Climate Change Patterns of Wild Blueberry Fields in Downeast, Maine over the Past 40 Years
Abstract
:1. Introduction
- To characterize the historical climate change patterns (maximum temperature, minimum temperature, average temperature, and precipitation) of different wild blueberry fields in Downeast, Maine over the last 40 years (1980 to 2019), and test whether wild blueberry fields show different climate change patterns compare to that of the region (state of Maine);
- To quantify the historical changes in potential evapotranspiration (PET) of those wild blueberry fields by comparing between 1970–2000 and 2001–2014, as well as to determine the relationship between PET and temperatures for wild blueberry fields;
- To establish relationships between climate variables (maximum temperature, minimum temperature, average temperature, and precipitation) during the growing season (May to September) and the Maximum Enhanced Vegetation Index (EVImax) for the wild blueberry fields.
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Methodology
2.3. Statistical Analysis
3. Results
3.1. Comparison of Historical Climate Change between Maine and the Wild Blueberry Fields of Downeast Maine
3.2. Comparison of Historical Climate Change among the Wild Blueberry Fields in Downeast, Maine
3.3. Relationship of Climate Variables with the Vegetation Index of Wild Blueberry Fields
3.4. Wild Blueberry Fields Experienced Suboptimal Temperatures during the Peak Season (July and August)
3.5. Potential Evapotranspiration (PET) Rate of the Wild Blueberry Fields
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shrestha, S.; Chapagain, R.; Babel, M.S. Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand. Sci. Total Environ. 2017, 599, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Van Passel, S.; Massetti, E.; Mendelsohn, R. A Ricardian analysis of the impact of climate change on European agriculture. Environ. Resour. Econ. 2017, 67, 725–760. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L.K. Impact of Climate Change on Twenty-First Century Crop Yields in the US. Climate 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Fernandez, I.; Birkel, S.; Schmitt, C.; Simonson, J.; Lyon, B.; Pershing, A.; Stancioff, E.; Jacobson, G.; Mayewski, P. Maine’s Climate Future 2020 Update. Available online: climatechange.umaine.edu/climate-matters/maines-climate-future/ (accessed on 17 May 2020).
- NOAA–CAAG (National Oceanic and Atmospheric Administration–National Centers for Environmental Information). Climate at a Glance, US Climate Divisional Database. 2019. Available online: ncdc.noaa.gov/cag/statewide/time-series (accessed on 17 May 2020).
- Badaruddin, M.; Reynolds, M.P.; Ageeb, O.A. Wheat management in warm environments: Effect of organic and inorganic fertilizers, irrigation frequency, and mulching. Agron. J. 1999, 91, 975–983. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Gutiérrez-Rodrĺguez, M.; Larqué-Saavedra, A. Photosynthesis of wheat in a warm, irrigated environment: I: Genetic diversity and crop productivity. Field Crops Res. 2000, 66, 37–50. [Google Scholar] [CrossRef]
- Tasnim, R.; Calderwood, L.; Annis, S.; Drummond, F.; Zhang, Y.J. The Future of Wild Blueberries: Testing Warming Impacts Using Open-Top Chambers. Available online: https://umaine.edu/spire/2020/02/10/wildblueberries/ (accessed on 17 May 2020).
- Yarborough, D.E. Wild Blueberry Culture in Maine. Fact Sheet No. 220. Available online: https://extension.umaine.edu/blueberries/factsheets/production/wild-blueberry-culture-in-maine/ (accessed on 16 July 2020).
- Bhatt, R.; Hossain, A. Concept and Consequence of Evapotranspiration for Sustainable Crop Production in the Era of Climate Change. Available online: https://www.intechopen.com/books/advanced-evapotranspiration-methods-and-applications/concept-and-consequence-of-evapotranspiration-for-sustainable-crop-production-in-the-era-of-climate- (accessed on 17 May 2020).
- Waring, R.H.; Coops, N.C.; Fan, W.; Nightingale, J.M. MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the contiguous USA. Remote Sens. Environ. 2006, 103, 218–226. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.M.; Huang, N. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sens. Environ. 2011, 115, 3424–3435. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Esri Inc. ArcGIS Pro (Version 2.4.2). 2019. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/ (accessed on 1 February 2020).
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef] [Green Version]
- Thornton, M.M.; Thornton, P.E.; Wei, Y.; Mayer, B.W.; Cook, R.B.; Vose, R.S. Daymet: Monthly Climate Summaries on a 1-km Grid for North America; Version 3; ORNL DAAC: Oak Ridge, TN, USA, 2018. [Google Scholar]
- Didan, K. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006 [Data set]. Available online: https://doi.org/10.5067/MODIS/MOD13A1.006 (accessed on 25 May 2020).
- Trabucco, A.; Zomer, R.J. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. Available online: https://doi.org/10.6084/m9.figshare.7504448.v3 (accessed on 19 May 2020).
- IBM SPSS Statistics for Windows; Version 23.0; IBM Corp: Armonk, NY, USA, 2015.
- Addinsoft. XLSTAT Statistical and Data Analysis Solution. Available online: https://www.xlstat.com (accessed on 26 December 2020).
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Brown, M.B.; Forsythe, A.B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 1974, 69, 364–367. [Google Scholar] [CrossRef]
- Aprialdi, D.; Haiban, M.I.; Kløve, B.; Torabi Haghighi, A. Irrigation Requirement for Eucalyptus pellita during Initial Growth. Water 2019, 11, 1972. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Walter, I.A.; Allen, R.G.; Elliott, R.; Jensen, M.E.; Itenfisu, D.; Mecham, B.; Howell, T.A.; Snyder, R.; Brown, P.; Eching, S.; et al. ASCE’s standardized reference evapotranspiration equation. In Proceedings of the Nat’l Irrigation Symp., Phoenix, AZ, USA, 14–16 November 2000. [Google Scholar]
- Wambura, F.J.; Dietrich, O. Analysis of Agricultural Drought Using Remotely Sensed Evapotranspiration in a Data-Scarce Catchment. Water 2020, 12, 998. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Gao, S. Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Su, G.; Liu, C. Seasonal variation of MODIS vegetation indexes and their statistical relationship with climate over the subtropic evergreen forest of Zhejiang, China. IEEE Geosci. Remote Sens. Lett. 2007, 4, 236–240. [Google Scholar] [CrossRef]
- Jahan, N.; Gan, T.Y. Modelling the vegetation–climate relationship in a boreal mixed-wood forest of Alberta using normalized difference and enhanced vegetation indices. Int. J. Remote Sens. 2011, 32, 313–335. [Google Scholar] [CrossRef]
Mann–Kendall Test | Tmax | Tmin | Tavg | Ptotal |
---|---|---|---|---|
Kendall’s tau | 0.323 | 0.474 | 0.454 | 0.06 |
Mann–Kendall Stat (S) | 252 | 370 | 354 | 47 |
Var (S) | 7366.67 | 7366.67 | 7366.67 | 7365.67 |
p-value (two-tailed) | 0.003 | <0.0001 | <0.0001 | 0.592 |
alpha | 0.05 | 0.05 | 0.05 | 0.05 |
Trend | Increasing | Increasing | Increasing | Not significant |
Sen’s slope Q | 0.031 | 0.038 | 0.037 | 0.96 |
Factors/Variables | Latitude | Longitude | Elevation | Distance from Coast |
---|---|---|---|---|
Tmax | 0.476 * | −0.864 ** | 0.542 ** | 0.743 ** |
Tmin | −0.866 ** | −0.416 * | −0.544 ** | −0.512 * |
Tavg | 0.019 | −0.95 ** | 0.225 | 0.416 |
Ptotal | 0.155 | 0.093 | 0.602 ** | 0.122 |
PET | −0.04 | −0.57 ** | 0.493 * | 0.088 |
Increase in Tmax | −0.15 | 0.945 ** | −0.338 | −0.59 ** |
Increase in Tmin | 0.056 | 0.313 | 0.444 | −0.273 |
Increase in Tavg | 0.003 | 0.893 ** | −0.082 | −0.526 * |
Increase in Ptotal | −0.889 ** | 0.253 | −0.556 ** | −0.769 ** |
Increase in PET | −0.005 | 0.365 | −0.51 * | −0.004 |
Fixed Factors | Tmax | Tmin | Tavg | Ptotal | ||||
---|---|---|---|---|---|---|---|---|
F 1 | P 2 | F | P | F | P | F | P | |
Latitude | 33.64 | <0.001 | 44.82 | <0.001 | 0.025 | 0.87 | 0.04 | 0.84 |
Longitude | 119.5 | <0.001 | 10.01 | 0.002 | 66.045 | <0.001 | 0.014 | 0.905 |
Elevation | 43.94 | <0.001 | 17.26 | <0.001 | 3.49 | 0.062 | 0.607 | 0.436 |
Distance from coast | 85.74 | <0.001 | 15.223 | <0.001 | 12.055 | 0.001 | 0.025 | 0.875 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasnim, R.; Drummond, F.; Zhang, Y.-J. Climate Change Patterns of Wild Blueberry Fields in Downeast, Maine over the Past 40 Years. Water 2021, 13, 594. https://doi.org/10.3390/w13050594
Tasnim R, Drummond F, Zhang Y-J. Climate Change Patterns of Wild Blueberry Fields in Downeast, Maine over the Past 40 Years. Water. 2021; 13(5):594. https://doi.org/10.3390/w13050594
Chicago/Turabian StyleTasnim, Rafa, Francis Drummond, and Yong-Jiang Zhang. 2021. "Climate Change Patterns of Wild Blueberry Fields in Downeast, Maine over the Past 40 Years" Water 13, no. 5: 594. https://doi.org/10.3390/w13050594
APA StyleTasnim, R., Drummond, F., & Zhang, Y. -J. (2021). Climate Change Patterns of Wild Blueberry Fields in Downeast, Maine over the Past 40 Years. Water, 13(5), 594. https://doi.org/10.3390/w13050594