Trace Element Contamination in One of the Yangtze Tributaries (Hunan, China)—Source Review and Potential Release from Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analytical Methods
2.3. Leaching Experiments
3. Results and Discussion
3.1. Spatial and Temporal Trends of Trace Element Enrichment in Surface Sediments
3.2. Identifying the Main Activities Influencing Sediment Quality
3.3. Trace Element Release from Sediments to Surface Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Xu, Y.; Cheng, Y.; Zhao, Y.; Pan, Y.; Fu, Y.; Dai, Y. Occurrence and risk assessment of heavy metals in sediments of the Xiangjiang River, China. Environ. Sci. Pollut. Res. 2017, 24, 2711–2723. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, J.; Yuan, X.; Zeng, G.; Lai, X.; Li, X.; Wu, H.; Yuan, Y.; Li, F. Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake Wetland, mid-south China. J. Environ. Sci. Health Part A 2015, 50, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Grosbois, C.; Meybeck, M.; Lestel, L.; Lefevre, I.; Moatar, F. Severe and contrasted polymetallic contamination patterns (1900–2009) in the Loire River sediments (France). Sci. Total Environ. 2012, 435–436, 290–305. [Google Scholar] [CrossRef] [PubMed]
- Grosbois, C.; Courtin-Nomade, A.; Martin, F.; Bril, H. Transportation and evolution of trace element bearing phases in stream sediments in a mining—influenced basin (upper Isle River, France). Appl. Geochem. 2007, 22, 2362–2374. [Google Scholar] [CrossRef]
- Grosbois, C.; Courtin-Nomade, A.; Robin, E.; Bril, H.; Tamura, N.; Schafer, J.; Blanc, G. Fate of arsenic-bearing phases during the suspended transport in a gold mining district (Isle River basin, France). Sci. Total Environ. 2011, 409, 4986–4999. [Google Scholar] [CrossRef] [Green Version]
- Courtin-Nomade, A.; Waltzing, T.; Evrard, C.; Soubrand, M.; Lenain, J.F.; Ducloux, E.; Ghorbel, S.; Grosbois, C.; Bril, H. Arsenic and lead mobility: From tailing materials to the aqueous compartment. Appl. Geochem. 2016, 64, 10–21. [Google Scholar] [CrossRef]
- Bossy, A.; Grosbois, C.; Hendershot, W.; Beauchemin, S.; Crouzet, C.; Bril, H. Contributions of natural arsenic sources to surface waters on a high grade arsenic-geochemical anomaly (French Massif Central). Sci. Total Environ. 2012, 432, 257–268. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, B.; Du, J.; Zhang, G.; Hou, L. Nutrient burial and environmental changes in the Yangtze Delta in response to recent river basin human activities. Environ. Pollut. 2019, 249, 225–235. [Google Scholar] [CrossRef]
- Chen, X.; Strokal, M.; Kroeze, C.; Ma, L.; Shen, Z.; Wu, J.; Chen, X.; Shi, X. Seasonality in river export of nitrogen: A modelling approach for the Yangtze River. Sci. Total Environ. 2019, 671, 1282–1292. [Google Scholar] [CrossRef]
- Song, Y.; Ji, J.; Mao, C.; Yang, Z.; Yuan, X.; Ayoko, G.A.; Frost, R.L. Heavy metal contamination in suspended solids of Changjiang River—Environmental implications. Geoderma 2010, 159, 286–295. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, F.; Lu, H.; Yao, C. Analysis on the water quality changes in the Xiangjiang River from 1981 to 2000. Resour. Environ. Yangtze Basin 2004, 13, 508–512. (In Chinese) [Google Scholar]
- Hunan Water Resources Bulletin (2001–2006). Available online: http://slt.hunan.gov.cn/slt/xxgk/tjgb/index_2.html; http://slt.hunan.gov.cn/slt/xxgk/tjgb/index.html; (accessed on 7 May 2019). (In Chinese)
- Shi, T.; Ma, J.; Zhang, Y.; Liu, C.; Hu, Y.; Gong, Y.; Wu, X.; Ju, T.; Hou, H.; Zhao, L. Status of lead accumulation in agricultural soils across China (1979–2016). Environ. Int. 2019, 129, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.; Wu, T.; Zhou, T.; Li, Z.; Ouyang, Y.; Jiang, J.; Zhu, D.; Hou, J.; Wang, Z.; Luo, Y.; et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Sci. Total Environ. 2019, 677, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Scientific Development Overall Plan of The Xiangjiang River Basin. Available online: http://www.hunan.gov.cn/xxgk/fzgh/201403/t20140304_4902771.html (accessed on 19 December 2017). (In Chinese)
- The “Water Pollution Prevention and Control Action Plan” Implementation Plan (2016–2020) was Implemented by Hunan Province. Available online: http://www.hunan.gov.cn/xxgk/fzgh/201602/t20160222_4902819.html (accessed on 19 December 2017).
- Liu, D. Why Does the Source of the Xiangjiang River Misrepresent for Thousand Years? Available online: https://hnrb.voc.com.cn/hnrb_epaper/html/2013-05/22/content_666007.htm?div=0 (accessed on 22 December 2017).
- Natural Resources of Hunan Province. Available online: http://www.hunan.gov.cn/hnszf/jxxx/hngk/zrdl/201803/t20180322_4977107.html (accessed on 23 April 2019). (In Chinese)
- Where is Hunan. Available online: http://www.enghunan.gov.cn/AboutHunan/HunanFacts/WhereisHunan/201507/t20150707_1792258.html (accessed on 23 April 2019).
- Liu, H. A study on the pollution of the Xiangjiang River geological and mineral resources. J. Central South Inst. Min. Metall. 1981, 3, 98–105. (In Chinese) [Google Scholar]
- Zeng, B.; Pan, Y.; Huang, Z. Preliminary assessment of sediment pollution in the Xiangjiang River. Environ. Chem. 1982, 1, 352–358. (In Chinese) [Google Scholar]
- Zhang, L.; Dong, W.; Zheng, J.; Zhao, G. The metalform and form factors of heavy metals in the Xiangjiang River sediments. Acta Geogr. Sinica 1983, 38, 55–64. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Z. Study of Xiangjiang River. Available online: http://hnrb.voc.com.cn/hnrb_epaper/html/2012-10/17/content_573333.htm?div=-1 (accessed on 17 December 2017). (In Chinese).
- Wang, X. Research on Representativenes of Estuarine Sediment Sampling; China University of Geosciences: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Tang, X.; Peng, B.; Yu, C.; Hu, D.; Pang, X.; Yang, G.; Yin, C. Environmental—Geochemical characteristics of heavy metals in sediments from the Xiang river. Yunnan Geogr. Environ. Res. 2008, 20, 26–32. (In Chinese) [Google Scholar]
- Hunan Provincial Committee for the Compilation of Local Chronicles. Hunan Record: Industrial Mineral Record—Metallurgical Industry; Hunan Press: Changsha, China, 1991. (In Chinese) [Google Scholar]
- People’s Government of Hunan Province. Hunan Province Mineral Resources Master Plan (2016–2020); People’s Government of Hunan Province: Changsha, China, 2016. (In Chinese)
- Li, Z.; Feng, X.; Li, G.; Bi, X.; Sun, G.; Zhu, J.; Qin, H.; Wang, J. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in East Hunan Province, China. Appl. Geochem. 2011, 26, 160–166. [Google Scholar] [CrossRef]
- Hunan Development and Reform Commission. 13th Five-Year Plan (2016–2020) for Hunan Coal Industry of Hunan Province; Hunan Development and Reform Commission: Changsha, China, 2016. (In Chinese) [Google Scholar]
- Hunan Provincial Bureau of Statistics. Hunan Statistical Yearbook (2018); China Statistics Press: Changsha, China, 2019. (In Chinese) [Google Scholar]
- People’s Government of Hunan Province. 13th Five-Year Plan (2016–2020) for National Economic and Social Development of Hunan Province; People’s Government of Hunan Province: Changsha, China, 2016. (In Chinese)
- Nonferrous Metals Administration of Hunan Province. 13th Five-Year Plan (2016–2020) for Nonferrous Metals Industry of Hunan Province; Nonferrous Metals Administration of Hunan Province: Changsha, China, 2016. (In Chinese) [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook (2011); China Statistics Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Li, H. The Research of Land Use Efficiency in Different Regions in Hunan Province; Hunan Agricultural University: Changsha, China, 2010. [Google Scholar]
- Hunan Provincial Bureau of Statistics. Hunan Statistical Yearbook (2017); Hunan Press: Changsha, China, 2018. (In Chinese) [Google Scholar]
- Hunan Provincial Bureau of Statistics. Hunan Statistical Yearbook (1982); Hunan Press: Changsha, China, 1984. (In Chinese) [Google Scholar]
- National Bureau of Statistics of China. Compilation of Agricultural Statistics in the Thirty Years of Reform and Opening-Up (1978–2007); China Statistics Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook on Environment (2007–2017); China Statistics Press: Beijing, China, 2008–2018. (In Chinese) [Google Scholar]
- Leiyang City Chronicle Compilation Committee. Leiyang City Record; China Society Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Hunan Leiyang City Chronicle Compilation Committee. Leiyang City Record 1986–2005; Local Records Publishing House: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Liu, H.; Li, Y. Background values of some metals in rocks, soil and water in Xiang Jiang basin. Acta Sci. Circumstantiae Huanjing Kexue Xuebao 1984, 4, 17–32. (In Chinese) [Google Scholar]
- Li, J.; Zeng, B.; Yao, Y.; Zhang, L.; Qiu, C.; Qian, X. Studies on environmental background levels in waters of Dongting Lake system. J. Environ. Sci. 1986, 7, 62–68. (In Chinese) [Google Scholar]
- Qian, X.; Li, X. Geochemical background values of Dongting lake sediments. Chin. Sci. Bull. 1988, 6, 458–462. (In Chinese) [Google Scholar]
- Hunan Provincial Committee for the Compilation of Local Chronicles. Hunan Record: Construction Record—Environmental Protection; China Intercontinental Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Mao, L.; Mo, D.; Guo, Y.; Fu, Q.; Yang, J.; Jia, Y. Multivariate analysis of heavy metals in surface sediments from lower reaches of the Xiangjiang River, southern China. Environ. Earth Sci. 2013, 69, 765–771. [Google Scholar] [CrossRef]
- Peng, B.; Tang, X.; Yu, C.; Tan, C.; Yin, C.; Yang, G.; Liu, Q.; Yang, K.; Tu, X. Geochemistry of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan Province (P.R. China): Implications on sources of trace metals. Environ. Earth Sci. 2011, 64, 1455–1473. [Google Scholar] [CrossRef]
- Chai, L.; Li, H.; Yang, Z.; Min, X.; Liao, Q.; Liu, Y.; Men, S.; Yan, Y.; Xu, J. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: Distribution, contamination, and ecological risk assessment. Environ. Sci. Pollut. Res. 2017, 24, 874–885. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Wang, H. Assessment and prediction of overall environmental quality of Zhuzhou city, Hunan Province, China. J. Environ. Manag. 2002, 66, 329–340. [Google Scholar]
- Lyu, Y.; Zhang, K.; Chai, F.; Cheng, T.; Yang, Q.; Zheng, Z.; Li, X. Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: Indications of respiratory deposition and health risk. Environ. Pollut. 2017, 224, 559–571. [Google Scholar] [CrossRef]
- Qian, Y.; Zheng, M.; Gao, L.; Zhang, B.; Liu, W.; Jiao, W.; Zhao, X.; Xiao, K. Heavy metal contamination and its environmental risk assessment in surface sediments from Lake Dongting, People’s Republic of China. Bull. Environ. Contam. Toxicol. 2005, 75, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Zeng, G.; Zhang, C.; Ma, X.; Chen, M.; Zhang, J.; Lu, L.; Yu, Q.; Hu, L.; Liu, L. Assessment of Heavy Metal Contamination in the Surrounding Soils and Surface Sediments in Xiawangang River, Qingshuitang District. PLoS ONE 2013, 8, e71176. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Huang, J.-H.; Zeng, G.; Yuan, X.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar] [CrossRef]
- Mao, L.; Mo, D.; Yang, J.; Jia, Y.; Guo, Y. Concentration and pollution assessment of hazardous metal elements in sediments of the Xiangjiang River, China. J. Radioanal. Nucl. Chem. 2013, 295, 513–521. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, K.; Chai, L. A Comparative Evaluation of Different Sediment Quality Guidelines for Metal and Metalloid Pollution in the Xiangjiang River, Hunan, China. Arch. Environ. Contam. Toxicol. 2017, 73, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Ouyang, M.; Huang, D.; Ou, F. Pollution characteristics, sources and ecological rish of heavy metals in sediments from Dongting Lake and its lake inlets. Environ. Chem. 2017, 36, 2253–2264. (In Chinese) [Google Scholar]
- Zhang, C.; Qiao, Q.; Piper, J.D.; Huang, B. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut. 2011, 159, 3057–3070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Appel, E.; Qiao, Q. Heavy metal pollution in farmland irrigated with river water near a steel plant-magnetic and geochemical signature. Geophys. J. Int. 2012, 192, 963–974. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, J.; Li, Q.; Han, T.; Xie, J.; Hu, Y.; Chai, L. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar. Pollut. Bull. 2013, 70, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Jie, S.; Li, M.; Gan, M.; Zhu, J.; Yin, H.; Liu, X. Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination. BMC Microbiol. 2016, 16, 179. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chai, L.; Yang, Z.; Liao, Q.; Liu, Y.; Ouyang, B. Seasonal and spatial contamination statuses and ecological risk of sediment cores highly contaminated by heavy metals and metalloids in the Xiangjiang River. Env. Geochem. Health 2019, 41, 1617–1633. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Ye, B.; Jiang, D. Pollution characteristics and ecological risk assessment of 11 unheeded metals in sediments of the Chinese Xiangjiang River. Environ. Geochem. Health 2019, 41, 1459–1472. [Google Scholar] [CrossRef]
- Qin, Z.; Shi, H.; Wang, M.; Bai, Z. Spatial distribution and correlation of soil cadmium contamination in Xiangjiang River tributary basin of China. Res. Environ. Sci. 2018, 31, 1399–1406. (In Chinese) [Google Scholar]
- Ettler, V. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 2016, 64, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Almeida, S.M.; Lage, J.; Fernández, B.; Garcia, S.; Reis, M.A.; Chaves, P.C. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Sci. Total Environ. 2015, 521–522, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.A.; McCarthy, B.; Belmer, N.; Price, P. Subsidence from an underground coal mine and mine wastewater discharge causing water pollution and degradation of aquatic ecosystems. Water Air Soil Pollut. 2015, 226, 348. [Google Scholar] [CrossRef]
- Chen, G.; Sun, Y.; Wang, Q.; Yan, B.; Cheng, Z.; Ma, W. Partitioning of trace elements in coal combustion products: A comparative study of different applications in China. Fuel 2019, 240, 31–39. [Google Scholar] [CrossRef]
- Lors, C.; Tiffreau, C.; Laboudigue, A. Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 2004, 56, 619–630. [Google Scholar] [CrossRef]
- Cappuyns, V.; Swennen, R.; Devivier, A. Influence of ripening on phstat leaching behaviour of heavy metals from dredged sediments. J. Environ. Monit. JEM 2004, 6, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Štyriaková, I.; Štyriak, I.; Balestrazzi, A.; Calvio, C.; Faè, M.; Štyriaková, D. Metal leaching and reductive dissolution of iron from contaminated soil and sediment samples by indigenous bacteria andbacillusisolates. Soil Sediment Contam. Int. J. 2016, 25, 519–535. [Google Scholar] [CrossRef]
- Environmental Quality Standards for Surface Water (GB 3838–2002). Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml (accessed on 7 March 2018).
- Jiang, D.; Wang, Y.; Liao, Q.; Long, Z.; Zhou, S. Assessment of water quality and safety based on multi-statistical analyses of nutrients, biochemical indexes and heavy metals. J. Cent. South Univ. 2020, 27, 1211–1223. [Google Scholar] [CrossRef]
Site | SiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | TiO2 | P2O5 | TOC | TIC | TS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mainstream of the Xiangjiang River (n = 6) | |||||||||||||
XIA-1 | 64.7 | 13.3 | 6.3 | 0.44 | 1.00 | 1.10 | 0.31 | 2.25 | 0.66 | 0.19 | 1.00 | 0.33 | 0.06 |
XIA-2 | 68.7 | 12.1 | 5.7 | 0.30 | 0.94 | 0.87 | 0.32 | 2.01 | 0.64 | 0.16 | 0.84 | 0.30 | 0.06 |
XIA-3 | 69.2 | 12.2 | 6.1 | 0.29 | 0.96 | 0.67 | 0.36 | 2.24 | 0.77 | 0.18 | 0.57 | 0.20 | 0.03 |
XIA-4 | 62.6 | 15.6 | 6.1 | 0.23 | 1.05 | 0.52 | 0.39 | 2.50 | 0.72 | 0.20 | 0.98 | 0.23 | 0.02 |
XIA-5 | 63.7 | 15.0 | 6.9 | 0.35 | 1.08 | 0.65 | 0.32 | 2.39 | 0.70 | 0.24 | 0.80 | 0.20 | 0.06 |
XIA-6 | 60.18 | 14.51 | 5.85 | 0.16 | 0.96 | 1.60 | 0.33 | 2.25 | 0.66 | 0.30 | 2.60 | 0.71 | 0.06 |
Main tributaries at the most downstream station just before the confluence with the Xiangjiang River (n = 6) | |||||||||||||
Zheng river | 61.1 | 15.4 | 5.7 | 0.12 | 1.19 | 1.27 | 0.39 | 2.43 | 0.68 | 0.31 | 1.63 | 0.46 | 0.10 |
Lei river | 59.5 | 16.2 | 6.8 | 0.36 | 1.24 | 0.93 | 0.33 | 2.46 | 0.83 | 0.21 | 1.95 | 0.28 | 0.07 |
Mi river | 75.4 | 10.2 | 3.6 | 0.09 | 0.67 | 0.26 | 0.44 | 2.58 | 0.52 | 0.10 | 0.68 | 0.09 | 0.03 |
Lu river | 63.8 | 15.2 | 5.5 | 0.13 | 1.05 | 0.69 | 0.26 | 2.14 | 0.78 | 0.20 | 1.47 | 0.29 | 0.04 |
Juan river | 59.4 | 17.7 | 5.9 | 0.15 | 1.11 | 0.53 | 0.59 | 2.58 | 0.75 | 0.19 | 1.22 | 0.26 | 0.07 |
Lian river | 67.0 | 13.7 | 4.3 | 0.08 | 0.82 | 2.19 | 1.15 | 2.31 | 0.67 | 0.24 | 1.00 | <DL | 0.06 |
Representative sites of potential specific inputs (n = 25) | |||||||||||||
X1 | 58.0 | 11.7 | 6.5 | 0.22 | 1.27 | 4.69 | 0.36 | 1.51 | 0.60 | n.a. | 3.34 | 1.40 | 0.08 |
X2 | 52.6 | 16.1 | 5.8 | 0.11 | 0.89 | 4.18 | 0.23 | 2.09 | 0.79 | 0.22 | 2.30 | 1.22 | 0.21 |
X3 | 58.9 | 18.8 | 5.4 | 0.17 | 0.88 | 1.09 | 1.16 | 2.54 | 0.74 | 0.18 | 0.70 | 0.23 | 0.04 |
X4 | 55.6 | 18.0 | 5.2 | 0.20 | 0.93 | 2.87 | 1.05 | 2.36 | 0.66 | 0.21 | 1.41 | 0.65 | 0.05 |
X5 | 61.3 | 16.6 | 4.8 | 0.11 | 0.82 | 1.45 | 1.12 | 2.38 | 0.71 | 0.19 | 1.07 | 0.32 | 0.09 |
X6 | 67.0 | 13.7 | 4.3 | 0.08 | 0.82 | 2.19 | 1.15 | 2.31 | 0.67 | 0.24 | 1.00 | 0.28 | 0.09 |
X7 | 59.9 | 13.3 | 6.2 | 0.18 | 0.60 | 3.26 | 0.14 | 1.28 | 0.68 | 0.20 | 2.39 | 1.31 | 0.08 |
X8 | 59.6 | 16.2 | 5.4 | 0.12 | 0.59 | 1.48 | 0.22 | 1.43 | 0.94 | n.d. | 3.31 | 0.73 | 0.08 |
X9 | 52.2 | 15.5 | 6.2 | 0.19 | 0.67 | 3.91 | 0.19 | 1.45 | 0.83 | 0.22 | 3.19 | 1.53 | 0.09 |
X10 | 52.4 | 14.6 | 5.7 | 0.27 | 0.98 | 5.31 | 0.36 | 1.85 | 0.78 | 0.26 | 2.27 | 1.83 | 0.08 |
X11 | 59.8 | 10.9 | 4.6 | 0.10 | 0.56 | 4.80 | 0.17 | 1.37 | 0.72 | n.d. | 3.62 | 1.68 | 0.11 |
X12 | 54.4 | 16.3 | 5.5 | 0.20 | 1.10 | 4.21 | 0.96 | 2.20 | 0.73 | 0.23 | 1.53 | 1.36 | 0.08 |
X13 | 63.2 | 12.9 | 4.9 | 0.07 | 0.78 | 0.72 | 0.26 | 2.41 | 0.71 | 0.23 | 3.94 | 0.88 | 0.09 |
X14 | 52.4 | 16.3 | 5.6 | 0.20 | 1.09 | 4.68 | 0.89 | 2.20 | 0.72 | 0.22 | 1.83 | 1.33 | 0.13 |
X15 | 65.2 | 14.2 | 5.4 | 0.04 | 0.76 | 0.15 | 0.27 | 2.45 | 0.80 | 0.11 | 1.57 | 0.53 | 0.11 |
X17 | 62.7 | 15.6 | 6.1 | 0.17 | 2.04 | 0.41 | 0.30 | 2.71 | 0.91 | 0.16 | 0.91 | 0.18 | - |
X18 | 68.6 | 11.7 | 5.6 | 0.24 | 1.18 | 1.30 | 0.38 | 2.17 | 0.68 | 0.20 | 1.28 | 0.29 | - |
X19 | 62.6 | 14.8 | 6.1 | 0.18 | 1.20 | 1.27 | 0.36 | 2.44 | 0.79 | 0.26 | 2.02 | 0.25 | - |
X20 | 63.0 | 15.7 | 5.1 | 0.13 | 0.87 | 0.63 | 0.34 | 2.29 | 0.92 | 0.16 | 2.54 | 0.18 | - |
X16 | 69.2 | 13.0 | 5.0 | 0.074 | 0.95 | 0.24 | 0.32 | 2.54 | 0.94 | 0.14 | 0.97 | 0.15 | - |
X21 | 50.8 | 18.0 | 8.4 | 0.40 | 1.77 | 3.31 | 0.25 | 2.26 | 0.80 | 0.40 | 1.71 | 0.92 | - |
X22 | 76.7 | 9.2 | 3.7 | 0.069 | 0.66 | 0.72 | 0.25 | 1.70 | 0.78 | 0.17 | 1.58 | 0.13 | - |
X23 | 67.4 | 13.2 | 4.4 | 0.18 | 0.89 | 0.70 | 0.52 | 2.50 | 0.75 | 0.19 | 1.82 | 0.47 | - |
X24 | 58.5 | 15.4 | 6.1 | 0.25 | 0.92 | 2.92 | 0.32 | 1.94 | 0.92 | 0.25 | 2.25 | 0.76 | - |
X25 | 68.7 | 12.5 | 4.4 | 0.14 | 0.58 | 0.45 | 0.20 | 1.66 | 1.01 | 0.23 | 2.74 | 0.20 | - |
Average of the local geochemical background [1,2,3,4,5,6,7,8,9] | - | - | - | - | - | - | - | - | - | - | - | - | - |
Site | As | Cd | Co | Cr | Cu | Hg | Ni | Pb | Sb | U | V | Zn | |
Mainstream of the Xiangjiang River (n = 6) | |||||||||||||
XIA-1 | 159 | 20.4 | 17.3 | 86 | 100 | 340 | 48 | 128 | 9.8 | 6.7 | 106 | 539 | |
XIA-2 | 330 | 8.6 | 13.6 | 76 | 91 | 435 | 41 | 110 | 11.5 | 5.0 | 87 | 405 | |
XIA-3 | 153 | 9.0 | 16.3 | 87 | 62 | 215 | 41 | 88 | 7.7 | 8.2 | 82 | 328 | |
XIA-4 | 115 | 7.2 | 16.4 | 82 | 53 | 230 | 38 | 84 | 6.0 | 6.2 | 94 | 320 | |
XIA-5 | 136 | 16.8 | 20.4 | 100 | 77 | 425 | 50 | 128 | 8.9 | 6.6 | 108 | 450 | |
XIA-6 | 109 | 11.6 | 14.8 | 90 | 93 | 560 | 46 | 129 | 10.2 | 5.1 | 94 | 446 | |
Main tributaries at the most downstream station just before the confluence with the Xiangjiang River (n = 6) | |||||||||||||
Zheng river | 40 | 3.1 | 16.1 | 83 | 56 | 365 | 38 | 64 | 3.8 | 5.4 | 94 | 242 | |
Lei river | 150 | 12.3 | 17.3 | 86 | 69 | 365 | 46 | 186 | 9.3 | 6.0 | 107 | 724 | |
Mi river | 22 | 2.3 | 9.4 | 49 | 26 | 77 | 21 | 34 | 1.9 | 3.9 | 50 | 96 | |
Lu river | 36 | 3.1 | 17.0 | 100 | 42 | 145 | 36 | 62 | 3.0 | 4.9 | 89 | 237 | |
Juan river | 22 | 4.5 | 16.1 | 80 | 36 | 140 | 33 | 56 | 2.1 | 7.7 | 88 | 415 | |
Lian river | 22 | 1.2 | 12.0 | 123 | 36 | 1130 | 23 | 48 | 2.7 | 12.6 | 56 | 135 | |
Representative sites of potential specific inputs | |||||||||||||
X1 | 32 | 5.7 | 35.4 | 90 | 43 | 395 | 68 | 115 | 5.8 | 4.8 | 99 | 516 | |
X2 | 30 | 1.6 | 22.1 | 95 | 44 | 215 | 53 | 51 | 5.5 | 4.1 | 114 | 207 | |
X3 | 30 | 3.2 | 13.6 | 93 | 39 | 435 | 23 | 118 | 7.4 | 13.7 | 70 | 158 | |
X4 | 33 | 2.1 | 13.6 | 162 | 47 | 480 | 28 | 91 | 7.4 | 13.6 | 68 | 228 | |
X5 | 22 | 1.8 | 11.9 | 118 | 36 | 150 | 22 | 58 | 2.6 | 11.3 | 61 | 145 | |
X6 | 22 | 1.2 | 12.0 | 123 | 36 | 1130 | 23 | 48 | 2.7 | 12.6 | 56 | 135 | |
X7 | 21 | 0.8 | 40.1 | 84 | 37 | 140 | 68 | 38 | 2.6 | 3.8 | 99 | 158 | |
X8 | 19 | 0.6 | 24.0 | 105 | 37 | 145 | 44 | 39 | 2.2 | 4.2 | 128 | 105 | |
X9 | 20 | 0.9 | 37.0 | 98 | 44 | 165 | 68 | 39 | 2.4 | 3.8 | 120 | 175 | |
X10 | 36 | 1.2 | 25.8 | 92 | 45 | 335 | 54 | 44 | 3.0 | 4.5 | 106 | 183 | |
X11 | 18 | 0.4 | 14.5 | 73 | 23 | 125 | 27 | 30 | 2.5 | 2.9 | 87 | 83 | |
X12 | 26 | 0.9 | 21.5 | 81 | 40 | 205 | 46 | 45 | 2.5 | 5.4 | 98 | 154 | |
X13 | 197 | 35.1 | 17.2 | 81 | 42 | 235 | 36 | 185 | 9.7 | 3.4 | 94 | 4257 | |
X14 | 29 | 1.0 | 23.2 | 86 | 43 | 225 | 51 | 47 | 2.8 | 5.1 | 98 | 197 | |
X15 | 887 | 16.9 | 13.3 | 69 | 90 | 195 | 37 | 1078 | 5.7 | 3.7 | 99 | 3285 | |
X17 | 161 | 5.8 | 16.2 | 71 | 59 | 590 | 35 | 243 | 10.2 | 8.8 | 96 | 373 | |
X18 | 237 | 12.4 | 14.5 | 67 | 68 | 300 | 66 | 276 | 10.6 | 6.9 | 72 | 610 | |
X19 | 170 | 12.8 | 16.4 | 78 | 79 | 400 | 45 | 304 | 28.7 | 5.9 | 93 | 170 | |
X20 | 68 | 4.5 | 8.0 | 109 | 42 | 600 | 28 | 117 | 5.7 | 7.0 | 138 | 237 | |
X16 | 104 | 3.8 | 14.2 | 70 | 42 | 205 | 31 | 119 | 7.4 | 7.3 | 86 | 269 | |
X21 | 458 | 26.6 | 19.5 | 106 | 133 | 1100 | 87 | 573 | 20.1 | 9.3 | 122 | 1109 | |
X22 | 40 | 1.2 | 12.4 | 64 | 23 | 125 | 25 | 41 | 4.4 | 5.1 | 58 | 119 | |
X23 | 167 | 12.3 | 11.2 | 88 | 48 | 270 | 32 | 138 | 10.6 | 5.5 | 68 | 312 | |
X24 | 77 | 5.7 | 16.3 | 87 | 68 | 245 | 51 | 270 | 21.4 | 6.4 | 115 | 436 | |
X25 | 23 | 1.0 | 14.4 | 72 | 36 | 345 | 30 | 47 | 2.1 | 4.6 | 92 | 122 | |
Background values used in this study | |||||||||||||
Zeng et al., 1982 [6] | - | - | 9 | - | - | - | - | - | - | - | - | - | |
Li et al., 1986 [12] | - | 0.33 | 10.3 | 44 | 20.0 | - | 21.2 | 23.3 | 1.1 | 3.6 | 97 | 83.3 | |
Qian et al., 1988 [20] | - | - | 10 | - | - | - | - | - | 1.8 | 4.4 | - | - | |
Qian et al., 1988 [20] | - | - | 9.8 | - | - | - | - | - | 1.8 | 4.1 | - | - | |
Wang, 2006 [21] | - | - | 14 | - | - | - | - | - | 3.24 | 5.0 | 98.9 | - | |
Peng et al., 2011 [11] | - | - | 10.3 | - | - | - | - | - | 1.1 | 3.6 | 97 | - | |
Mao et al., 2013 [8] | - | - | 10.3 | - | - | - | - | - | - | - | - | - | |
Chai et al., 2017 [3] | - | - | 14.6 | - | - | - | - | - | - | - | 105.4 | - | |
Hunan record for environmental protection [22] | 21 | 0.5 | - | 35 | 17 | 43 | 17 | 22 | - | - | - | 73 | |
Average of the local geochemical background [1,2,3,4,5,6,7,8,9] | 21 | 0.5 | 10.3 | 35 | 17 | 43 | 17 | 22 | 1.8 | 3.9 | 98 | 73 |
Anthropogenic Activities | Number of Samples Considered | Associated References |
---|---|---|
Agricultural activities | 13 | [1,2,46,47,55,56] |
Smelting in Loudi | 4 | [57] |
Smelting in Zhuzhou | 17 | [1,45,47,54,59,60] |
Smelting in Songbai | 26 | [1,47,55,61,62] |
(Pb, Zn) mining activities | 7 | this study |
Urban activities | 32 | [1,45,47,51,54,55] |
Natural Processes | ||
Detrital inputs | 8 | [1,2,45,46,47,51,52,53,54] |
Samples Not Categorized | ||
Xiangjiang r. sediments (2015–2016 surveys) | 6 | this study |
Xiangjiang r. sediments (from the literature) | 8 | [1,47,55] |
Tributary sediments (2015–2017 surveys) | 28 | this study |
Eigenvalues of the Correlation Matrix | Extracted Eigenvectors | ||||||
---|---|---|---|---|---|---|---|
Component | Eigenvalue | of Variance (%) | Cumulative (%) | Variables | PC1 | PC2 | PC3 |
1 | 2.607 | 52.15% | 52.15% | Cd | 0.487 | 0.089 | −0.462 |
2 | 0.990 | 19.79% | 71.94% | Cr | 0.125 | 0.970 | 0.184 |
3 | 0.752 | 15.04% | 86.98% | Cu | 0.463 | 0.001 | −0.535 |
4 | 0.455 | 9.10% | 96.09% | Pb | 0.481 | −0.143 | 0.627 |
5 | 0.196 | 3.91% | 100.00% | Zn | 0.549 | −0.174 | 0.270 |
(a) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Na | K | Ca | Mg | Cl− | SO42− | Si | N-NO3 | DON | TDN | DOC | PO43− | ||
h | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ||
1 | 7.8 | 0.645 | 2.654 | 30.91 | 1.501 | 2.20 | 42.63 | 1.91 | 1.5 | 0.9 | 2.4 | 31.6 | <D.L | |
24 | 8.0 | 1.121 | 3.144 | 43.75 | 2.058 | 2.31 | 53.79 | 3.50 | 1.6 | 0.8 | 2.4 | 47.2 | <D.L | |
96 | 8.1 | 1.857 | 3.416 | 41.97 | 1.796 | 2.30 | 55.46 | 4.92 | 1.5 | 1.5 | 3.0 | 37.1 | <D.L | |
240 | 8.0 | 2.333 | 3.416 | 45.38 | 1.924 | 2.32 | 57.15 | 6.16 | 3.3 | 0.5 | 3.8 | 26.4 | <D.L | |
360 | 8.2 | 2.851 | 3.598 | 45.30 | 1.918 | 2.41 | 57.34 | 6.79 | 3.8 | 0.7 | 4.5 | 35.1 | <D.L | |
504 | 8.2 | 4.158 | 4.032 | 42.90 | 1.872 | 2.44 | 56.02 | 8.58 | 3.6 | 0.2 | 3.8 | 32.7 | <D.L | |
720 | 8.2 | 5.737 | 4.552 | 43.31 | 1.996 | 2.47 | 56.94 | 10.41 | 4.1 | 0.6 | 4.7 | 34.9 | <D.L | |
blank | - | <D.L | <D.L | 0.046 | <D.L | <D.L | <D.L | 0.10 | <D.L | <D.L | <D.L | <D.L | <D.L | |
Fe | Mn | Al | V | Cr | Co | Ni | Cu | Zn | As | Cd | Pb | U | ||
h | mg/L | mg/L | mg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | |
1 | 0.179 | 0.040 | 0.120 | 1.13 | 0.37 | 0.30 | 1.27 | 10.28 | 9.66 | 10.00 | 0.516 | 1.36 | 0.706 | |
6 | 0.040 | 0.068 | 0.042 | 1.24 | 0.25 | 0.24 | 1.39 | 10.79 | 6.14 | 11.44 | 0.664 | 0.39 | 2.149 | |
12 | 0.019 | 0.002 | 0.027 | 1.53 | 0.73 | 0.16 | 1.96 | 8.00 | 1.43 | 11.88 | 0.251 | 0.10 | 1.982 | |
24 | <D.L | 0.623 | 0.020 | 1.66 | 1.85 | 0.15 | 1.23 | 7.71 | 1.50 | 16.49 | 0.146 | 0.04 | 1.911 | |
240 | <D.L | 0.587 | 0.017 | 2.05 | 2.37 | 0.14 | 0.87 | 8.16 | 2.20 | 19.58 | 0.147 | 0.07 | 1.672 | |
480 | 0.143 | 0.027 | 0.102 | 2.60 | 4.37 | 0.97 | 1.25 | 7.66 | 6.70 | 24.40 | 1.492 | 13.44 | 1.775 | |
720 | 0.012 | 0.001 | 0.020 | 2.65 | 5.66 | 0.10 | 0.97 | 6.43 | 1.02 | 26.61 | 0.107 | 0.10 | 1.807 | |
French key-standards (INERIS) (1) | - | - | - | 2.5 | 3.4 | 0.3 | 2.0 | 1.6 | 7.8 | 1.37 | 0.6 | 1.2 | 0.3 | |
European key-standards (EQSSW) (2) | - | - | - | - | - | - | 34 | - | - | - | <0.45–1.5 | 14 | - | |
US-EPA key-standards (NRWQC-CCC) (3) | - | - | - | - | 11 (a) | - | 52 | - | 120 | 150 | 0.72 | 3.2 | - | |
Chinese key-standards (EQSSW-grade I) (4) | - | - | - | - | 10 (a) | - | - | 10 | 50 | 50 | 1 | 10 | - | |
Chinese key-standards (EQSSW-grade III) (5) | - | - | - | 50 | 50 (a) | 1000 | 20 | 1000 | 1000 | 50 | 5 | 50 | - | |
Xiangjiang surface water during the dry season (6) | - | - | - | - | - | - | - | 10.6±12.5 | 23 ± 32 | 6.4 ± 4.9 | 0.69 ± 0.67 | 1.95 ± 2.01 | - | |
Blank control during leaching (this study) | <D.L | 0.001 | 0.001 | 0.05 | 0.21 | 0.04 | 0.52 | 0.10 | 1.44 | 0.06 | 0.021 | 0.03 | 0.002 | |
(b) | ||||||||||||||
pH | cond | Na | K | Ca | Mg | Cl− | SO42− | Si | N-NO3 | DON | TDN | DOC | P | |
h | µS/cm | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |
1 | 8.0 | 192 | 0.702 | 2.530 | 30.65 | 1.507 | 2.28 | 43.97 | 1.80 | 1.6 | 1.0 | 2.5 | 49.8 | < D.L |
24 | 7.9 | 229 | 0.724 | 2.568 | 37.96 | 1.823 | 2.27 | 47.36 | 2.62 | 1.4 | 0.7 | 2.1 | 37.3 | < D.L |
96 | 7.6 | 284 | 0.768 | 2.937 | 50.55 | 2.483 | 2.29 | 49.40 | 3.58 | 1.7 | 0.9 | 2.7 | 46.1 | < D.L |
240 | 7.5 | 334 | 0.773 | 3.277 | 65.95 | 3.099 | 2.28 | 52.43 | 4.70 | 2.3 | 1.2 | 3.4 | 38.0 | < D.L |
360 | 7.5 | 355 | 0.785 | 2.821 | 79.25 | 3.624 | 2.30 | 54.12 | 5.32 | - | - | 4.3 | 41.4 | < D.L |
504 | 7.8 | 357 | 0.881 | 2.939 | 84.92 | 3.885 | 2.31 | 57.55 | 5.34 | 2.1 | 2.9 | 5.0 | 45.1 | < D.L |
720 | 7.8 | 354 | 0.908 | 3.111 | 88.86 | 3.979 | 2.39 | 57.89 | 5.84 | 2.9 | 2.8 | 5.7 | 77.5 | < D.L |
blank | - | - | 0.055 | <D.L | 0.426 | <D.L | - | - | 0.40 | - | - | - | - | < D.L |
Fe | Mn | Al | V | Cr | Co | Ni | Cu | Zn | As | Cd | Pb | U | ||
h | mg/L | mg/L | mg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | |
1 | 0.053 | 0.042 | 0.044 | 0.78 | 0.26 | 0.16 | 1.03 | 10.51 | 2.64 | 6.93 | 0.392 | 0.45 | 0.523 | |
6 | 0.059 | 0.047 | 0.055 | 0.89 | 0.22 | 0.17 | 1.27 | 7.70 | 2.07 | 8.01 | 0.456 | 0.44 | 1.489 | |
12 | 0.022 | 0.034 | 0.027 | 0.78 | 0.24 | 0.14 | 1.11 | 6.29 | 1.19 | 6.28 | 0.642 | 0.20 | 2.714 | |
24 | < L.D. | 0.004 | 0.011 | 0.92 | 0.93 | 0.14 | 1.85 | 6.82 | 1.15 | 6.73 | 0.552 | 0.02 | 3.724 | |
240 | 0.305 | 0.060 | 0.176 | 1.34 | 1.50 | 0.44 | 1.95 | 7.89 | 7.83 | 8.47 | 0.869 | 3.02 | 4.807 | |
480 | < L.D. | 0.001 | 0.019 | 0.84 | 1.49 | 0.09 | 1.23 | 4.64 | 1.47 | 5.51 | 0.359 | 0.07 | 5.190 | |
720 | 0.029 | 0.005 | 0.026 | 1.03 | 1.71 | 0.14 | 0.95 | 6.33 | 1.49 | 7.55 | 0.337 | 0.30 | 6.155 | |
French key-standards (INERIS) (1) | - | - | - | 2.5 | 3.4 | 0.3 | 2.0 | 1.6 | 7.8 | 1.37 | 0.6 | 1.2 | 0.3 | |
European key-standards (EQSSW) (2) | - | - | - | - | - | - | 34 | - | - | - | <0.45–1.5 | 14 | - | |
US-EPA key-standards (NRWQC-CCC) (3) | - | - | - | - | 11 (a) | - | 52 | - | 120 | 150 | 0.72 | 3.2 | - | |
Chinese key-standards (EQSSW-grade I) (4) | - | - | - | - | 10 (a) | - | - | 10 | 50 | 50 | 1 | 10 | - | |
Chinese key-standards (EQSSW-grade III) (5) | - | - | - | 50 | 50 (a) | 1000 | 20 | 1000 | 1000 | 50 | 5 | 50 | - | |
Xiangjiang surface water during the dry season (6) | - | - | - | - | - | - | - | 10.6 ± 12.5 | 23 ± 32 | 6.4 ± 4.9 | 0.69 ± 0.67 | 1.95 ± 2.01 | - | |
Blank control during leaching (this study) | <D.L | 0.001 | 0.006 | 0.05 | 0.21 | 0.02 | 0.73 | 0.58 | 2.04 | 0.10 | 0.014 | 0.03 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosbois, C.; Desmet, M.; Zhang, M.; Gassama, N.; Peng, Q.; Zhang, J.; Luo, L.; Zhang, F.; Battaglia, F. Trace Element Contamination in One of the Yangtze Tributaries (Hunan, China)—Source Review and Potential Release from Sediments. Water 2021, 13, 271. https://doi.org/10.3390/w13030271
Grosbois C, Desmet M, Zhang M, Gassama N, Peng Q, Zhang J, Luo L, Zhang F, Battaglia F. Trace Element Contamination in One of the Yangtze Tributaries (Hunan, China)—Source Review and Potential Release from Sediments. Water. 2021; 13(3):271. https://doi.org/10.3390/w13030271
Chicago/Turabian StyleGrosbois, Cécile, Marc Desmet, Mengxue Zhang, Nathalie Gassama, Qinghui Peng, Jiachao Zhang, Lin Luo, Fengfeng Zhang, and Fabienne Battaglia. 2021. "Trace Element Contamination in One of the Yangtze Tributaries (Hunan, China)—Source Review and Potential Release from Sediments" Water 13, no. 3: 271. https://doi.org/10.3390/w13030271
APA StyleGrosbois, C., Desmet, M., Zhang, M., Gassama, N., Peng, Q., Zhang, J., Luo, L., Zhang, F., & Battaglia, F. (2021). Trace Element Contamination in One of the Yangtze Tributaries (Hunan, China)—Source Review and Potential Release from Sediments. Water, 13(3), 271. https://doi.org/10.3390/w13030271