008, 34, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.S.; Nickson, R.; Chauhan, D.; Iyengar, L.; Sankararamakrishnan, N. Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere 2009, 75, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Daud, M.; Nafees, M.; Ali, S.; Rizwan, M.; Bajwa, R.A.; Shakoor, M.B.; Arshad, M.U.; Chatha, S.A.S.; Deeba, F.; Murad, W. Drinking water quality status and contamination in Pakistan. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Baloch, M.Y.J.; Talpur, S.A.; Talpur, H.A.; Iqbal, J.; Mangi, S.H.; Memon, S.J.J.o.W.; Technology, E. Effects of Arsenic Toxicity on the Environment and Its Remediation Techniques: A Review. J. Water Environ. Technol. 2020, 18, 275–289. [Google Scholar] [CrossRef]
- Hussein, E.E.; Fouad, M.; Gad, M.I.J.A.w.s. Prediction of the pollutants movements from the polluted industrial zone in 10th of Ramadan city to the Quaternary aquifer. Appl. Water Sci. 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Sharifi, A.; Tahir, M.N.; Tariq, A.; Zhang, L.; Mumtaz, F.; Shah, S.H.I.A. Evaluation of Vegetation Indices and Phenological Metrics Using Time-Series MODIS Data for Monitoring Vegetation Change in Punjab, Pakistan. Water 2021, 13, 2550. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, J.; Huang, L.; Zhu, L. Characteristics and seasonal variations in the hydrochemistry of the Tangra Yumco basin, central Tibetan Plateau, and responses to the Indian summer monsoon. Environ. Earth Sci. 2017, 76, 162. [Google Scholar] [CrossRef]
- Crosa, G.; Froebrich, J.; Nikolayenko, V.; Stefani, F.; Galli, P.; Calamari, D. Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Water Res. 2006, 40, 2237–2245. [Google Scholar] [CrossRef]
- Hildebrandt, A.; Guillamón, M.; Lacorte, S.; Tauler, R.; Barceló, D. Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Res. 2008, 42, 3315–3326. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.I.A.; Yan, J.; Ullah, I.; Aslam, B.; Tariq, A.; Zhang, L.; Mumtaz, F. Classification of Aquifer Vulnerability by Using the DRASTIC Index and Geo-Electrical Techniques. Water 2021, 13, 2144. [Google Scholar] [CrossRef]
- Bawoke, G.T.; Anteneh, Z.L. Spatial assessment and appraisal of groundwater suitability for drinking consumption in Andasa watershed using water quality index (WQI) and GIS techniques: Blue Nile Basin, Northwestern Ethiopia. Cogent Eng. 2020, 7, 1748950. [Google Scholar] [CrossRef]
- Cao, X.; Lu, Y.; Wang, C.; Zhang, M.; Yuan, J.; Zhang, A.; Song, S.; Baninla, Y.; Khan, K.; Wang, Y. Hydrogeochemistry and quality of surface water and groundwater in the drinking water source area of an urbanizing region. Ecotoxicol. Environ. Safety 2019, 186, 109628. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.D.; Mukherjee, A.; Bhattacharya, J.; Bhattacharya, A. An overview of agricultural pollutants and organic contaminants in groundwater of India. Groundwater South Asia 2018, 247–255. [Google Scholar]
- Pacheco Castro, R.; Pacheco Ávila, J.; Ye, M.; Cabrera Sansores, A. Groundwater quality: Analysis of its temporal and spatial variability in a karst aquifer. Groundwater 2018, 56, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, P.; Qian, H. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Expo. Health 2020, 1–14. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H.; Kuriqi, A.; Siddiqui, S.; Gagnon, A.S.; Lu, L.; Linh, N.T.T.; Pham, Q.B. Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images. Remote Sens. 2021, 13, 2053. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Liu, H.; Lam, P.K. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
- Colombo, L.; Alberti, L.; Azzellino, A.; Marina, B. Multi-methodological integrated approach for the assessment of Diffuse Pollution Background Levels (DPBLs) in Functional Urban Areas: The PCE case in Milano NW sector. Front. Environ. Sci. 2020. [Google Scholar] [CrossRef]
- Tariq, M.I.; Afzal, S.; Hussain, I. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan. Environ. Res. 2006, 100, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.R.; Shaheen, N.; Khalique, A.; Shah, M.H. Distribution, correlation, and source apportionment of selected metals in tannery effluents, related soils, and groundwater—A case study from Multan, Pakistan. Environ. Monit. Assess. 2010, 166, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Malik, R.N.; Qadir, A. Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. Afr. J. Environ. Sci. Technol. 2009, 3, 429–446. [Google Scholar]
- Rashid, A.; Khan, S.; Ayub, M.; Sardar, T.; Jehan, S.; Zahir, S.; Khan, M.S.; Muhammad, J.; Khan, R.; Ali, A. Mapping human health risk from exposure to potential toxic metal contamination in groundwater of Lower Dir, Pakistan: Application of multivariate and geographical information system. Chemosphere 2019, 225, 785–795. [Google Scholar] [CrossRef]
- Baig, J.A.; Kazi, T.G.; Arain, M.B.; Afridi, H.I.; Kandhro, G.A.; Sarfraz, R.A.; Jamal, M.K.; Shah, A.Q. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan. J. Hazard. Mater. 2009, 166, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Memon, M.; Soomro, M.S.; Akhtar, M.S.; Memon, K.S. Drinking water quality assessment in Southern Sindh (Pakistan). Environ. Monitor. Assess. 2011, 177, 39–50. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Khuhawar, M.Y.; Jahangir Khuhawar, T.M. Assessment of groundwater quality for drinking and irrigation uses in taluka Ratodero, district Larkana, Sindh, Pakistan. Int. J. Environ. Anal. Chem. 2020, 100, 1–24. [Google Scholar] [CrossRef]
- Shahab, A.; Shihua, Q.; Rashid, A.; Hasan, F.U.; Sohail, M.T. Evaluation of Water Quality for Drinking and Agricultural Suitability in the Lower Indus Plain in Sindh Province, Pakistan. Pol. J. Environ. Stud. 2016, 25, 2563–2574. [Google Scholar] [CrossRef]
- Salma, S.; Rehman, S.; Shah, M. Rainfall trends in different climate zones of Pakistan. Pak. J. Meteorol. 2012, 9, 47. [Google Scholar]
- Qureshi, A.S.; McCornick, P.G.; Qadir, M.; Aslam, Z. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric. Water Manag. 2008, 95, 1–10. [Google Scholar] [CrossRef]
- Qureshi, A.; Lashari, B.; Kori, S.; Lashari, G. Hydro-salinity behavior of shallow groundwater aquifer underlain by salty groundwater in Sindh Pakistan. In Proceedings of the Proceedings, Fifteenth International Water Technology Conference, Alexandria, Egypt, 31 March–2 April 2011; pp. 1–15. [Google Scholar]
- Afifi, A.; May, S.; Clark, V.A. Computer-Aided Multivariate Analysis; CRC Press: Beijing, China, 2003. [Google Scholar]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Muthusankar, G. Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India. Environ. Geochem. Health 2020, 1–18. [Google Scholar] [CrossRef]
- Boateng, T.K.; Opoku, F.; Acquaah, S.O.; Akoto, O. Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality, Ghana. Environ. Earth Sci. 2016, 75, 489. [Google Scholar] [CrossRef]
- Pei-Yue, L.; Hui, Q.; Jian-Hua, W. Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. E-J. Chem. 2010, 7. [Google Scholar] [CrossRef]
- Neissi, L.; Golabi, M.; Gorman, J. Spatial interpolation of sodium absorption ratio: A study combining a decision tree model and GIS. Ecol. Indic. 2020, 117, 106611. [Google Scholar] [CrossRef]
- Kawagoshi, Y.; Hama, T.; Kakimoto, R.; Itomitsu, N.; Hong, N.; Tomiie, K. Nitrate contamination of groundwater and identification of its cause in Kumamoto City and neighbouring area in Japan. Int. J. Food Safety Nutr. Public Health 2016, 6, 14–28. [Google Scholar] [CrossRef]
- Dippong, T.; Mihali, C.; Hoaghia, M.-A.; Cical, E.; Cosma, A. Chemical modeling of groundwater quality in the aquifer of Seini town–Someș Plain, Northwestern Romania. Ecotoxicol. Environ. Saf. 2019, 168, 88–101. [Google Scholar] [CrossRef]
- Rehman, J.U.; Ahmad, N.; Ullah, N.; Alam, I.; Ullah, H. Health Risks in Different Age Group of Nitrate in Spring Water Used for Drinking in Harnai, Balochistan, Pakistan. Ecol. Food Nutr. 2020, 59, 462–471. [Google Scholar] [CrossRef]
- Rezaei, H.; Zarei, A.; Kamarehie, B.; Jafari, A.; Fakhri, Y.; Bidarpoor, F.; Karami, M.A.; Farhang, M.; Ghaderpoori, M.; Sadeghi, H.; et al. Levels, Distributions and Health Risk Assessment of Lead, Cadmium and Arsenic Found in Drinking Groundwater of Dehgolan’s Villages, Iran. Toxicol. Environ. Health Sci. 2019, 11, 54–62. [Google Scholar] [CrossRef]
- Tahir, M.; Rasheed, H. Fluoride in the drinking water of Pakistan and the possible risk of crippling fluorosis. Drink. Water Eng. Sci. 2013, 6, 17–23. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Wu, J. Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi county, northwest China. Expo. Health 2019, 11, 125–137. [Google Scholar] [CrossRef]
- Khalid, S. An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. J. Geochem. Explor. 2019, 197, 14–26. [Google Scholar]
- Azis, A.; Yusuf, H.; Faisal, Z.; Suradi, M. Water turbidity impact on discharge decrease of groundwater recharge in recharge reservoir. Procedia Eng. 2015, 125, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Rao, N.S.; Sunitha, B.; Adimalla, N.; Chaudhary, M. Quality criteria for groundwater use from a rural part of Wanaparthy District, Telangana State, India, through ionic spatial distribution (ISD), entropy water quality index (EWQI) and principal component analysis (PCA). Environ. Geochem. Health 2020, 42, 579–599. [Google Scholar]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Talpur, S.A.; Noonari, T.M.; Rashid, A.; Ahmed, A.; Jat Baloch, M.Y.; Talpur, H.A.; Soomro, M.H. Hydrogeochemical signatures and suitability assessment of groundwater with elevated fluoride in unconfined aquifers Badin district, Sindh, Pakistan. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Talib, M.A.; Tang, Z.; Shahab, A.; Siddique, J.; Faheem, M.; Fatima, M. Hydrogeochemical characterization and suitability assessment of groundwater: A case study in Central Sindh, Pakistan. Int. J. Environ. Res. Public Health 2019, 16, 886. [Google Scholar] [CrossRef] [Green Version]
- Subramani, T.; Rajmohan, N.; Elango, L. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environ. Monit. Assess. 2010, 162, 123–137. [Google Scholar] [CrossRef]
- Barzegar, R.; Moghaddam, A.A.; Nazemi, A.H.; Adamowski, J. Evidence for the occurrence of hydrogeochemical processes in the groundwater of Khoy plain, northwestern Iran, using ionic ratios and geochemical modeling. Environ. Earth Sci. 2018, 77, 597. [Google Scholar] [CrossRef]
- Mgbenu, C.N.; Egbueri, J.C. The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Appl. Water Sci. 2019, 9, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Fryar, A.E. Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Appl. Geochem. 2008, 23, 863–894. [Google Scholar] [CrossRef]
- Reyes-Toscano, C.A.; Alfaro-Cuevas-Villanueva, R.; Cortés-Martínez, R.; Morton-Bermea, O.; Hernández-Álvarez, E.; Buenrostro-Delgado, O.; Ávila-Olivera, J.A. Hydrogeochemical characteristics and assessment of drinking water quality in the urban area of Zamora, Mexico. Water 2020, 12, 556. [Google Scholar] [CrossRef] [Green Version]
- Amiri, V.; Sohrabi, N.; Dadgar, M.A. Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, central Iran. Environ. Earth Sci. 2015, 74, 6163–6176. [Google Scholar] [CrossRef]
- Giglioli, S.; Colombo, L.; Contestabile, P.; Musco, L.; Armiento, G.; Somma, R.; Vicinanza, D.; Azzellino, A.J.W. Source apportionment assessment of marine sediment contamination in a post-industrial area (Bagnoli, Naples). Water 2020, 12, 2181. [Google Scholar] [CrossRef]
- Satyaji Rao, Y.; Keshari, A.K.; Gosain, A.J.I.J.o.E.; Management, W. Evaluation of regional groundwater quality using PCA and geostatistics in the urban coastal aquifer, East Coast of India. Water 2010, 5, 163–180. [Google Scholar]
- Tank, D.K.; Chandel, C.S.J.N. Science Analysis of the major ion constituents in groundwater of Jaipur city. Pollution Res. 2010, 8, 1–7. [Google Scholar]
- Liu, J.; Gao, Z.; Wang, Z.; Xu, X.; Su, Q.; Wang, S.; Qu, W.; Xing, T.J.E.m. Assessment Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China. Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Mhajej, K.G.; Abed, S.A.; Al-Ansari, N. Groundwater Hydrochemistry Assessment of North Dhi-Qar Province, South of Iraq Using Multivariate Statistical Techniques. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia, 24–25 August 2021; p. 012075. [Google Scholar]
- Roy, B.; Roy, S.; Mitra, S.; Manna, A.K.J.A.J.o.G. Evaluation of groundwater quality in West Tripura, Northeast India, through combined application of water quality index and multivariate statistical techniques. Water 2021, 14, 1–18. [Google Scholar] [CrossRef]
- Sadat-Noori, S.; Ebrahimi, K.; Liaghat, A. Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environ. Earth Sci. 2014, 71, 3827–3843. [Google Scholar] [CrossRef]
- Ahsan, W.A.; Ahmad, H.R.; Farooqi, Z.U.R.; Sabir, M.; Ayub, M.A.; Rizwan, M.; Ilic, P. Surface water quality assessment of Skardu springs using Water Quality Index. Environ. Sci. Pollution Res. 2021, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Morales, D.; Pérez-Villanueva, M.E.; Chin-Pampillo, J.S.; Aguilar-Mora, P.; Arias-Mora, V.; Masís-Mora, M. Pesticide occurrence and water quality assessment from an agriculturally influenced Latin-American tropical region. Chemosphere 2021, 262, 127851. [Google Scholar] [CrossRef]
- Nagarajan, R.; Rajmohan, N.; Mahendran, U.; Senthamilkumar, S. Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environ. Monitor. Assess. 2010, 171, 289–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, P.; Xue, L.; Dong, Z.; Li, D. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry 2020, 125609. [Google Scholar] [CrossRef]
- Seth, R.; Mohan, M.; Singh, P.; Singh, R.; Dobhal, R.; Singh, K.P.; Gupta, S.J.A.W.S. Water quality evaluation of Himalayan rivers of Kumaun region, Uttarakhand, India. Appl. Water Sci. 2016, 6, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.R.; Goswami, A.P.; Kalamdhad, A.S.; Kumar, B. Development of irrigation water quality index incorporating information entropy. Environ. Dev. Sustain. 2020, 22, 3119–3132. [Google Scholar] [CrossRef]
- Esmeray, E.; Gökcekli, C. Assessment of groundwater quality for drinking and irrigation purposes in Karabuk province, Turkey. Environ. Earth Sci. 2020, 79, 1–17. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Shah, A.H.; Saeed, F.; Ali, M.; Qaisrani, S.A.; Dumat, C. Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehari, Pakistan. Environ. Sci. Pollution Res. 2020, 27, 39852–39864. [Google Scholar] [CrossRef]
- ur Rehman, I.; Ishaq, M.; Ali, L.; Muhammad, S.; Din, I.U.; Yaseen, M.; Ullah, H. Potentially toxic elements’ occurrence and risk assessment through water and soil of Chitral urban environment, Pakistan: A case study. Environ. Geochem. Health 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, A.; Singh, A.P.; Singh, S.K.; Barman, A.; Patra, A.; Mondal, B.P.; Banerjee, K. Spatial variability of arsenic in Indo-Gangetic basin of Varanasi and its cancer risk assessment. Chemosphere 2020, 238, 124623. [Google Scholar] [CrossRef]
- Saha, N.; Rahman, M.S. Groundwater hydrogeochemistry and probabilistic health risk assessment through exposure to arsenic-contaminated groundwater of Meghna floodplain, central-east Bangladesh. Ecotoxicol. Environ. Saf. 2020, 206, 111349. [Google Scholar] [CrossRef]
- Barakat, A.; Hilali, A.; Baghdadi, M.E.; Touhami, F. Assessment of shallow groundwater quality and its suitability for drinking purpose near the Béni-Mellal wastewater treatment lagoon (Morocco). Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1476–1495. [Google Scholar] [CrossRef]
- Shahab, A.; Qi, S.; Zaheer, M. Arsenic contamination, subsequent water toxicity, and associated public health risks in the lower Indus plain, Sindh province, Pakistan. Environ. Sci. Pollution Res. 2019, 26, 30642–30662. [Google Scholar] [CrossRef]
Parameters | WHO Standards (Si) | Total = 52 | Total = 1 |
---|---|---|---|
EC (µS/cm) | 1000 | 4 | 0.08 |
pH | 6.5–8.5 | 4 | 0.08 |
TDS (mg/L) | 1000 | 5 | 0.09 |
HCO3− (mg/L) | 250 | 4 | 0.08 |
Cl− (mg/L) | 250 | 4 | 0.08 |
SO42− (mg/L) | 250 | 3 | 0.06 |
Ca2+ (mg/L) | 200 | 4 | 0.08 |
Mg2+ (mg/L) | 150 | 4 | 0.08 |
Na+ (mg/L) | 200 | 5 | 0.09 |
K+ (mg/l) | 12 | 5 | 0.09 |
NO3− (mg/L) | 10 | 3 | 0.06 |
F− (mg/L) | 1.5 | 3 | 0.06 |
Fe (mg/L) | 0.3 | 2 | 0.03 |
As (ppb) | 10 | 2 | 0.03 |
Exposure Parameters | Description | Unit | Value (For Adults) | Value (For Children) |
---|---|---|---|---|
Cw | Contaminant Concentration in Water | mg/L | --- | --- |
IR | Ingestion Rate | L/day | 2 L/day | 1 L/day |
EF | Exposure Frequency | Days/year | 365 days/year | 365 days/year |
ED | Exposure Duration | Years | 30 Years | 6 Years |
BW | Body Weight | Kg | 70 kg | 15 kg |
AT | Average Exposure Time | Days | 10,950 | 2190 |
Physiochemical Parameters | Minimum | Maximum | Mean | Median | Standard Deviation | Percentiles (95) | WHO Standards |
---|---|---|---|---|---|---|---|
EC (µS/cm) | 470 | 7086 | 1829.57 | 1655 | 1138.65 | 4028 | 1000 |
pH | 6.5 | 8.1 | 7.17 | 7.1 | 0.43 | 8 | 6.5–8.5 |
Turbidity (NTU) | 0 | 3.9 | 2.56 | 2.7 | 0.78 | 3.82 | 5 |
TDS (mg/L) | 301 | 4493 | 1116.93 | 1022 | 643.69 | 2207 | 1000 |
Alkalinity (mg/L) | 1.8 | 28 | 7.63 | 6.7 | 4.88 | 17.2 | ̶ |
TH (mg/L) | 130 | 1800 | 517.06 | 500 | 282.2 | 1022.2 | 300 |
HCO3− (mg/L) | 90 | 1400 | 387.77 | 340 | 243.78 | 860 | 250 |
Cl− (mg/L) | 70 | 800 | 196.90 | 186 | 108.52 | 399 | 250 |
SO42− (mg/L) | 23 | 831 | 165.28 | 160 | 101.52 | 330 | 250 |
Ca2+ (mg/L) | 24 | 420 | 101.70 | 80 | 63.94 | 210 | 200 |
Mg2+ (mg/L) | 15 | 488 | 69.12 | 61 | 54.64 | 142.8 | 150 |
Na+ (mg/L) | 39 | 772 | 158.54 | 146 | 104.61 | 335 | 200 |
K+ (mg/L) | 0.6 | 25.5 | 4.52 | 3.5 | 3.93 | 13.06 | 12 |
NO3− (mg/L) | 0 | 3.3 | 0.925 | 0.86 | 0.49 | 2.42 | 10 |
F− (mg/L) | 0.03 | 0.77 | 0.25 | 0.23 | 0.11 | 0.44 | 1.5 |
Fe (mg/L) | 0 | 0.43 | 0.062 | 0.05 | 0.07 | 0.244 | 0.3 |
As (ppb) | 0 | 10 | 1.52 | 0 | 3.18 | 10 | 10 |
Parameters | Range | Water Quality | Number of Samples |
---|---|---|---|
Electrical Conductivity (EC) (µS/cm) | <250 | Excellent | - |
250–750 | Good | 3 | |
750–2000 | Permissible | 64 | |
2000–3000 | Doubtful | 18 | |
>5000 | Very hazardous | 10 | |
TDS (mg/L) | <500 | Desirable for drinking | 12 |
500–1000 | Acceptable for drinking | 34 | |
1000–3000 | Suitable for irrigation | 47 | |
>3000 | Hazardous for both | 2 |
Parameters | EC | PH | TURB | TDS | ALK | TH | HCO3− | Cl− | SO42− | Ca2+ | Mg2+ | Na+ | K+ | NO3− | F− | Fe | As |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EC | 1 | ||||||||||||||||
PH | −0.20 | 1 | |||||||||||||||
TURB | 0.03 | 0.14 | 1 | ||||||||||||||
TDS | 0.19 | −0.15 | 0.10 | 1 | |||||||||||||
ALK | 0.20 * | −0.17 | −0.02 | 0.04 | 1 | ||||||||||||
TH | 0.62 ** | −0.26 ** | 0.04 | 0.37 ** | 0.32 ** | 1 | |||||||||||
HCO3− | 0.25 * | −0.21 * | 0.11 | 0.40 ** | 0.19 | 0.62 ** | 1 | ||||||||||
Cl− | 0.61 ** | −0.25 * | 0.04 | 0.33 ** | 0.25 * | 0.94 ** | 0.52 ** | 1 | |||||||||
SO42− | 0.65 ** | −0.24 * | 0.06 | 0.31 ** | 0.29 ** | 0.93 ** | 0.47 ** | 0.96 ** | 1 | ||||||||
Ca2+ | 0.36 ** | −0.12 | −0.12 | 0.24 * | 0.34 ** | 0.41 ** | 0.35 ** | 0.29 ** | 0.29 ** | 1 | |||||||
Mg2+ | 0.06 | −0.01 | −0.03 | 0.20 * | 0.01 | 0.30 ** | 0.46 ** | 0.25 * | 0.23 * | 0.28 ** | 1 | ||||||
Na+ | 0.62 ** | −0.23 * | 0.04 | 0.31 ** | 0.29 ** | 0.93 ** | 0.52 ** | 0.97 ** | 0.96 ** | 0.31 ** | 0.24 * | 1 | |||||
K+ | −0.5 ** | −0.26 ** | 0.04 | 0.38 ** | 0.25 * | 0.64 ** | 0.40 ** | 0.61 ** | 0.63 ** | 0.31 ** | 0.18 | 0.61 ** | 1 | ||||
NO3− | 0.58 ** | −0.17 | 0.07 | 0.23 * | 0.23 * | 0.63 ** | 0.27 ** | 0.63 ** | 0.67 ** | 0.34 ** | 0.12 | 0.63 ** | 0.50 ** | 1 | |||
F | 0.52 ** | −0.26 ** | 0.12 | 0.23 * | 0.39 ** | 0.66 ** | 0.32 ** | 0.65 ** | 0.68 ** | 0.29 ** | 0.08 | 0.67 ** | 0.55 ** | 0.54 ** | 1 | ||
Fe | 0.41 ** | −0.11 | 0.01 | 0.29 ** | 0.22 * | 0.58 ** | 0.39 ** | 0.57 ** | 0.56 ** | 0.20 * | 0.16 | 0.58 ** | 0.62 ** | 0.384 ** | 0.43 ** | 1 | |
As | −0.06 | −0.07 | 0.15 | 0.06 | 0.10 | 0.05 | 0.02 | −0.04 | −0.004 | −0.06 | 0.0004 | −0.08 | −0.02 | −0.04 | 0.16 | −0.09 | 1 |
Parameter | F.1 | F.2 | F.3 | F.4 |
---|---|---|---|---|
EC | 0.71 | −0.27 | −0.15 | 0.06 |
PH | −0.32 | 0.07 | 0.07 | 0.51 |
Turbidity | 0.06 | −0.1 | 0.74 | 0.32 |
TDS | 0.44 | 0.4 | 0.27 | 0.02 |
ALK | 0.39 | −0.16 | −0.02 | −0.61 |
Total Hardness | 0.95 | 0.03 | 0.03 | 0.04 |
HCO3− | 0.62 | 0.55 | 0.16 | −0.03 |
Cl− | 0.93 | −0.07 | −0.02 | 0.17 |
SO42− | 0.93 | −0.13 | 0.01 | 0.14 |
Ca2+ | 0.47 | 0.32 | −0.27 | −0.39 |
Mg2+ | 0.31 | 0.75 | 0 | 0.03 |
Na+ | 0.93 | −0.08 | −0.05 | 0.16 |
K+ | 0.76 | −0.03 | −0.01 | 0.02 |
NO3− | 0.72 | −0.22 | −0.07 | 0.07 |
F− | 0.75 | −0.28 | 0.17 | −0.19 |
Fe | 0.67 | 0.02 | −0.06 | 0.18 |
As | 0 | −0.07 | 0.71 | −0.45 |
Eigen value | 7.25 | 1.4 | 1.29 | 1.23 |
Loading % | 42.67 | 8.25 | 7.56 | 7.26 |
Cumulative % | 42.67 | 50.92 | 58.49 | 65.74 |
WQI Range | Quality of Water | No. of Samples |
---|---|---|
<50 | Excellent | 17 |
>50 | Good | 46 |
>100 | Poor | 16 |
>200 | Very poor | 11 |
>300 | Unsuitable | 5 |
Parameters | Minimum | Maximum | Mean | SD |
---|---|---|---|---|
SAR | 4.16 | 80.48 | 17.98 | 10.03 |
Na % | 10.77 | 81.25 | 48.16 | 11.31 |
PI | 12.09 | 83.06 | 53.75 | 11.51 |
MAR | 12 | 77.21 | 41.02 | 13.33 |
KI | 0.11 | 96.70 | 1.99 | 0.581 |
Heavy Metals | Age Group | Minimum | Maximum | Mean |
---|---|---|---|---|
Arsenic (As) | Children | 0 | 0.000667 | 0.000107 |
Adults | 0 | 0.000286 | 4.5 × 10−5 | |
Iron (Fe) | Children | 0 | 0.395 | 0.00815 |
Adults | 0 | 0.01229 | 0.001873 |
Heavy Metals | Age Group | Hazard Quotient (HQ) | Chronic Risk | Number of Samples |
---|---|---|---|---|
Arsenic (As) | Children | <0.1 | Negligible | 75 |
≥0.1 < 1 | Low | None | ||
≥1 < 4 | Medium | 20 | ||
≥4 | High | None | ||
Adults | <0.1 | Negligible | 75 | |
≥0.1 < 1 | Low | 20 | ||
≥1 < 4 | Medium | None | ||
≥4 | High | None | ||
Iron (Fe) | Children | <0.1 | Negligible | All samples |
≥0.1 < 1 | Low | None | ||
≥1 < 4 | Medium | None | ||
≥4 | High | None | ||
Adults | <0.1 | Negligible | All samples | |
≥0.1 < 1 | Low | None | ||
≥1 < 4 | Medium | None | ||
≥4 | High | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jat Baloch, M.Y.; Zhang, W.; Chai, J.; Li, S.; Alqurashi, M.; Rehman, G.; Tariq, A.; Talpur, S.A.; Iqbal, J.; Munir, M.; et al. Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes. Water 2021, 13, 3361. https://doi.org/10.3390/w13233361
Jat Baloch MY, Zhang W, Chai J, Li S, Alqurashi M, Rehman G, Tariq A, Talpur SA, Iqbal J, Munir M, et al. Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes. Water. 2021; 13(23):3361. https://doi.org/10.3390/w13233361
Chicago/Turabian StyleJat Baloch, Muhammad Yousuf, Wenjing Zhang, Juanfen Chai, Shuxin Li, Muwaffaq Alqurashi, Gohar Rehman, Aqil Tariq, Shakeel Ahmed Talpur, Javed Iqbal, Mamoona Munir, and et al. 2021. "Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes" Water 13, no. 23: 3361. https://doi.org/10.3390/w13233361
APA StyleJat Baloch, M. Y., Zhang, W., Chai, J., Li, S., Alqurashi, M., Rehman, G., Tariq, A., Talpur, S. A., Iqbal, J., Munir, M., & Hussein, E. E. (2021). Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes. Water, 13(23), 3361. https://doi.org/10.3390/w13233361