Benthic Resource Baseline Mapping of Cakaunisasi and Yarawa Reef Ecosystem in the Ba Region of Fiji
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Imagery Used
2.3. Image Pre-Processing
2.4. Field Survey
2.5. Data Processing
2.6. Supervised Classification and Habitat Map Production
2.7. Accuracy Assessment
2.8. Collection of Ancillary Data on Fishing Grounds
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pakeman, R.J.; Reid, C.L.; Lennon, J.J.; Kent, M. Possible interactions between environmental factors in determining species optima. J. Veg. Sci. 2008, 19, 201–208. [Google Scholar] [CrossRef]
- Ruppert, J.L.W.; Vigliola, L.; Kulbicki, M.; Labrosse, P.; Fortin, M.J.; Meekan, M.G. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs. Glob. Chang. Biol. 2018, 24, e67–e79. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.T.; Bender-Champ, D.; Bryant, D.E.P.; Dove, S.; Hoegh-Guldberg, O. Human activities influence benthic community structure and the composition of the coral-algal interactions in the central Maldives. J. Exp. Mar. Biol. Ecol. 2017, 497, 33–40. [Google Scholar] [CrossRef]
- Sundblad, G.; Bergström, U.; Sandström, A. Ecological coherence of marine protected area networks: A spatial assessment using species distribution models. J. Appl. Ecol. 2011, 48, 112–120. [Google Scholar] [CrossRef]
- Sundblad, G.; Bergström, U. Shoreline development and degradation of coastal fish reproduction habitats. Ambio 2014, 43, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.A.; Maharaj, A.A.; Kumar, M.; Singh, P.; Singh, S.; Muller-Karger, F.E.; McCarthy, M.; Joseph, L.; Damlamian, H.; Begg, Z. Developing high resolution baseline coast resource maps using world view 2 imagery for a coastal Village in Fiji. Front. Mar. Sci. 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Le Cornu, E.; Doerr, A.N.; Finkbeiner, E.M.; Gourlie, D.; Crowder, L.B. Spatial management in small-scale fisheries: A potential approach for climate change adaptation in Pacific Islands. Mar. Policy 2018, 88, 350–358. [Google Scholar] [CrossRef]
- Moreno, A.; Becken, S. A climate change vulnerability assessment methodology for coastal tourism. J. Sustain. Tour. 2009, 17, 473–488. [Google Scholar] [CrossRef]
- Ellison, J.C. How South Pacific mangroves may respond to predicted climate change and sea-level rise. In Climate Change in the South. Pacific: Impacts and Responses in Australia, New Zealand, and Small Island States; Springer: Dordrecht, The Netherlands, 2000; pp. 289–300. Available online: https://eprints.utas.edu.au/2213/1/Ellison2000.pdf (accessed on 6 January 2021).
- Mimura, N. Vulnerability of island countries in the South Pacific to sea level rise and climate change. Clim. Res. 1999, 12, 137–143. [Google Scholar] [CrossRef]
- Bartley, M.L. Benthic Habitat Mapping and Its Applications to Coastal Resource Management. Ph.D. Thesis, University of Rhode Island, South Kingstown, RI, USA, 2018; p. 205. Available online: https://digitalcommons.uri.edu/oa_diss/800/ (accessed on 6 January 2021).
- Porskamp, P.; Rattray, A.; Young, M.; Ierodiaconou, D. Multiscale and hierarchical classification for benthic habitat mapping. Geosciences 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Lecours, V.; Devillers, R.; Schneider, D.C.; Lucieer, V.L.; Brown, C.J.; Edinger, E.N. Spatial scale and geographic context in benthic habitat mapping: Review and future directions. Mar. Ecol. Prog. Ser. 2015, 535, 259–284. [Google Scholar] [CrossRef] [Green Version]
- Vanderstraete, T.; Goossens, R.; Ghabour, T.K. Using Remote Sensing and GIS for Integrated Coastal Zone Management. In Proceedings of the Eighth International Conference on Remote Sensing for Marine and Coastal Environments, Hurghada, Egypt, 17–19 May 2005. [Google Scholar]
- Hochberg, E.J.; Atkinson, M.J. Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra. Remote Sens. Env. 2003, 85, 174–189. [Google Scholar] [CrossRef]
- Cameron, C.; Maharaj, A.; Kennedy, B.; Tuiwawa, S.; Goldwater, N.; Soapi, K.; Lovelock, C.E. Landcover change in mangroves of Fiji: Implications for climate change mitigation and adaptation in the Pacific. Environ. Chall. 2021, 2, 100018. [Google Scholar] [CrossRef]
- Elliott, J.A.; Patterson, M.R.; Staub, C.G.; Koonjul, M.; Elliott, S.M. Decline in coral cover and flattening of the reefs around Mauritius (1998–2010). PeerJ 2018, 6, e6014. [Google Scholar] [CrossRef] [PubMed]
- McCoy, K.; Ayotte, P.; Gray, A.; Lino, K.; Schumacher, B.; Sudnovsky, M. Coral Reef Fish. Biomass and Benthic Cover along the North. Coast. of Timor-Leste Based on Underwater Visual Surveys in June 2013 (Issue March); PIFSC Data Report DR-15-004; Honolulu; Pacific Islands Fisheries Science Center: Honolulu, HI, USA, 2015. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Brown, E.K.; Monaco, M.E. Coupling Ecology and GIS to Evaluate Efficacy of Marine Protected Areas in Hawaii. Ecol. Appl. 2007, 17, 715–730. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.J.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- Weeks, R.; Jupiter, S.D. Adaptive Comanagement of a Marine Protected Area Network in Fiji. Conserv. Biol. 2013, 27, 1234–1244. [Google Scholar] [CrossRef] [Green Version]
- Aswani, S.; Lauer, M. Indigenous people’s detection of rapid ecological change. Conserv. Biol. 2014, 28, 820–828. [Google Scholar] [CrossRef]
- Teixeira, J.B.; Martins, A.S.; Pinheiro, H.T.; Secchin, N.A.; Leão de Moura, R.; Bastos, A.C. Traditional Ecological Knowledge and the mapping of benthic marine habitats. J. Environ. Manag. 2013, 115, 241–250. [Google Scholar] [CrossRef]
- Aswani, S.; Albert, S.; Sabetian, A.; Furusawa, T. Customary management as precautionary and adaptive principles for protecting coral reefs in Oceania. Coral Reefs 2007, 26, 1009–1021. [Google Scholar] [CrossRef]
- Aswani, S.; Lauer, M. Benthic mapping using local aerial photo interpretation and resident taxa inventories for designing marine protected areas. Environ. Conserv. 2006, 33, 263–273. [Google Scholar] [CrossRef] [Green Version]
- International Ocean Colour Coordinating Group (IOCCG). Partition of the ocean into ecological provinces: Role of ocean-colour radiometry. In Reports and Monographs of the International Ocean—Colour Coordinating Group (IOCCG); Dowell, M., Platt, T., Stuart, V., Eds.; IOCCG: Dartmouth, Nova Scotia, 2009; Volume 9, pp. 1–98. [Google Scholar]
- Sherman, K.; O’Reilly, J.; Belkin, I.M.; Melrose, C.; Friedland, K.D. The application of satellite remote sensing for assessing productivity in relation to fisheries yields of the world’s large marine ecosystems. Ices J. Mar. Sci. 2011, 68, 667–676. [Google Scholar] [CrossRef]
- Beckage, B.; Gross, L.J.; Kauffman, S. The limits to prediction in ecological systems. Ecosphere 2011, 2, 1–12. [Google Scholar] [CrossRef]
- Röckmann, C.; Ulrich, C.; Dreyer, M.; Bell, E.; Borodzicz, E.; Haapasaari, P.; Hauge, K.H.; Howell, D.; Mäntyniemi, S.; Miller, D.; et al. The added value of participatory modelling in fisheries management—What has been learnt? Mar. Policy 2012, 36, 1072–1085. [Google Scholar] [CrossRef] [Green Version]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Spalding, M.D.; Ravilious, C.; Green, E.P. World Atlas of Coral Reefs; University of California Press: Los Angeles, NY, USA, 2000. [Google Scholar]
- Loganimoce, I.; Draniatu, M.; Ravonoloa, K.; Qorovarua, A.; Ravoka, M. Desktop Review for Votua Village, Nawaqarua Village and Natutu Village within the District of Nailaga, Ba. In Report GEF 5 STAR Ridge to Reef Project–2018; Report ID: ATLASPDC-4-119658; UNDP: Suva, Fiji, 2019. [Google Scholar]
- Cheng, P.; Chaapel, C. WorldView-2 Pan-sharpening and Geometric Correction. Geo Inf. 2010, 13, 30–33. [Google Scholar]
- Harris Geospatial Solution. 2016. Available online: https://www.harrisgeospatial.com/docs/calibratingimagestutorial.html (accessed on 22 November 2016).
- Phinn, S.R.; Roelfsema, C.M.; Mumby, P.J. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 2012, 33, 3768–3797. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2019. Available online: http://qgis.osgeo.org (accessed on 22 November 2016).
- Congedo, P.L. Adapting to Climate Change in Coastal Dar es Salaam Project Ref. EC Grant Contract No 2010/254-773 Semi-Automatic Classification Plugin for QGIS. Sapienza University, 2013; pp. 1–25. Available online: https://s3.amazonaws.com/academia.edu.documents/34540581/WP-Semi-Automatic_Classification_Plugin_for_QGIS.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1518737653&Signature=gObw%2BTSVQEuvZMvh4buZHyQHjbI%3D&response-content-disposition=inline%3B (accessed on 6 January 2021).
- McCarthy, M.J.; Halls, J.N. Habitat mapping and change assessment of coastal environments: An examination of worldview-2, quickbird, and ikonos satellite imagery and airborne lidar for mapping barrier island habitats. ISPRS Int. J. Geo Inf. 2014, 3, 297–325. [Google Scholar] [CrossRef] [Green Version]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [Google Scholar] [CrossRef]
- Abburu, S.; Golla, S.B. Satellite image classification methods and techniques: A review. Int. J. Appl. Earth Obs. Geoinf. 2015, 119, 20–25. [Google Scholar] [CrossRef]
- Zhuang, H.; Deng, K.; Fan, H.; Yu, M. Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 681–685. [Google Scholar] [CrossRef]
- Ismail, M.H.; Jusoff, K. Satellite data classification accuracy assessment based from reference dataset. Int. J. Comput. Inf. Sci. Eng. 2008, 2, 96–102. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Islam, M.; Saiful, M.; Asraf, U.; Mallik, A.H. Assessing the Dynamics of Land Cover and Shoreline Changes of Nijhum Dwip (Island) of Bangladesh Using Remote Sensing and GIS Techniques. Reg. Stud. Mar. Sci. 2021, 41, 101578. [Google Scholar] [CrossRef]
- Pham, T.D.; Bui, D.T.; Yoshino, K.; Le, N.N. Optimized rule-based logistic model tree algorithm for mapping mangrove species using ALOS PALSAR imagery and GIS in the tropical region. Environ. Earth Sci. 2018, 77, 1–13. [Google Scholar] [CrossRef]
- Kaliraj, S.; Chandrasekar, N.; Ramachandran, K.K.; Srinivas, Y.; Saravanan, S. Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2017, 20, 169–185. [Google Scholar] [CrossRef]
- El Baroudy, A.A. Mapping and evaluating land suitability using a GIS-based model. Catena 2016, 140, 96–104. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total Environ. 2019, 664, 1117–1132. [Google Scholar] [CrossRef]
- Aburas, M.M.; Abdullah, S.H.; Ramli, M.F.; Asha’ari, Z.H. Land suitability analysis of urban growth in Seremban Malaysia, using GIS based analytical hierarchy process. Procedia Eng. 2017, 198, 1128–1136. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Lucieer, V.; Hill, N.A.; Barrett, N.S.; Nichol, S. Do marine substrates ‘look’and ‘sound’the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuar. Coast. Shelf Sci. 2013, 117, 94–106. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; CRC Press Chapman & Hall: London, UK, 1990. [Google Scholar]
- Mansour, S. Geospatial modeling of environmental hazards to coral reefs in the Oman Sea. Coral Reefs 2020, 39, 555–575. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y. Tourism-led land-use changes and their environmental effects in the southern coastal region of Hainan Island, China. J. Coast. Res. 2013, 29, 1118–1125. [Google Scholar] [CrossRef]
- Hernández-Cordero, A.I.; Hernández-Calvento, L.; Espino, E.P.C. Vegetation changes as an indicator of impact from tourist development in an arid transgressive coastal dune field. Land Use Policy 2017, 64, 479–491. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Awadhi, T.; Hatrushi, S.A.; Buloshi, A.A. The Anthropogenic Effects on Coral Reefs Across Northern Coasts of Oman: A GIS based Modeling. Geoinformatics Geostat. Overv. 2017, 5, 2–6. [Google Scholar] [CrossRef]
- Wedding, L.M.; Lecky, J.; Gove, J.M.; Walecka, H.R.; Donovan, M.K.; Williams, G.J.; Jouffray, J.B.; Crowder, L.B.; Erickson, A.; Falinski, K.; et al. Advancing the integration of spatial data to map human and natural drivers on coral reefs. PLoS ONE 2018, 13, e0189792. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Escrigas, S.L.; Peluffo, D.R.; García-Urueña, R. Shallow coral reef community mapping and update on its ecological units using aerial images at Isla Arena, Colombian Caribbean. Int. J. Remote Sens. 2020, 41, 8198–8215. [Google Scholar] [CrossRef]
- Janowski, L.; Madricardo, F.; Fogarin, S.; Kruss, A.; Molinaroli, E.; Kubowicz-Grajewska, A.; Tegowski, J. Spatial and Temporal Changes of Tidal Inlet Using Object-Based Image Analysis of Multibeam Echosounder Measurements: A Case from the Lagoon of Venice, Italy. Remote Sens. 2020, 12, 2117. [Google Scholar] [CrossRef]
- Roelfsema, C.; Phinn, S. Evaluating eight field and remote sensing approaches for mapping the benthos of three different coral reef environments in Fiji. Remote Sens. Inland Coast. Ocean. Waters 2008, 7150, 71500F. [Google Scholar] [CrossRef] [Green Version]
- Markert, E.; Holler, P.; Kröncke, I.; Bartholomä, A. Benthic habitat mapping of sorted bedforms using hydroacoustic and ground-truthing methods in a coastal area of the German Bight/North Sea. Estuar. Coast. Shelf Sci. 2013, 129, 94–104. [Google Scholar] [CrossRef]
- Stocks, J.R.; Rodgers, M.P.; Pera, J.B.; Gilligan, D.M. Monitoring aquatic plants: An evaluation of hydroacoustic, on-site digitising and airborne remote sensing techniques. Knowl. Manag. Aquat. Ecosyst. 2019, 420, 27. [Google Scholar] [CrossRef] [Green Version]
- Roberts, C.M.; O’Leary, B.C.; Mccauley, D.J.; Cury, P.M.; Duarte, C.M.; Lubchenco, J.; Pauly, D.; Sáenz-Arroyo, A.; Sumaila, U.R.; Wilson, R.W.; et al. Marine reserves canmitigate and promote adaptation to climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 6167–6175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, E.; Salm, R.; Green, A.; Almany, J. Designing marine protected area networks to address the impacts of climate change. Front. Ecol. Env. 2009, 7, 362–370. [Google Scholar] [CrossRef]
- Westera, M. Guidelines for Marine Protected Areas. Pac. Conserv. Biol. 2000, 6, 352. [Google Scholar] [CrossRef]
- Mumby, P.J.; Broad, K.; Brumbaugh, D.R.; Dahlgren, C.P.; Harborne, A.R.; Hastings, A.; Holmes, K.E.; Kappel, C.V.; Micheli, F.; Sanchirico, J.N. Coral reef habitats as surrogates of species, ecological functions, and ecosystem services. Conserv. Biol. 2008, 22, 941–951. [Google Scholar] [CrossRef] [PubMed]
Class | Producers’ Accuracy (%) | Users’Accuracy (%) | Kappa Hat Classification | Overall Kappa Hat Classification | Overall Accuracy (%) | Percentage Cover Cakaunisasi (%) | Percentage Cover Yarawa (%) | Percentage Total Cover (%) |
---|---|---|---|---|---|---|---|---|
Sand and gravel | 75.82 | 100.00 | 1.00 | 0.80 | 82.2 | 12.69 | 46.41 | 19.90 |
Coral | 95.16 | 100.00 | 1.00 | 11.82 | 2.93 | 10.00 | ||
Coral rubble | 82.76 | 45.28 | 0.39 | 33.20 | 19.76 | 30.30 | ||
Algae | 100.00 | 93.83 | 0.93 | 4.41 | 14.64 | 6.60 | ||
Seagrass | 64.03 | 90.82 | 0.88 | 24.43 | 8.61 | 21.00 | ||
Buried reef | 98.77 | 90.91 | 0.89 | 13.45 | 7.65 | 12.20 |
Class | Merged Classes | Sand and Gravel | Coral | Coral Rubble | Algae | Seagrass | Buried Reef | Total |
---|---|---|---|---|---|---|---|---|
Merged classes | 0 | 18 | 3 | 0 | 0 | 0 | 0 | 21 |
Sand and gravel | 0 | 116 | 1 | 22 | 15 | 18 | 2 | 116 |
Coral | 0 | 0 | 75 | 0 | 0 | 0 | 0 | 59 |
Coral rubble | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 106 |
Algae | 0 | 0 | 59 | 0 | 0 | 0 | 0 | 81 |
Seagrass | 0 | 8 | 0 | 48 | 0 | 50 | 0 | 98 |
Buried reef | 0 | 5 | 0 | 0 | 76 | 0 | 0 | 88 |
Total | 0 | 153 | 62 | 58 | 76 | 139 | 81 | 569 |
Question | Yes (%) | No (%) | No Change (%) | Total Respondents |
---|---|---|---|---|
Has the frequency of rainfall significantly increased over the past ten years? | 94 | 2 | 4 | 50 |
Has the frequency of coastal flooding significantly increased over the past ten years? | 88 | 4 | 8 | 50 |
Has the frequency of violent storms significantly increased over the past ten years? | 94 | 0 | 6 | 50 |
Has the frequency of drought events significantly increased over the past ten years? | 86 | 8 | 6 | 50 |
Over the past ten years, has the summer season temperature: | ||||
Increased? | 88 | 4 | 8 | 50 |
Decreased? | 4 | 90 | 6 | 50 |
Over the past ten years, has the winter season temperature: | ||||
Increased? | 56 | 32 | 12 | 50 |
Decreased? | 40 | 48 | 12 | 50 |
Has the wave energy increased significantly over the past ten years? | 80 | 6 | 14 | 50 |
Has the amount of your resource harvest per harvest event declined over the past ten years? | 96 | 0 | 4 | 50 |
Do you know the reason for the set-up of the MPA? | 78 | 22 | - | 50 |
Was the MPA set-up to restore the harvestable resources in the particular area? | 100 | 0 | - | 50 |
Do you know what baseline information was used for the MPA set-up? | 12 | 88 | - | 50 |
Were there scientific consultations done for the MPA set-up? | 14 | 86 | - | 50 |
Is the MPA performing as well as expected? | 16 | 84 | - | 50 |
If no, is the poor MPA performance due to: | ||||
Climate change effects? | 86 | 14 | - | 50 |
Anthropogenic activities? | 22 | 78 | - | 50 |
Do you think a baseline coastal and land use resource map will help in making better resource management plans? | 94 | 0 | 6 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.A.; Maharaj, A.; Singh, P. Benthic Resource Baseline Mapping of Cakaunisasi and Yarawa Reef Ecosystem in the Ba Region of Fiji. Water 2021, 13, 468. https://doi.org/10.3390/w13040468
Singh AA, Maharaj A, Singh P. Benthic Resource Baseline Mapping of Cakaunisasi and Yarawa Reef Ecosystem in the Ba Region of Fiji. Water. 2021; 13(4):468. https://doi.org/10.3390/w13040468
Chicago/Turabian StyleSingh, Ashneel Ajay, Anish Maharaj, and Priyatma Singh. 2021. "Benthic Resource Baseline Mapping of Cakaunisasi and Yarawa Reef Ecosystem in the Ba Region of Fiji" Water 13, no. 4: 468. https://doi.org/10.3390/w13040468
APA StyleSingh, A. A., Maharaj, A., & Singh, P. (2021). Benthic Resource Baseline Mapping of Cakaunisasi and Yarawa Reef Ecosystem in the Ba Region of Fiji. Water, 13(4), 468. https://doi.org/10.3390/w13040468