Nitrogen Removal by an Anaerobic Iron-Dependent Ammonium Oxidation (Feammox) Enrichment: Potential for Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge Sample Collection
2.2. Chemical Characterization of Sludge
2.3. DNA Isolation and PCR Analysis
2.4. Sludge Pre-Incubation
2.5. Enrichment Culture in Batch Experiments
2.6. Quality Assurance/Quality Control (QA/QC)
3. Results and Discussion
3.1. Sludge Characterization
3.1.1. Chemical Characterization
3.1.2. Molecular Biology Characterization
3.2. Sludge Pre-Incubation
3.3. Enrichment Culture in Batch Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Primers | Tm (°C) | Sequence | Band Lenght | PCR Cycles | Target |
---|---|---|---|---|---|
ACD840 | 53.5 | CGA CAC TGA AGT GCT AAG C | 505 bp | Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C for 10 min, denaturation at 95 °C for 15 s, annealing at 61 °C for 45 s, and extension at 72 °C for 45 s | FeRB (Acidiphilium spp.) |
Uni-338F-RC | 59.4 | ACT CCT ACG GGA GGC AGC | |||
amoAF AOA | 52.6 | STA ATG GTC TGG CTT AGA CG | 635 bp | 3 min at 94 °C, followed by 40 cycles of 30 s at 94 °C, 1 min at 53 °C, and 1 min at72 °C | Archaea ammonia monoooxygenase (AOA-amoA) |
amoAR AOA | 57.5 | GCG GCC ATC CAT CTG TAT GT | |||
amoAF AOB | 54.1 | GGG GTT TCT ACT GGT GGT | 471 bp | 3 min at 94 °C, followed by 40 cycles of 30 s at 94 °C, 30 s at 55 °C, and 45 s at 72 °C | Bacteria ammonia monoooxygenase (AOB-amoA) |
amoAR AOB | 59.2 | CCC CTC KGS AAA GCC TTC TTC | |||
AMX1066R | 59.5 | AAC GTC TCA CGA CAC GAG CTG | 239 bp | 10 min at 95 °C, followed by 35 cycles of 60 s at 95 °C, 60 s at 60 °C, and 45 s at 72 °C | Anammox Bacteria |
AMX809F | 58.2 | GCC GTA AAC GAT GGG CAC T | |||
AMX818F | 60 | ATG GGC ACT MRG TAG AGG GGT TT | 228 bp | ||
Geo564F | 49.8 | AAG CGT TGT TCG GAW TTA T | 276 bp | Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C for 10 min, denaturation at 94 °C for 30 s, annealing at 57 °C for 30 s, and extension at 72 °C for 30 s (40 cycles) | FeRB (Geobacter spp.) |
Geo840R | 57.6 | GGC ACT GCA GG GGT CAA TA | |||
napA3F | 56.9 | CCC AAT GCT CGC CAC TG | 130 bp | 5 min at 95 °C, followed by 35 cycles of 60 s at 95 °C, 60 s at 60 °C, and 45 s at 72 °C | Functional genes (napA) Dissimilarity nitrite reducing bacteria |
napA3R | 55.1 | CAT GTT KGA GCC CCA CAG | |||
narG2F | 53.8 | CTC GAY CTG GTG GTY GA | 89 bp | 5 min at 95 °C, followed by 35 cycles of 60 s at 95 °C, 60 s at 55 °C, and 45 s at 72 °C | Functional genes (narG) Dissimilarity nitrite reducing bacteria |
narG2R | 53.2 | TTY TCG TAC CAG GTS GC | |||
nirKF | 59.9 | ATY GGC GGV AYG GCG A | 165 bp | 5 min at 95 °C, followed by 35 cycles of 60 s at 95 °C, 60 s at 57 °C, and 45 s at 72 °C | Functional genes (nirK) Denitrifying bacteria |
nirKR | 52.8 | GCC TCG ATC AGR TTR TGG | |||
nirSnF | 69.1 | TAC CAC CCC GAG CCG CGC GT | 164 bp | 5 min at 95 °C, followed by 35 cycles of 60 s at 95 °C, 60 s at 63 °C, and 45 s at 72 °C | Gnes funcionales (nirS) Denitrifying bacteria |
nirSnr | 61.6 | GCC GCC GTC RTG VAG GAA | |||
nosZ1F | 59.5 | WCS YTG TTC MTC GAC AGC CAG | 259 bp | 5 min at 95 °C, followed by 35 cycles of 60 s at 95 °C, 60 s at 63 °C, and 45 s at 72 °C | Functional genes (nosZ) Denitrifying bacteria |
nosZ1R | 56.8 | ATG TCG ATC ARC TGV KCR TTY TC | |||
nrfA2F | 59.1 | CAC GAC AGC AAG ACT GCC G | 67 bp | 5 min at 95 °C, followed by 35 cycles of 60 s at 95 °C, 60 s at 60 °C, and 45 s at 72 °C | Functional genes (nrfA) Dissimilarity nitrate reducing bacteria |
nrfA2R | 59.6 | CCG GCA CTT TCG AGC CC | |||
F1norA | 58.7 | CAG ACC GAC GTG TGC GAA AG | 322 bp | Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C for 10 min, denaturation at 95 °C for 15 s, annealing at 57 °C for 30 s, and extension at 72 °C for 30 s | Functional genes (nxrA) Nitrite oxidizing bacteria |
R1norA | 55.4 | TCY ACA AGG AAC GGA AGG TC | |||
Uni-907R | 49.9 | CCG TCA ATT CMT TTG AGT TT | 312 bp | Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C for 10 min, denaturation at 95 °C for 15 s, annealing at 52 °C for 45 s, and extension at 72 °C for 45 s | FeRB (Albidiferax ferrireducens) |
RdoR-RC | 54.3 | GAC CTG CAT TTG TGA CTG YA | |||
She 120F | 61.9 | GCC TAG GGA TCT GCC CAG TCG | 100 bp | Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C for 10 min, denaturation at 95 °C for 15 s, annealing at 60 °C for 60 s, and extension at 72 °C for 30 s (40 cycles) | FeRB (Shewanella spp.) |
She 220R | 53.2 | CTA GGT TCA TCC AAT CGC G | |||
Ferrovum643F | 55.7 | ACA GAC TCT AGC TTG CCA GT | 323 bp | Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C for 10 min, denaturation at 95 °C for 15 s, annealing at 57 °C for 45 s, and extension at 72 °C for 45 s | FeOB (Ferrovum myxofaciens) |
Uni-338F-RC | 59.4 | ACT CCT ACG GGA GGC AGC | |||
Uni-907R-RC | 49.9 | AAA CTC AAA KGA ATT GAC GG | 110 bp | Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C for 10 min, denaturation at 95 °C for 15 s, annealing at 52 °C for 45 s, and extension at 72 °C for 45 s | FeOB (Acidimicrobium) |
Amf995 | 60.5 | CTC TGC GGC TTT TCC CTC CAT G |
References
- Mancinelli, R.L. 2—What good is nitrogen: An evolutionary perspective. In Evolution on Planet Earth; Rothschild, L.J., Lister, A.M., Eds.; Academic Press: London, UK, 2003; pp. 25–34. ISBN 978-0-12-598655-7. [Google Scholar]
- Thamdrup, B. New Pathways and Processes in the Global Nitrogen Cycle. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 407–428. [Google Scholar] [CrossRef]
- Fiore, C.L.; Jarett, J.K.; Olson, N.D.; Lesser, M.P. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010, 18, 455–463. [Google Scholar] [CrossRef]
- Barnard, R.; Leadley, P.W.; Hungate, B.A. Global change, nitrification, and denitrification: A review. Glob. Biogeochem. Cycles 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Thakur, I.S.; Medhi, K. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: Challenges and opportunities. Bioresour. Technol. 2019, 282, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Xiao, X.; Yan, B.; Yang, L. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. J. Hazard. Mater. 2010, 175, 247–252. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Zhu, F.; Ren, G.; Cao, G.; Song, L. Application of modified zeolite for ammonium removal from drinking water. Desalination 2011, 271, 295–300. [Google Scholar] [CrossRef]
- Kim, T.; Gorski, C.A.; Logan, B.E. Ammonium Removal from Domestic Wastewater Using Selective Battery Electrodes. Environ. Sci. Technol. Lett. 2018, 5, 578–583. [Google Scholar] [CrossRef]
- McCarty, P.L. What is the Best Biological Process for Nitrogen Removal: When and Why? Environ. Sci. Technol. 2018, 52, 3835–3841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Peng, Y.; Li, B.; Guo, J.; Yang, Q.; Wang, S. Biological Removal of Nitrogen from Wastewater. Rev. Environ. Contam. Toxicol. 2008, 192, 159–195. [Google Scholar]
- Le, C.P.; Nguyen, H.T.; Nguyen, T.D.; Nguyen, Q.H.M.; Pham, H.T.; Dinh, H.T. Ammonium and organic carbon co-removal under feammox-coupled-with-heterotrophy condition as an efficient approach for nitrogen treatment. Sci. Rep. 2021, 11, 784. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, Y. New direction in biological nitrogen removal from industrial nitrate wastewater via anammox. Appl. Microbiol. Biotechnol. 2019, 103, 7459–7466. [Google Scholar] [CrossRef]
- Koren, D.W.; Gould, W.D.; Bédard, P. Biological removal of ammonia and nitrate from simulated mine and mill effluents. Hydrometallurgy 2000, 56, 127–144. [Google Scholar] [CrossRef]
- Han, B.; Butterly, C.; Zhang, W.; He, J.Z.; Chen, D. Adsorbent materials for ammonium and ammonia removal: A review. J. Clean. Prod. 2021, 283, 124611. [Google Scholar] [CrossRef]
- Clément, J.-C.; Shrestha, J.; Ehrenfeld, J.G.; Jaffé, P.R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil. Biol. Biochem. 2005, 37, 2323–2328. [Google Scholar] [CrossRef]
- Zhu, T.T.; Zhang, Y.B.; Liu, Y.W.; Zhao, Z. sheng Electrostimulation enhanced ammonium removal during Fe(III) reduction coupled with anaerobic ammonium oxidation (Feammox) process. Sci. Total Environ. 2021, 751, 141703. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, T.; Liao, C.; Li, N.; Wang, X. A promising destiny for Feammox: From biogeochemical ammonium oxidation to wastewater treatment. Sci. Total Environ. 2021, 790, 148038. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Xie, G.-J.; Nie, W.-B.; Xing, D.-F.; Liu, B.-F.; Ding, J.; Ren, N.-Q. Fe (III)-mediated anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and potential applications. Crit. Rev. Environ. Sci. Technol. 2021, 1–33. [Google Scholar] [CrossRef]
- Sawayama, S. Possibility of anoxic ferric ammonium oxidation. J. Biosci. Bioeng. 2006, 101, 70–72. [Google Scholar] [CrossRef]
- Zhu, T.T.; Lai, W.X.; Zhang, Y.B.; Liu, Y.W. Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe(III) compounds. Sci. Total Environ. 2022, 804, 149965. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Jaffé, P.R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. PLoS ONE 2018, 13, e0194007. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.H.; Weber, K.A.; Silver, W.L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci. 2012, 5, 538–541. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Chen, C.; Peng, X.; Jaffé, P.R. Environmental factors affecting the presence of Acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments. Soil. Biol. Biochem. 2016, 98, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Yan, X.; Zhou, L.; Li, N.; Liao, C.; Wang, X. Insight of bacteria and archaea in Feammox community enriched from different soils. Environ. Res. 2022, 203, 111802. [Google Scholar] [CrossRef]
- Franson, M.A.H.; Eaton, A.D.; Greenberg, A.E.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 1995. [Google Scholar]
- Shu, D.; He, Y.; Yue, H.; Yang, S. Effects of Fe (II) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: Kinetics, quantitative molecular mechanism and metagenomic analysis. RSC Adv. 2016, 6, 68005–68016. [Google Scholar] [CrossRef]
- Li, X.; Hou, L.; Liu, M.; Zheng, Y.; Yin, G.; Lin, X.; Cheng, L.; Li, Y.; Hu, X. Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland. Environ. Sci. Technol. 2015, 49, 11560–11568. [Google Scholar] [CrossRef]
- Shuai, W.; Jaffé, P.R. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms. Sci. Total Environ. 2019, 648, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 3527302743. [Google Scholar]
- Chen, K.; Lei, H.; Li, Y.; Li, H.; Zhang, X.; Yao, C. Physical and chemical characteristics of waste activated sludge treated with electric field. Process Saf. Environ. Prot. 2011, 89, 327–333. [Google Scholar] [CrossRef]
- Al-Dawery, S.K. Conditioning process and characterization of fresh activated sludge. Int. J. Eng. Sci. Technol. 2015, 10, 692–711. [Google Scholar]
- Lavergne, C.; Bovio-Winkler, P.; Etchebehere, C.; García-Gen, S. Towards centralized biogas plants: Co-digestion of sewage sludge and pig manure maintains process performance and active microbiome diversity. Bioresour. Technol. 2020, 297, 122442. [Google Scholar] [CrossRef]
- Wright, C.L.; Schatteman, A.; Crombie, A.T.; Murrell, J.C.; Lehtovirta-Morley, L.E. Inhibition of Ammonia Monooxygenase from Ammonia-Oxidizing Archaea by Linear and Aromatic Alkynes. Appl. Environ. Microbiol. 2020, 86, e02388-19. [Google Scholar] [CrossRef] [Green Version]
- Lehtovirta-Morley, L.E. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol. Lett. 2018, 365, fny058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef] [Green Version]
- Fredrickson, J.K.; Gorby, Y.A. Environmental processes mediated by iron-reducing bacteria. Curr. Opin. Biotechnol. 1996, 7, 287–294. [Google Scholar] [CrossRef]
- Esther, J.; Sukla, L.B.; Pradhan, N.; Panda, S. Fe (III) reduction strategies of dissimilatory iron reducing bacteria. Korean J. Chem. Eng. 2014, 32, 1–14. [Google Scholar] [CrossRef]
- Lu, S.; Chourey, K.; Reiche, M.; Nietzsche, S.; Shah, M.B.; Neu, T.R.; Hettich, R.L.; K�sel, K. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”). Appl. Environ. Microbiol. 2013, 79, 4272–4281. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.Z.; Zhuo, Y.; Wu, X.; Ko, S.R.; Li, T.; Jin, F.J.; Ahn, C.Y.; Oh, H.M.; Lee, H.G.; Jin, L. Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. Microorganisms 2020, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Finneran, K.T.; Johnsen, C.V.; Lovley, D.R. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (III). Int. J. Syst. Evol. Microbiol. 2003, 53, 669–673. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B.; Hallberg, K.B.; Hedrich, S. Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium ‘Ferrovum myxofaciens’. Appl. Environ. Microbiol. 2014, 80, 672–680. [Google Scholar] [CrossRef] [Green Version]
- Kuenen, J.G. Anammox bacteria: From discovery to application. Nat. Rev. Microbiol. 2008, 6, 320–326. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Sliekers, A.O.; Lavik, G.; Schmid, M.; Jørgensen, B.B.; Kuenen, J.G.; Sinninghe Damsté, J.S.; Strous, M.; Jetten, M.S.M. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 2003, 422, 608–611. [Google Scholar] [CrossRef]
- Li, X.; Yuan, Y.; Huang, Y.; Liu, H.W.; Bi, Z.; Yuan, Y.; Yang, P.B. A novel method of simultaneous NH4+ and NO3− removal using Fe cycling as a catalyst: Feammox coupled with NAFO. Sci. Total Environ. 2018, 631, 153–157. [Google Scholar]
- Zhou, G.-W.; Yang, X.-R.; Li, H.; Marshall, C.W.; Zheng, B.-X.; Yan, Y.; Su, J.-Q.; Zhu, Y.-G. Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron (III) Reduction. Environ. Sci. Technol. 2016, 50, 9298–9307. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Jaffé, P.R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 2015, 12, 769–779. [Google Scholar] [CrossRef] [Green Version]
- Kappler, A.; Wuestner, M.L.; Ruecker, A.; Harter, J.; Halama, M.; Behrens, S. Biochar as an Electron Shuttle between Bacteria and Fe (III) Minerals. Environ. Sci. Technol. Lett. 2014, 1, 339–344. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Ma, H.; Chen, G. Effect of Fe (II) on simultaneous marine anammox and Feammox treating nitrogen-laden saline wastewater under low temperature: Enhanced performance and kinetics. Desalination 2020, 478, 114287. [Google Scholar] [CrossRef]
Parameter | Aerobic Sludge | Anaerobic Sludge | |
---|---|---|---|
pH | 6.93 | 7.85 | |
EC [mS/cm] | 10.14 | 6.50 | |
NH4+ [mg/L] | 1420.6 | 279 | |
Anions | SO42− [mg/L] | 0 | 110 |
Cl− [mg/L] | 0.22 | 0.02 | |
NO3− [mg/L] | 20.4 | 53.6 | |
NO2− [mg/L] | 0.1 | 0 | |
Iron species | Total Fe [mg/L] | 0.52 | 0.35 |
Fe2+ [mg/L] | 0 | 0.1 | |
COD [mg/L] | 76,100 | 51,303 | |
sCOD [mg/L] | 14,019 | 3567 | |
TS | 2.74% | 5.23% | |
VS | 2.11% | 4.45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, C.; Cisternas, J.; Serrano, J.; Leiva, E. Nitrogen Removal by an Anaerobic Iron-Dependent Ammonium Oxidation (Feammox) Enrichment: Potential for Wastewater Treatment. Water 2021, 13, 3462. https://doi.org/10.3390/w13233462
Rodríguez C, Cisternas J, Serrano J, Leiva E. Nitrogen Removal by an Anaerobic Iron-Dependent Ammonium Oxidation (Feammox) Enrichment: Potential for Wastewater Treatment. Water. 2021; 13(23):3462. https://doi.org/10.3390/w13233462
Chicago/Turabian StyleRodríguez, Carolina, Jaime Cisternas, Jennyfer Serrano, and Eduardo Leiva. 2021. "Nitrogen Removal by an Anaerobic Iron-Dependent Ammonium Oxidation (Feammox) Enrichment: Potential for Wastewater Treatment" Water 13, no. 23: 3462. https://doi.org/10.3390/w13233462
APA StyleRodríguez, C., Cisternas, J., Serrano, J., & Leiva, E. (2021). Nitrogen Removal by an Anaerobic Iron-Dependent Ammonium Oxidation (Feammox) Enrichment: Potential for Wastewater Treatment. Water, 13(23), 3462. https://doi.org/10.3390/w13233462