Renewable Energy Generation and GHG Emission Reduction Potential of a Satellite Water Reuse Plant by Using Solar Photovoltaics and Anaerobic Digestion
Abstract
:1. Introduction
2. Material and Methods
2.1. Influent and Effluent Quality
2.2. Energy Consumption for the Unit Processes of the Water Reuse Plant
2.3. Design Parameters and Consideration
2.3.1. Anaerobic Digester
2.3.2. Photovoltaic Solar System
2.4. Greenhouse Gas Emissions
2.5. Economics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dow, C.; Ahmad, S.; Stave, K.; Gerrity, D. Evaluating the Sustainability of IPR and DPR: A Southern Nevada Case Study. AWWA Water Sci. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, A.K.; Ahmad, S.; Johnson, W.; Batista, J.R. Salinity Reduction and Energy Conservation in Direct and Indirect Potable Water Reuse. Desalination 2011, 272, 120–127. [Google Scholar] [CrossRef]
- Bailey, J.R. Investigating the Impacts of Conventional and Advanced Treatment Technologies on Energy Consumption at Satellite Water reuse Plants; University of Nevada: Las Vegas, NV, USA, 2012. [Google Scholar]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water 2020, 12, 971. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency (USEPA). 2019. Available online: https://www.epa.gov/waterreuse (accessed on 25 December 2019).
- Amoueyan, E.; Ahmad, S.; Eisenberg, J.N.S.; Pecson, B.; Gerrity, D. Quantifying pathogen risks associated with potable reuse: A risk assessment case study for Cryptosporidium. Water Res. 2017. [Google Scholar] [CrossRef]
- Amoueyan, E.; Ahmad, S.; Eisenberg, J.N.S.; Gerrity, D. Equivalency of Indirect and Direct Potable Reuse Paradigms based on a Quantitative Microbial Risk Assessment Framework. Microb. Risk Anal. 2019. [Google Scholar] [CrossRef]
- Amoueyan, E.; Ahmad, S.; Eisenberg, J.; Gerrity, D. A Dynamic Quantitative Microbial Risk Assessment for Norovirus in Potable Reuse Systems. Microb. Risk Anal. 2019. [Google Scholar] [CrossRef]
- Bukhary, S.; Batista, J.; Ahmad, S. Sustainable Desalination of Brackish Groundwater for the Las Vegas Valley. In World Environmental and Water Resources Congress; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 311–322. [Google Scholar]
- Water Environment Federation (WEF). Design of Municipal Wastewater Treatment Plants: WEF Manual of Practice No. 8; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Bailey, J.R.; Ahmad, S.; Batista, J.R. The Impact of Advanced Treatment Technologies on the Energy Use in Satellite Water Reuse Plants. Water 2020, 12, 366. [Google Scholar] [CrossRef] [Green Version]
- Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J.T.; Westfall, L. International Energy Outlook 2016 with Projections to 2040 (No. DOE/EIA-0484 (2016); USDOE, Energy Information Administration (EIA), Office of Energy Analysis: Washington, DC, USA, 2016.
- Demirbas, A. Global renewable energy projections. Energy Sources Part B 2009, 4, 212–224. [Google Scholar] [CrossRef]
- Chen, C.; Kalra, A.; Ahmad, S. Hydrologic responses to climate change using downscaled GCM data on a watershed scale. J. Water Clim. Chang. 2019, 10, 63–77. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Ahmad, S. Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands. Water Resour. Manag. 2019. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Urban evapotranspiration of Green Spaces in Arid Regions through Two Established Approaches: A Review of Key Drivers, Advancements, Limitations, and Potential Opportunities. Urban Water J. 2021. [Google Scholar] [CrossRef]
- Boden, T.A.; Marland, G.; Andres, R.J. National CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751–2014; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy: Oak Ridge, TN, USA, 2017.
- Bukhary, S.; Ahmad, S.; Batista, J. Analyzing land and water requirements for solar deployment in the Southwestern United States. Renew. Sustain. Energy Rev. 2018, 82, 3288–3305. [Google Scholar] [CrossRef]
- Gormus, N.A.; Soytas, U.; Diltz, J.D. Oil prices, fossil-fuel stocks and alternative energy stocks. Int. J. Econ. Financ. 2015, 7, 43–55. [Google Scholar] [CrossRef]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). The United Nations World Water Development Report 2020: Water and Climate Change. 2020. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000372985.locale=en (accessed on 30 June 2002).
- US Environmental Protection Agency (USEPA). 2019. Available online: https://www.epa.gov/sustainablewater-infrastructure/energy-efficiency-water-utilities (accessed on 25 December 2019).
- Meng, F.; Liu, G.; Liang, S.; Su, M.; Yang, Z. Critical review of the energy-water-carbon nexus in cities. Energy 2019, 171, 1017–1032. [Google Scholar] [CrossRef]
- Seeta, V.; Thakral, S.; Sun, L.; Meyer, Z. “Free” Solar Power—A Big Leap Towards Energy Self-Sufficiency at WWTPs. Proc. Water Environ. Fed. 2011, 2011, 5588–5598. [Google Scholar] [CrossRef]
- Di Maria, F.; Micale, C. Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an Italian province. Energy 2017, 136, 110–116. [Google Scholar] [CrossRef]
- Strazzabosco, A.; Kenway, S.J.; Lant, P.A. Solar PV adoption in wastewater treatment plants: A review of practice in California. J. Environ. Manag. 2019, 248, 109337. [Google Scholar] [CrossRef] [PubMed]
- Bukhary, S.; Batista, J.; Ahmad, S. Design Aspects, Energy Consumption Evaluation, and Offset for Drinking Water Treatment Operation. Water 2020, 12, 1772. [Google Scholar] [CrossRef]
- Bukhary, S.; Batista, J.; Ahmad, S. Evaluating the Feasibility of Photovoltaic-Based Plant for Potable Water Treatment. In World Environmental and Water Resources Congress; American Society of Civil Engineers: Sacramento, CA, USA, 2017; pp. 256–263. [Google Scholar]
- U.S. Energy Information Administration (USEIA). 2020. Available online: https://www.eia.gov/todayinenergy/detail.php?id=43895 (accessed on 30 June 2020).
- U.S. Energy Information Administration (USEIA). 2020. Available online: https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php (accessed on 30 June 2020).
- Bukhary, S.; Batista, J.; Ahmad, S. Water-energy-carbon nexus approach for sustainable large-scale drinking water treatment operation. J. Hydrol. 2020, 587, 124953. [Google Scholar] [CrossRef]
- Bukhary, S.; Batista, J.; Ahmad, S. An Analysis of Energy Consumption and the Use of Renewables for a Small Drinking Water Treatment Plant. Water 2020, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Bukhary, S.; Weidhaas, J.; Ansari, K.; Mahar, R.B.; Pomeroy, C.; VanDerslice, J.A.; Burian, S.; Ahmad, S. Using Distributed Solar for Treatment of Drinking Water in Developing Countries. In World Environmental and Water Resources Congress; American Society of Civil Engineers: Sacramento, CA, USA, 2017; pp. 264–276. [Google Scholar]
- Metcalf, L.; Eddy, H.P.; Tchobanoglus, G.; Burton, F.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Horstmeyer, N.; Weibbach, M.; Koch, K.; Drewes, J.E. A novel concept to integrate energy recovery into potable water reuse treatment schemes. J. Water Reuse Desalin. 2018, 8, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Kavvada, O.; Horvath, A.; Stokes-Draut, J.R.; Hendrickson, T.P.; Eisenstein, W.A.; Nelson, K.L. Assessing location and scale of urban nonpotable water reuse systems for life-cycle energy consumption and greenhouse gas emissions. Environ. Sci. Technol. 2016, 50, 13184–13194. [Google Scholar] [CrossRef]
- Malinowski, P.A.; Stillwell, A.S.; Wu, J.S.; Schwarz, P.M. Energy-water nexus: Potential energy savings and implications for sustainable integrated water management in urban areas from rainwater harvesting and gray-water reuse. J. Water Resour. Plan. Manag. 2015, 141, A4015003. [Google Scholar] [CrossRef]
- Water Environment Federation (WEF). Membrane Bioreactors: WEF Manual of Practice No. 36; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Water Environment Federation (WEF). Nutrient Removal: WEF Manual of Practice No. 34; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Qasim, S.R. Wastewater Treatment Plants: Planning, Design, and Operation; CRC Press: Boca Raton, FL, USA, 1999; ISBN 1-56676-688-5. [Google Scholar]
- Davis, M.L. Water and Wastewater Engineering: Design Principles and Practice; McGraw Hill: New York, NY, USA, 2010; ISBN 978-0-07-171384-9. [Google Scholar]
- Lin, S.D. Water and Wastewater Calculations Manual, 2nd ed.; McGraw Hill: New York, NY, USA, 2007; ISBN 0-07-147624-5. [Google Scholar]
- National Renewable Energy Laboratory (NREL). Solar Resource Data, Tools, and Maps. 2018. Available online: https://www.nrel.gov/gis/solar.html (accessed on 1 July 2020).
- National Renewable Energy Laboratory (NREL). PVWatts® Calculator; PVWatts®: Golden, CO, USA, 2020. Available online: http://pvwatts.nrel.gov (accessed on 1 October 2020).
- U.S. Environmental Protection Agency (USEPA). 2020. Available online: https://www.epa.gov/greenpower/green-power-equivalency-calculator-calculations-and-references (accessed on 26 October 2020).
- Khalid, A.M.; Mitra, I.; Warmuth, W.; Schacht, V. Performance ratio–Crucial parameter for grid connected PV plants. Renew. Sustain. Energy Rev. 2016, 65, 1139–1158. [Google Scholar] [CrossRef]
- Green, M.A. Silicon photovoltaic modules: A brief history of the first 50 years. Prog. Photovolt. Res. Appl. 2005, 13, 447–455. [Google Scholar] [CrossRef]
- Water Environment Federation (WEF). Energy Conservation in Water and Wastewater Facilities: WEF Manual of Practice No. 32; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Shrestha, E.; Ahmad, S.; Johnson, W.; Shrestha, P.; Batista, J.R. Carbon footprint of water conveyance verses desalination as alternatives to expand water supply. Desalination 2011, 280, 33–43. [Google Scholar] [CrossRef]
- Shrestha, E.; Ahmad, S.; Johnson, W.; Batista, J.R. The carbon footprint of water management policy options. Energy Policy 2012, 42, 201–212. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (USEIA). 2010. Available online: http://www.eia.gov/electricity/annual/ (accessed on 20 July 2012).
- Fu, R.; Feldman, D.J.; Margolis, R.M. US Solar Photovoltaic System Cost Benchmark: Q1 2018 (No. NREL/TP-6A20-72399); National Renewable Energy Lab (NREL): Golden, CO, USA, 2018.
- Fu, R.; Feldman, D.; Margolis, R.; Woodhouse, M.; Ardani, K. US Solar Photovoltaic System Cost Benchmark: Q1 2017 (No. NREL/TP-6A20-68925); National Renewable Energy Lab (NREL): Golden, CO, USA, 2017.
- Fu, R.; Chung, D.; Lowder, T.; Feldman, D.; Ardani, K.; Margolis, R. US Solar Photovoltaic System Cost Benchmark: Q1 2016 (No. NREL/TP-6A20-66532); National Renewable Energy Lab (NREL): Golden, CO, USA, 2016.
- Navaratnasamy, M.; Edeogu, I.; Papworth, L. Economic Feasibility of Anaerobic Digesters; Alberta Agriculture and Rural Development: Edmonton, AB, Canada, 2008. [Google Scholar]
- Gielen, D. Biomass for Power Generation, Renewable Energy Technologies: Cost Analysis Series; International Renewable Energy Agency: Bonn, Germany, 2012. [Google Scholar]
- Steele, L.; Sampsel, Z.N. Final Report for Clean, Reliable, Affordable Energy that Reflects the Values of the Pinoleville Pomo Nation (No. DOE-PPN-0002518); US Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, USA, 2014.
- U.S. Energy Information Administration (USEIA). 2018. Available online: https://www.eia.gov/electricity/data/browser/#/topic/7?agg=0,1&geo=g&endsec=4&linechart=~&freq=A&start=2005&end=2013&chartindexed=1&ctype=linechart<ype=pin&rtype=s&maptype=0&rse=0&pin= (accessed on 30 October 2020).
- Pirnie, M. Wastewater Treatment and Sludge Management: Energy Reference Guide; New York State Energy Research and Development Authority: Buffalo, NY, USA, 1995.
- Spanggaard, H.; Krebs, F.C. A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 2004, 83, 125–146. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiency Chart. 2019. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 July 2020).
- Drainville, M.; Rudenko, A.; Saad, D.; Doyle, P.S. Reducing the Carbon Footprint of the Hyannis WPCF Through Renewable Energy Production and Energy Efficiency Measures. Proc. Water Environ. Fed. 2011, 2011, 1493–1509. [Google Scholar] [CrossRef]
- Stanislawski, B.; Margairaz, F.; Cal, R.B.; Calaf, M. Potential of module arrangements to enhance convective cooling in solar photovoltaic arrays. Renew. Energy 2020, 157, 851–858. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). 2012. Available online: http://www.epa.gov/cleanenergy/energy-resources/refs.html (accessed on 18 September 2012).
Parameter | Influent Characteristics | Effluent Requirements |
---|---|---|
BOD (mg/L) | 250 | 30 |
TSS (mg/L) | 309 | 30 |
TKN (mg/L as N) | 42 | – |
NH3 (mg/L as N) | 34 | 0.5 |
TN (mg/L as N) | – | 10 |
TP (mg/L as P) | 8 | 0.2 |
TC (MPN/100 mL) | – | 2.2 |
TC, daily max (MPN/100 mL) | – | 23 |
Minimum Temp (°C) | 18.3 | 18.3 |
Facility Type | Unit Process | Energy Consumption per Unit Flow kWh/1000 m3 | |||||
---|---|---|---|---|---|---|---|
2.6 m3/min (1 MGD) | 5.3 m3/min (2 MGD) | 10.5 m3/min (4 MGD) | 15.8 m3/min (6 MGD) | 23.1 m3/min (8.8 MGD) | 28.9 m3/min (11 MGD) | ||
MBR Facility | Coarse Screens | 0.31 | 0.15 | 0.08 | 0.05 | 0.03 | 0.04 |
Grit Chamber | 28.4 | 16.6 | 11.8 | 9.5 | 7.5 | 6.4 | |
Fine Screens | 9.5 | 4.7 | 2.4 | 1.6 | 1.1 | 1.3 | |
Bioreactor | 420.5 | 421.1 | 421.1 | 421.1 | 424.6 | 424.6 | |
Membranes | 238.9 | 238.9 | 238.9 | 238.9 | 221.7 | 221.7 | |
UV Disinfection | 25.9 | 27.7 | 26.7 | 25.7 | 25.2 | 25.9 | |
Total | 723.4 | 709.1 | 700.9 | 696.7 | 680.1 | 680.1 | |
CAS Facility | Coarse Screens | 0.31 | 0.15 | 0.08 | 0.05 | 0.03 | 0.04 |
Grit Chamber | 28.4 | 16.6 | 11.8 | 9.5 | 7.5 | 6.4 | |
Fine Screens | 9.46 | 4.73 | 2.36 | 1.58 | 1.08 | 1.29 | |
CAS | 311.7 | 307.6 | 307.6 | 307.6 | 310.7 | 310.7 | |
Secondary Clarifier | 2.36 | 1.77 | 1.77 | 1.77 | 1.61 | 1.61 | |
Dual Media Filters | 1.33 | 1.32 | 0.99 | 0.88 | 0.85 | 0.85 | |
UV Disinfection | 36.5 | 36.5 | 35.6 | 36.6 | 36.9 | 35.4 | |
Total | 390.0 | 368.6 | 360.1 | 358.0 | 358.8 | 356.4 |
Renewables | Parameter | Value | Unit | References |
---|---|---|---|---|
Photovoltaic Solar System | Average Solar Insolation | 6.31 | kWh/m2/day | [42,43,44] |
Performance Ratio | 80 | % | [18,43,44,45] | |
Power Generated per Panel Area | 200 | W/m2 | [43,44,46] | |
Anaerobic Digester | Solid Retention Time (SRT) | 15 | day | [33,47] |
Temperature | 35 | °C | [33,40,47] | |
Methanogenic Bacterial Yield for Cell Synthesis | 0.08 | kg VSS/kg bCOD | [33,40] | |
Bacterial Endogenous Decay Coefficient | 0.03 | day−1 | [33,40] | |
Waste Utilization Efficiency | 70 | % | [33] | |
Percentage of Methane in Digester Gas | 65 | % | [33,40,47] |
Renewables | Energy Driving & Producing Equipment | 2.6 m3/min (1 MGD) | 5.3 m3/min (2 MGD) | 10.5 m3/min (4 MGD) | 15.8 m3/min (6 MGD) | 23.1 m3/min (8.8 MGD) | 28.9 m3/min (11 MGD) |
---|---|---|---|---|---|---|---|
Anaerobic Digester | Mixers | 32.67 | 64.69 | 96.63 | 188.19 | 277.88 | 343.06 |
Heat-Exchanger | 252.09 | 478.34 | 708.41 | 1345.50 | 1944.15 | 2343.96 | |
Total Consumption | 284.76 | 543.04 | 805.04 | 1533.69 | 2222.03 | 2687.02 | |
ICE—Generation | 404.71 | 809.42 | 1214.13 | 2428.25 | 3561.44 | 4451.8 | |
Net Total | 119.95 | 266.38 | 409.09 | 894.56 | 1339.41 | 1764.78 | |
Solar Photovoltaic System | Panel Generation—MBR Plant | 155.28 | 313.58 | 627.26 | 940.95 | 1371.44 | 1714.3 |
Panel Generation—CAS Plant | 463.41 | 840.59 | 1681.29 | 2521.98 | 3767.83 | 4709.78 |
Facility Type | Parameter | 2.6 m3/min (1 MGD) | 5.3 m3/min (2 MGD) | 10.5 m3/min (4 MGD) | 15.8 m3/min (6 MGD) | 23.1 m3/min (8.8 MGD) | 28.9 m3/min (11 MGD) |
---|---|---|---|---|---|---|---|
MBR Facility | Area (m2) | 153.8 | 310.6 | 621.3 | 932 | 1358.4 | 1698 |
System size (kW) | 30.76 | 62.12 | 124.26 | 186.4 | 271.68 | 339.6 | |
CAS Facility | Area (m2) | 459 | 832.6 | 1665.3 | 2498 | 3732 | 4665 |
System size (kW) | 91.8 | 166.52 | 333.06 | 499.6 | 746.4 | 933 |
Facility Type | Unit Process | Energy Consumption Per Unit Flow (kWh/1000 m3) | ||||||
---|---|---|---|---|---|---|---|---|
2.6 m3/min (1 MGD) | 5.3 m3/min (2 MGD) | 10.5 m3/min (4 MGD) | 15.8 m3/min (6 MGD) | 23.1 m3/min (8.8 MGD) | 28.9 m3/min (11 MGD) | Average | ||
MBR Facility | Wastewater Treatment Total | 723.4 | 709.1 | 700.9 | 696.7 | 680.1 | 680.1 | 698.4 |
Anaerobic Digester | 75.2 | 71.7 | 53.2 | 67.5 | 66.7 | 64.5 | 66.5 | |
Anaerobic Digester Generation | 107.0 | 107.0 | 80.3 | 107.0 | 107.0 | 107.0 | 102.6 | |
Net Total w/Digester | 691.7 | 674.0 | 674.0 | 657.3 | 639.9 | 637.5 | 662.4 | |
Photovoltaic System Generation | 41.03 | 41.42 | 41.43 | 41.43 | 41.17 | 41.17 | 41.28 | |
Net Total w/PV | 682.37 | 667.68 | 659.47 | 655.27 | 638.93 | 638.93 | 657.12 | |
Net Total w/Digester and PV | 650.67 | 632.58 | 632.57 | 615.87 | 598.77 | 596.33 | 621.12 | |
CAS Facility | Wastewater Treatment Total | 390.0 | 368.6 | 360.1 | 358.0 | 358.8 | 356.4 | 365.3 |
Anaerobic Digester | 75.2 | 71.7 | 53.2 | 67.5 | 66.7 | 64.5 | 66.5 | |
Anaerobic Digester Generation | 107.0 | 107.0 | 80.3 | 107.0 | 107.0 | 107.0 | 102.6 | |
Net Total w/Digester | 358.3 | 333.4 | 333.2 | 318.6 | 318.6 | 313.9 | 329.3 | |
Photovoltaic System Generation | 122.43 | 111.04 | 111.05 | 111.05 | 113.12 | 113.12 | 113.64 | |
Net Total w/PV | 267.57 | 257.56 | 249.05 | 246.95 | 245.68 | 243.28 | 251.66 | |
Net Total w/Digester and PV | 235.87 | 222.36 | 222.15 | 207.55 | 205.48 | 200.78 | 215.66 |
Renewables | Energy Price ($/kWh) | Payback (years) |
---|---|---|
Photovoltaic System | 0.09 | 11.1 |
0.11 | 9.0 | |
0.13 | 7.6 | |
Anaerobic Digester | 0.09 | 8.2 |
0.11 | 6.4 | |
0.13 | 5.2 |
Facility Type | Unit Process | GHG Emissions Per Unit Flow (kg CO2e/1000 m3) | ||||||
---|---|---|---|---|---|---|---|---|
2.6 m3/min (1 MGD) | 5.3 m3/min (2 MGD) | 10.5 m3/min (4 MGD) | 15.8 m3/min (6 MGD) | 23.1 m3/min (8.8 MGD) | 28.9 m3/min (11 MGD) | Average | ||
MBR Facility | Coarse Screens | 0.19 | 0.10 | 0.05 | 0.03 | 0.02 | 0.03 | 0.07 |
Grit Chamber | 17.8 | 10.4 | 7.4 | 5.9 | 4.7 | 4.0 | 8.4 | |
Fine Screens | 5.9 | 3.0 | 1.5 | 1.0 | 0.7 | 0.8 | 2.2 | |
Bioreactor | 263.4 | 263.8 | 263.8 | 263.8 | 266.0 | 266.0 | 264.5 | |
Membranes | 149.6 | 149.6 | 149.6 | 149.6 | 138.9 | 138.9 | 146.0 | |
UV Disinfection | 16.2 | 17.4 | 16.7 | 16.1 | 15.8 | 16.2 | 16.4 | |
Total | 453.2 | 444.2 | 439.1 | 436.5 | 426.0 | 425.9 | 437.5 | |
Anaerobic Digester | 47.1 | 44.9 | 33.3 | 42.3 | 41.8 | 40.4 | 41.6 | |
Anaerobic Digester GHG Savings | 67.0 | 67.0 | 50.2 | 67.0 | 67.0 | 67.0 | 64.2 | |
Net Total w/Digester | 433.3 | 422.2 | 422.1 | 411.8 | 400.8 | 399.4 | 414.9 | |
Photovoltaic System GHG Savings | 25.70 | 25.95 | 25.95 | 25.95 | 25.79 | 25.79 | 25.86 | |
Net Total w/PV | 427.44 | 418.23 | 413.09 | 410.46 | 400.23 | 400.23 | 411.62 | |
Net Total w/Digester and PV | 407.58 | 396.25 | 396.24 | 385.78 | 375.07 | 373.54 | 389.07 | |
CAS Facility | Coarse Screens | 0.19 | 0.10 | 0.05 | 0.03 | 0.02 | 0.03 | 0.07 |
Grit Chamber | 17.8 | 10.4 | 7.4 | 5.9 | 4.7 | 4.0 | 8.4 | |
Fine Screens | 5.9 | 3.0 | 1.5 | 1.0 | 0.7 | 0.8 | 2.2 | |
CAS | 195.3 | 192.7 | 192.7 | 192.7 | 194.6 | 194.6 | 193.8 | |
Secondary Clarifier | 1.5 | 1.1 | 1.1 | 1.1 | 1.0 | 1.0 | 1.1 | |
Dual Media Filters | 0.8 | 0.8 | 0.6 | 0.6 | 0.5 | 0.5 | 0.6 | |
UV Disinfection | 22.8 | 22.8 | 22.3 | 23.0 | 23.1 | 22.2 | 22.7 | |
Total | 244.3 | 230.9 | 225.6 | 224.2 | 224.7 | 223.2 | 228.8 | |
Anaerobic Digester | 47.1 | 44.9 | 33.3 | 42.3 | 41.8 | 40.4 | 41.6 | |
Anaerobic Digester GHG Savings | 67.0 | 67.0 | 50.2 | 67.0 | 67.0 | 67.0 | 64.2 | |
Net Total w/Digester | 224.4 | 208.8 | 208.7 | 199.5 | 199.5 | 196.7 | 206.3 | |
Photovoltaic System GHG Savings | 76.69 | 69.56 | 69.56 | 69.56 | 70.86 | 70.86 | 71.18 | |
Net Total w/PV | 167.61 | 161.34 | 156.0 | 154.69 | 153.89 | 152.39 | 157.64 | |
Net Total w/Digester and PV | 147.75 | 139.29 | 139.15 | 130.01 | 128.71 | 125.77 | 135.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey, J.R.; Bukhary, S.; Batista, J.R.; Ahmad, S. Renewable Energy Generation and GHG Emission Reduction Potential of a Satellite Water Reuse Plant by Using Solar Photovoltaics and Anaerobic Digestion. Water 2021, 13, 635. https://doi.org/10.3390/w13050635
Bailey JR, Bukhary S, Batista JR, Ahmad S. Renewable Energy Generation and GHG Emission Reduction Potential of a Satellite Water Reuse Plant by Using Solar Photovoltaics and Anaerobic Digestion. Water. 2021; 13(5):635. https://doi.org/10.3390/w13050635
Chicago/Turabian StyleBailey, Jonathan R., Saria Bukhary, Jacimaria R. Batista, and Sajjad Ahmad. 2021. "Renewable Energy Generation and GHG Emission Reduction Potential of a Satellite Water Reuse Plant by Using Solar Photovoltaics and Anaerobic Digestion" Water 13, no. 5: 635. https://doi.org/10.3390/w13050635
APA StyleBailey, J. R., Bukhary, S., Batista, J. R., & Ahmad, S. (2021). Renewable Energy Generation and GHG Emission Reduction Potential of a Satellite Water Reuse Plant by Using Solar Photovoltaics and Anaerobic Digestion. Water, 13(5), 635. https://doi.org/10.3390/w13050635