Evaluating the Pressure and Loss Behavior in Water Pipes Using Smart Mathematical Modelling
Abstract
:1. Introduction
2. Methods
2.1. Smart Mathematical Modelling of Water Flow
- (A)
- Partially Submerged Body:
- (1)
- Hydrostatic Thrust (N):
- (2)
- Experimental Center of Pressure (exp):
- (3)
- Theoretical Center of Pressure (M):
- (4)
- Depth of Center of Pressure from free surface of water:
- (5)
- Depth of centroid of quadrant from free surface of water:
- (B)
- Fully Submerged Body
- (1)
- Hydrostatic Thrust (N):
- (2)
- Experimental Center of Pressure (exp):
- (3)
- Theoretical Center of Pressure (M):
- (4)
- Depth of Center of Pressure from free surface of water:
- (5)
- Depth of centroid of quadrant from free surface of water:
2.2. Smart Mathematical Modelling of Water Consumption with Periodic Time
- (1)
- Flow
- (2)
- Area:
- (3)
- Velocity =
- (4)
- Reynolds number:
2.3. Mathematical Modelling of Water Losses in Pipes
3. Results
3.1. Application of Smart Mathematical Modelling of Water Flow
Hydrostatic Pressure
3.2. Application of Smart Mathematical Modelling of Water Consumption with Periodic Time
Osborne Reynolds Pipe Flow
3.3. Application of Smart Mathematical Modelling of Water Losses in Pipes
3.3.1. Orifice Meter
Half Opened Valve | ||
---|---|---|
Piezometer head at section 1, m | H1 | 0.529 |
Piezometer head at section 2, m | H2 | 0.437 |
The volume of water, L | V | 20 |
Time, s | t | 87 |
The difference in the piezometer head between sections 1 and 2, m | H | 0.092 |
Fully Opened Valve | ||
Piezometer head at section 1, m | H1 | 0.763 |
Piezometer head at section 2, m | H2 | 0.505 |
The volume of water, L | V | 20 |
Time, s | t | 49 |
The difference in the piezometer head between sections 1 and 2, m | H | 0.258 |
- Cd (Coefficient of discharge) = 0.67
- Diameter of the pipe (upstream) = 28.5 mm
- Diameter of the orifice = 18.5 mm
- Area cross-section of the orifice = 2.69 × 10−4 m2
3.3.2. Losses in Pipe
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Adhaileh, M.H.; Alsaade, F.W. Modelling and Prediction of Water Quality by Using Artificial Intelligence. Sustainability 2021, 13, 4259. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Buurman, J.; Van Ginkel, K.C. Urban water security: A review. Environ. Res. Lett. 2018, 13, 053002. [Google Scholar] [CrossRef] [Green Version]
- Rathi, S.; Gupta, R. Sensor Placement Methods for Contamination Detection in Water Distribution Networks: A Review. Procedia Eng. 2014, 89, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Liu, R.; Chen, Q.; Li, R. Review on water leakage control in distribution networks and the associated environmental benefits. J. Environ. Sci. 2014, 26, 955–961. [Google Scholar] [CrossRef]
- Ayob, S.; Othman, N.; Altowayti, W.A.H.; Khalid, F.S.; Abu Bakar, N.; Tahir, M.; Soedjono, E.S. A Review on Adsorption of Heavy Metals from Wood-Industrial Wastewater by Oil Palm Waste. J. Ecol. Eng. 2021, 22, 249–265. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Othman, N.; Yunus, Z.M.; Altowayti, W.A.H.; Tahir, M.; Fitriani, N.; Mohd-Salleh, S.N.A. An insight review of lignocellulosic materials as activated carbon precursor for textile wastewater treatment. Environ. Technol. Innov. 2021, 22, 101445. [Google Scholar] [CrossRef]
- Altowayti, W.A.H.; Othman, N.; Goh, P.S.; Alshalif, A.F.; Al-Gheethi, A.A.; Algaifi, H.A. Application of a novel nanocomposites carbon nanotubes functionalized with mesoporous silica-nitrenium ions (CNT-MS-N) in nitrate removal: Optimizations and nonlinear and linear regression analysis. Environ. Technol. Innov. 2021, 22, 101428. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks. Water 2017, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Beuken, R.; Lavooij, C.; Bosch, A.; Schaap, P. Low leakage in the Netherlands confirmed. In Proceedings of the Water Distribution Systems Analysis Symposium 2006, Cincinnati, OH, USA, 27–30 August 2006; pp. 1–8. [Google Scholar]
- Mamlook, R.; Al-Jayyousi, O. Fuzzy sets analysis for leak detection in infrastructure systems: A proposed methodology. Clean Technol. Environ. Policy 2003, 6, 26–31. [Google Scholar] [CrossRef]
- Abu-Mahfouz, A.M.; Hamam, Y.; Page, P.; Djouani, K.; Kurien, A. Real-time Dynamic Hydraulic Model for Potable Water Loss Reduction. Procedia Eng. 2016, 154, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, W.; Ding, X. A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed. Water 2017, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Mora-Rodríguez, J.; Delgado-Galván, X.; Ramos, H.M.; López-Jiménez, P.A. An overview of leaks and intrusion for different pipe materials and failures. Urban Water J. 2013, 11, 1–10. [Google Scholar] [CrossRef]
- Shao, Y.; Yao, T.; Gong, J.; Liu, J.; Zhang, T.; Yu, T. Impact of Main Pipe Flow Velocity on Leakage and Intrusion Flow: An Experimental Study. Water 2019, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Van Zyl, J.E.; Lambert, A.O.; Collins, R. Realistic Modeling of Leakage and Intrusion Flows through Leak Openings in Pipes. J. Hydraul. Eng. 2017, 143, 04017030. [Google Scholar] [CrossRef]
- Castelletti, A.; Soncini-Sessa, R. Bayesian Networks and participatory modelling in water resource management. Environ. Model. Softw. 2007, 22, 1075–1088. [Google Scholar] [CrossRef]
- Lake, P.; Bond, N.R. Australian futures: Freshwater ecosystems and human water usage. Futures 2007, 39, 288–305. [Google Scholar] [CrossRef]
- Inman, D.; Jeffrey, P. A review of residential water conservation tool performance and influences on implementation effectiveness. Urban Water J. 2006, 3, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Foran, B. An input–output analysis of Australian water usage. Water Policy 2001, 3, 321–340. [Google Scholar] [CrossRef]
- Widén, J.; Lundh, M.; Vassileva, I.; Dahlquist, E.; Ellegård, K.; Wäckelgård, E. Constructing load profiles for household electricity and hot water from time-use data—Modelling approach and validation. Energy Build. 2009, 41, 753–768. [Google Scholar] [CrossRef]
- Yurdusev, M.A.; Firat, M. Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey. J. Hydrol. 2009, 365, 225–234. [Google Scholar] [CrossRef]
- Manera, M.; Marzullo, A. Modelling the load curve of aggregate electricity consumption using principal components. Environ. Model. Softw. 2005, 20, 1389–1400. [Google Scholar] [CrossRef] [Green Version]
- Prieto, M.Á.; Anders, Y.; Bartlett, J.; Murado García, M.A.; Curran, T.P. Mathematical modelling of domestic water flow. In Proceedings of the International Water Association World Congress on Water, Climate and Energy, Dublin, Ireland, 13–18 May 2012. [Google Scholar]
- Nigol, O. Hydraulic Method for Locating Oil Leaks in Underground Cables. IEEE Trans. Power Appar. Syst. 1970, PAS-89, 1434–1439. [Google Scholar] [CrossRef]
- Nerella, R.; Rathnam, E.V. Fluid Transients and Wave Propagation in Pressurized Conduits Due to Valve Closure. Procedia Eng. 2015, 127, 1158–1164. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Ma, Y.; Jiang, J.; Xing, Z.; Ni, L.; Yang, J. An Inverse Transient Nonmetallic Pipeline Leakage Diagnosis Method Based on Markov Quantitative Judgment. Adv. Mater. Sci. Eng. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, A.; Mansy, H. A mathematical model for leak location in pipelines. Appl. Math. Model. 1988, 12, 25–30. [Google Scholar] [CrossRef]
- Sadr-Al-Sadati, S.A.; Jalili Ghazizadeh, M.R. Experimental and Numerical Study on Leakage in Orifices of High-Density Polyethylene Pipe. J. Environ. Sci. Technol. 2020, 22, 79–93. [Google Scholar]
- Ekmekcioğlu, Ö.; Başakin, E.E.; Özger, M. Discharge coefficient equation to calculate the leakage from pipe networks. J. Inst. Sci. Technol. 2020, 10, 1737–1746. [Google Scholar] [CrossRef]
- El Gayar, A. Impact assessment on water harvesting and valley dams. Int. J. Agric. Inven. 2020, 5, 266–282. [Google Scholar] [CrossRef]
- Eick, B.A. Structural Health Monitoring of Inland Navigation Infrastructure; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2020. [Google Scholar]
- Nikitin, N.V. Transition Problem and Localized Turbulent Structures in Pipes. Fluid Dyn. 2021, 56, 31–44. [Google Scholar] [CrossRef]
- Nakhchi, M.; Hatami, M.; Rahmati, M. Experimental investigation of heat transfer enhancement of a heat exchanger tube equipped with double-cut twisted tapes. Appl. Therm. Eng. 2020, 180, 115863. [Google Scholar] [CrossRef]
- Rónaföldi, A.; Roósz, A.; Veres, Z. Determination of the conditions of laminar/turbulent flow transition using pressure compensation method in the case of Ga75In25 alloy stirred by RMF. J. Cryst. Growth 2021, 564, 126078. [Google Scholar] [CrossRef]
- Nur, A.; Afrianita, R.; Ramli, R.D.T.F. Effect of pipe diameter changes on the properties of fluid in closed channels using Osborne Reynold Apparatus. IOP Conf. Ser. Mater. Sci. Eng. 2019, 602, 012058. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Moin, P.; Adrian, R.J.; Baltzer, J.R. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence. Proc. Natl. Acad. Sci. USA 2015, 112, 7920–7924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronado-Hernández, E.; Fuertes-Miquel, V.S.; Quiñones-Bolaños, E.E.; Gatica, G.; Coronado-Hernández, J.R. Simplified Mathematical Model for Computing Draining Operations in Pipelines of Undulating Profiles with Vacuum Air Valves. Water 2020, 12, 2544. [Google Scholar] [CrossRef]
- Patricio, R.A.C.; Baptista, R.M.; Rachid, F.B.D.F.; Bodstein, G.C. Numerical simulation of pig motion in gas and liquid pipelines using the Flux-Corrected Transport method. J. Pet. Sci. Eng. 2020, 189, 106970. [Google Scholar] [CrossRef]
- Moldenhauer-Roth, A.; Piton, G.; Schwindt, S.; Jafarnejad, M.; Schleiss, A.J. Design of sediment detention basins: Scaled model experiments and application. Int. J. Sediment Res. 2020, 36, 136–150. [Google Scholar] [CrossRef]
- Düz, H. Effect of conical angle in the conical entry orifice plate flows on the reduction of pressure losses and metering errors in reference to sharp-edged orifice plate flows: A CFD analysis. Flow Meas. Instrum. 2021, 81, 102026. [Google Scholar] [CrossRef]
- Ferraiuolo, R.; De Paola, F.; Fiorillo, D.; Caroppi, G.; Pugliese, F. Experimental and Numerical Assessment of Water Leakages in a PVC-A Pipe. Water 2020, 12, 1804. [Google Scholar] [CrossRef]
- Sondh, H.; Singh, S.; Seshadri, V.; Gandhi, B. Design and development of variable area orifice meter. Flow Meas. Instrum. 2002, 13, 69–73. [Google Scholar] [CrossRef]
- Takahashi, K.; Matsuda, H.; Miyamoto, H. Cavitation Characteristics of Restriction Orifices (Experiment for Shock Pressure Distribution by Cavitation on Restriction Orifices and Occurrence of Cavitation at Multiperforated Orifices due to Interference of Butterfly Valve). Available online: http://resolver.caltech.edu/cav2001:sessionA9.0062001 (accessed on 25 July 2021).
- Vivian, J.; Quaggiotto, D.; Zarrella, A. Increasing the energy flexibility of existing district heating networks through flow rate variations. Appl. Energy 2020, 275, 115411. [Google Scholar] [CrossRef]
- Yan, X.; Lin, C.; Zheng, Z.; Chen, J.; Wei, G.; Zhang, J. Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression. Appl. Energy 2020, 258, 114073. [Google Scholar] [CrossRef]
- Ab Hamid, S.; Rawi, C.S.M. Application of Aquatic Insects (Ephemeroptera, Plecoptera and Trichoptera) in Water Quality Assessment of Malaysian Headwater. Trop. Life Sci. Res. 2017, 28, 143–162. [Google Scholar] [CrossRef]
- Alsadi, A.A.; Matthews, J.C. Evaluation of Carbon Footprint of Pipeline Materials during Installation, Operation, and Disposal Phases. J. Pipeline Syst. Eng. Pract. 2020, 11, 04020005. [Google Scholar] [CrossRef]
- Wang, J.; Yang, T.; Wei, T.; Chen, R.; Yuan, S. Experimental determination of local head loss of non-coaxial emitters in thin-wall lay-flat polyethylene pipes. Biosyst. Eng. 2019, 190, 71–86. [Google Scholar] [CrossRef]
- Yatskul, A.; Lemiere, J.-P.; Cointault, F. Influence of the divider head functioning conditions and geometry on the seed’s distribution accuracy of the air-seeder. Biosyst. Eng. 2017, 161, 120–134. [Google Scholar] [CrossRef]
- Zhang, B.; Wan, W.; Shi, M. Experimental and Numerical Simulation of Water Hammer in Gravitational Pipe Flow with Continuous Air Entrainment. Water 2018, 10, 928. [Google Scholar] [CrossRef] [Green Version]
- Bíbok, M.; Csizmadia, P.; Till, S. Experimental and Numerical Investigation of the Loss Coefficient of a 90° Pipe Bend for Power-Law Fluid. Period. Polytech. Chem. Eng. 2020, 64, 469–478. [Google Scholar] [CrossRef]
L, Length of Balance | 0.29 m | Distance from weight hanger to the pivot point |
H, Quadrant to Pivot | 0.21 m | Base of quadrant face to pivot |
D, Height of Quadrant | 0.10 m | Height of vertical quadrant face |
B, Width of Quadrant | 0.08 m | Width of vertical quadrant face |
Partially Submerged | Exp. | Theoretical | Exp. | Theoretical | |||
---|---|---|---|---|---|---|---|
No. | Mass, M (kg) | Depth of Immersion | Hydrostatic Force, F (N) | Depth of Center of Pressure from Pivot Point = h″ (m) | Depth of Center of Pressure from Pivot Point = h″ | Depth of Center of Pressure from Free Surface of Water = h′ (exp) | Depth of Center of Pressure from Free Surface of Water = h′ (m) |
1 | 0.02 | 0.02 | 0.17 | 0.25 | 0.20 | 0.07 | 0.01 |
2 | 0.05 | 0.04 | 0.66 | 0.21 | 0.20 | 0.04 | 0.03 |
3 | 0.07 | 0.05 | 1.03 | 0.19 | 0.19 | 0.04 | 0.04 |
Fully Submerged | Exp. | Theoretical | Exp. | Theoretical | |||
1 | 0.31 | 4.59 | 0.18 | 0.17 | 0.08 | 0.08 | 0.08 |
2 | 0.36 | 5.53 | 0.18 | 0.17 | 0.09 | 0.09 | 0.09 |
3 | 0.45 | 7.36 | 0.17 | 0.17 | 0.10 | 0.11 | 0.11 |
Volume V M3 | Time t (s) | Diameter of the Pipe D (m) | Discharge Q m3/s | Area A m2 | Velocity ν m/s | Kinematic Viscosity v m2/s | Re | |
---|---|---|---|---|---|---|---|---|
Laminar Flow | 0.0001 | 13.20 | 0.01 | 75 × 10−7 | 785 × 10−7 | 0.096 | 8917 × 10−10 | 1081 |
0.0002 | 17.81 | 0.01 | 11 × 10−6 | 785 × 10−7 | 0.143 | 8917 × 10−10 | 1604 | |
Transitional Flow | 0.0003 | 16.69 | 0.01 | 18 × 10−6 | 785 × 10−7 | 0.229 | 8917 × 10−10 | 2567 |
0.0005 | 22.86 | 0.01 | 22 × 10−6 | 785 × 10−7 | 0.279 | 8917 × 10−10 | 3125 | |
Turbulent Flow | 0.0005 | 15.00 | 0.01 | 33 × 10−6 | 785 × 10−7 | 0.425 | 8917 × 10−10 | 4762 |
0.0008 | 24.10 | 0.01 | 33 × 10−6 | 785 × 10−7 | 0.423 | 8917 × 10−10 | 4742 |
Halve Open Valve | Fully Open Valve | |
---|---|---|
Experimental (Q) | 2.53 × 10−4 m3/s | 3.99 × 10−4 m3/s |
Theoretical (Q) | 2.52 × 10−4 m3/s | 4.00 × 10−4 m3/s |
Percentage error (%) | 2.35 | 0.26 |
D | L | H1 | H2 | H | V | t | ||
---|---|---|---|---|---|---|---|---|
Major losses | 30 mm | 50 cm | 44 cm | 41.7 cm | 4.7 cm | 5 L | 38 s | |
20 mm | 80 cm | 55.2 cm | 54.2 cm | 1 cm | 5 L | 75 s | ||
Minor Losses | Fitting | 20 mm and 30 mm | 42.8 cm | 42.2 cm | 0.6 cm | 5 L | 37 s | |
Bending | 42.7 cm | 41.7 cm | 1 cm | 5 L | 63 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altowayti, W.A.H.; Othman, N.; Tajarudin, H.A.; Al-Dhaqm, A.; Asharuddin, S.M.; Al-Gheethi, A.; Alshalif, A.F.; Salem, A.A.; Din, M.F.M.; Fitriani, N.; et al. Evaluating the Pressure and Loss Behavior in Water Pipes Using Smart Mathematical Modelling. Water 2021, 13, 3500. https://doi.org/10.3390/w13243500
Altowayti WAH, Othman N, Tajarudin HA, Al-Dhaqm A, Asharuddin SM, Al-Gheethi A, Alshalif AF, Salem AA, Din MFM, Fitriani N, et al. Evaluating the Pressure and Loss Behavior in Water Pipes Using Smart Mathematical Modelling. Water. 2021; 13(24):3500. https://doi.org/10.3390/w13243500
Chicago/Turabian StyleAltowayti, Wahid Ali Hamood, Norzila Othman, Husnul Azan Tajarudin, Arafat Al-Dhaqm, Syazwani Mohd Asharuddin, Adel Al-Gheethi, Abdullah Faisal Alshalif, Ali Ahmed Salem, Mohd Fadhil Md Din, Nurina Fitriani, and et al. 2021. "Evaluating the Pressure and Loss Behavior in Water Pipes Using Smart Mathematical Modelling" Water 13, no. 24: 3500. https://doi.org/10.3390/w13243500
APA StyleAltowayti, W. A. H., Othman, N., Tajarudin, H. A., Al-Dhaqm, A., Asharuddin, S. M., Al-Gheethi, A., Alshalif, A. F., Salem, A. A., Din, M. F. M., Fitriani, N., & AL-Towayti, F. A. H. (2021). Evaluating the Pressure and Loss Behavior in Water Pipes Using Smart Mathematical Modelling. Water, 13(24), 3500. https://doi.org/10.3390/w13243500