Water and Food Nexus: Role of Socio-Economic Status on Water–Food Nexus in an Urban Agglomeration Hyderabad, India Using Consumption Water Footprint
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Method
4. Results and Discussion
4.1. Water and Food Nexus in HMDA Region
4.2. Influence of Socio-Economic Status on Water and Food Nexus
4.3. Potential Policy Interventions with Nexus Approach for Water Conservation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Zeeuw, H.; Dubbeling, M. The Future of Cities—Opportunities, Challenges and the Way Forward; European Commission, Joint Research Center: Luxembourg, 2019. [Google Scholar]
- Gumma, M.K.; Mohammad, I.; Nedumaran, S.; Whitbread, A.; Lagerkvist, C.J. Urban sprawl and adverse impacts on agricultural land: A case study on Hyderabad, India. Remote Sens. 2017, 9, 1136. [Google Scholar] [CrossRef] [Green Version]
- Maheshwari, B.; Purohit, R.; Malano, H.; Singh, V.P.; Amerasinghe, P. Water Science and Technology Library Challenges and Opportunities for Peri-Urban Futures; Springer: Dordrecht, Germany, 2014; ISBN 9789401788779. [Google Scholar]
- Heard, B.R.; Miller, S.A.; Liang, S.; Xu, M. Emerging challenges and opportunities for the food–energy–water nexus in urban systems. Curr. Opin. Chem. Eng. 2017, 17, 48–53. [Google Scholar] [CrossRef]
- Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Räsänen, T.A.; Varis, O. The water-energy-food nexus and the transboundary context: Insights from large Asian rivers. Water (Switzerland) 2016, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Covarrubias, M.; Boas, I. The making of a sustainable food city in Barcelona: Insights from the water, energy, and food urban nexus. J. Integr. Environ. Sci. 2020, 17, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Covarrubias, M.; Spaargaren, G.; Boas, I. Network governance and the Urban Nexus of water, energy, and food: Lessons from Amsterdam. Energy. Sustain. Soc. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Covarrubias, M. The nexus between water, energy and food in cities: Towards conceptualizing socio-material interconnections. Sustain. Sci. 2019, 14, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Cornelsen, L.; Green, R.; Turner, R.; Dangour, A.D.; Shankar, B.; Mazzocchi, M.; Smith, R.D. What happens to patterns of food consumption when food prices change? evidence from a systamatic review and meta-analysis of food price elasticities globally. Health Econ. 2013, 19, 1300–1317. [Google Scholar] [CrossRef]
- Mahjabin, T.; Garcia, S.; Grady, C.; Mejia, A. Large cities get more for less: Water footprint efficiency across the US. PLoS ONE 2018, 13, e0202301. [Google Scholar] [CrossRef]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Jalava, M.; Kummu, M.; Porkka, M.; Siebert, S.; Varis, O. Diet change—A solution to reduce water use? Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Kinnunen, P.; Guillaume, J.H.A.; Taka, M.; D’Odorico, P.; Siebert, S.; Puma, M.J.; Jalava, M.; Kummu, M. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food 2020, 1, 229–237. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Swedan, 2011. [Google Scholar]
- Kaddoura, S.; El Khatib, S. Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making. Environ. Sci. Policy 2017, 77, 114–121. [Google Scholar] [CrossRef]
- Dhabi, A.; Emirates, U.A.; Rizk, Z.; Emirates, U.A. Smart Cities in the Gulf. Smart Cities Gulf 2018, 85–106. [Google Scholar] [CrossRef]
- Daher, B.; Lee, S.H.; Kaushik, V.; Blake, J.; Askariyeh, M.H.; Shafiezadeh, H.; Zamaripa, S.; Mohtar, R.H. Towards bridging the water gap in Texas: A water-energy-food nexus approach. Sci. Total Environ. 2019, 647, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Mohtar, R.H.; Yoo, S.H. Assessment of food trade impacts on water, food, and land security in the MENA region. Hydrol. Earth Syst. Sci. 2019, 23, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Bahn, R.; El Labban, S.; Hwalla, N. Impacts of shifting to healthier food consumption patterns on environmental sustainability in MENA countries. Sustain. Sci. 2018, 3, 1131–1146. [Google Scholar] [CrossRef] [Green Version]
- Gupta, E. The impact of solar water pumps on energy-water-food nexus: Evidence from Rajasthan, India. Energy Policy 2019, 129, 598–609. [Google Scholar] [CrossRef]
- Siegfried, T.; Sobolowski, S.; Raj, P.; Fishman, R.; Vasquez, V.; Narula, K.; Lall, U.; Modi, V. Modeling irrigated area to increase water, energy, and food security in semiarid India. Weather Clim. Soc. 2010, 2, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Al-Zu’bi, M. Water–Energy–Food–Climate Change Nexus in The Arab Cities: The Case of Amman City, Jordan. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2017; p. 380. [Google Scholar] [CrossRef]
- Da Costa Silva, G. Climate change and the water-energy nexus: An urban challenge. J. Water Clim. Chang. 2014, 5, 259–275. [Google Scholar] [CrossRef]
- Lorah, H. The Water-Energy Nexus in Large Cities; Princeton university: Princeton, NJ, USA, 2017; pp. 1–75. [Google Scholar]
- Daher, B.T.; Mohtar, R.H. Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water Int. 2015, 40, 748–771. [Google Scholar] [CrossRef]
- McCallum, J.L.; Shanafield, M. Water Resources Research. Water Resour. Res. 2016, 52, 1–20. [Google Scholar] [CrossRef]
- Gondhalekar, D.; Ramsauer, T. Nexus City: Operationalizing the urban Water-Energy-Food Nexus for climate change adaptation in Munich, Germany. Urban Clim. 2017, 19, 28–40. [Google Scholar] [CrossRef]
- Ramaswami, A.; Boyer, D.; Nagpure, A.S.; Fang, A.; Bogra, S.; Bakshi, B.; Cohen, E.; Rao-Ghorpade, A. An urban systems framework to assess the trans-boundary food-energy-water nexus: Implementation in Delhi, India. Environ. Res. Lett. 2017, 12, 025008. [Google Scholar] [CrossRef] [Green Version]
- Boyer, D.; Sarkar, J.; Ramaswami, A. Diets, Food Miles, and Environmental Sustainability of Urban Food Systems: Analysis of Nine Indian Cities. Earth’s Future 2019, 7, 911–922. [Google Scholar] [CrossRef] [Green Version]
- Boyer, D. Comparing urban food system characteristics and actions in US and Indian cities from a multi-environmental impact perspective Toward a streamlined approach. J. Ind. Ecol. 2020, 24, 841–854. [Google Scholar] [CrossRef]
- Blas, A.; Garrido, A.; Willaarts, B. Food consumption and waste in Spanish households: Water implications within and beyond national borders. Ecol. Indic. 2018, 89, 290–300. [Google Scholar] [CrossRef]
- Harris, F.B.; Green, R.; Joy, E.; Haines, A.; Dangour, A. The Water Use of Diets in India. Ann. Glob. Health 2017, 83, 89. [Google Scholar] [CrossRef]
- Harris, F.; Green, R.F.; Joy, E.J.M.; Kayatz, B.; Haines, A.; Dangour, A.D. The water use of Indian diets and socio-demographic factors related to dietary blue water footprint. Sci. Total Environ. 2017, 587–588, 128–136. [Google Scholar] [CrossRef]
- Kang, J.; Lin, J.; Zhao, X.; Zhao, S.; Kou, L. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City. Sustainability 2017, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Vanham, D.; Bidoglio, G. The water footprint of Milan. Water Sci. Technol. 2014, 69, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D. The water footprint of Austria for different diets. Water Sci. Technol. 2013, 67, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; Comero, S.; Gawlik, B.M.; Bidoglio, G. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 2018, 1, 518–525. [Google Scholar] [CrossRef]
- Vanham, D.; Gawlik, B.M.; Bidoglio, G. Cities as hotspots of indirect water consumption: The case study of Hong Kong. J. Hydrol. 2017. [Google Scholar] [CrossRef]
- Borowski, P.F. Nexus between water, energy, food and climate change as challenges facing the modern global, European and Polish economy. AIMS Geosci. 2020, 6, 397–421. [Google Scholar] [CrossRef]
- Url, O.; Monograph, P.V.; Middle, L.S.E.; Centre, E.; Series, P.; Centre, M.E. Characterising the Water-Energy-Food Nexus in Kuwait and the Gulf region. Lond. Sch. Econ. Middle East Cent. 2019, 28, 1–75. [Google Scholar]
- Dobbs, R.; Smit, S.; Remes, J.; Manyika, J.; Roxburgh, C.; Restrepo, A. Urban world: Mapping the economic power of cities. World 2011, 46, 1–49. [Google Scholar]
- Vanham, D.; Hoekstra, A.Y.; Wada, Y.; Bouraoui, F.; de Roo, A.; Mekonnen, M.M.; van de Bund, W.J.; Batelaan, O.; Pavelic, P.; Bastiaanssen, W.G.M.; et al. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”. Sci. Total Environ. 2018, 613–614, 218–232. [Google Scholar] [CrossRef]
- Fialkiewicz, W.; Burszta-Adamiak, E.; Kolonko-Wiercik, A.; Manzardo, A.; Loss, A.; Mikovits, C.; Scipioni, A. Simplified direct water footprint model to support urban water management. Water (Switzerland) 2018, 10, 630. [Google Scholar] [CrossRef] [Green Version]
- Scipioni, A.; Manzardo, A.; Loss, A.; Rosa, V.; Kolonko, A.; Malinowski, P.; Leonhardt, G.; Rauch, W.; Haida, C.; Schneider, K.; et al. Water footprint in strategic water management at the urban level: The urban wftp european project. Water Footpr. Eur. 2014, 1, 143–147. [Google Scholar]
- Manzardo, A.; Loss, A.; Fialkiewicz, W.; Rauch, W.; Scipioni, A. Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza. Ecol. Indic. 2016, 69, 165–175. [Google Scholar] [CrossRef]
- Koteswara Rao, D.; Chandrasekharam, D. Quantifying the water footprint of an urban agglomeration in developing economy. Sustain. Cities Soc. 2019, 50, 101686. [Google Scholar] [CrossRef] [Green Version]
- Baer-Nawrocka, A.; Sadowski, A. Food security and food self-sufficiency around the world: A typology of countries. PLoS ONE 2019, 14, e0213448. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Zurayk, R. Pandemic and Food Security: A View from the Global South. J. Agric. Food Syst. Community Dev. 2020, 9, 1–5. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Le risque d’inondation et les perspectives de changement climatique mondial et régional. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Green, R.F.; Joy, E.J.M.; Harris, F.; Agrawal, S.; Aleksandrowicz, L.; Hillier, J.; Macdiarmid, J.I.; Milner, J.; Vetter, S.H.; Smith, P.; et al. Greenhouse gas emissions and water footprints of typical dietary patterns in India. Sci. Total Environ. 2018, 643, 1411–1418. [Google Scholar] [CrossRef]
- Suparana Katyaini, A.B. Water Resources Research. Water Resour. Res. 2017, 1–18. [Google Scholar] [CrossRef]
- Fickling, D. How India’s Water Ends Up Everywhere But India. Available online: https://www.bloombergquint.com/gadfly/india-is-the-world-s-biggest-exporter-of-water-despite-shortages (accessed on 25 June 2020).
- SreeVidhya, K.S.; Elango, L. Temporal variation in export and import of virtual water through popular crop and livestock products by India. Groundw. Sustain. Dev. 2019, 8, 468–473. [Google Scholar] [CrossRef]
- Anand, A.; Sreevatsan, A.; Taraporevala, P. An overview of the smart cities mission in India. SCM Policy Brief Cent. Policy Res. 2018. Available online: https://smartnet.niua.org/sites/default/files/resources/scm_policy_brief_28th_aug.pdf (accessed on 25 June 2020).
- Marttunen, M.; Mustajoki, J.; Sojamo, S.; Ahopelto, L.; Keskinen, M. A framework for assessing water security and the water-energy-food nexus-the case of Finland. Sustainability 2019, 11, 2900. [Google Scholar] [CrossRef] [Green Version]
- Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- Prakash, A. The periurban water security problem: A case study of Hyderabad in Southern India. Water Policy 2014, 16, 454–469. [Google Scholar] [CrossRef]
- HMDA. Report on Data Compilation and Statistical Analysis Volume I: Household Interview Survey Analysis; Hyderabad Metro Development Authority: Hyderabad, India, 2012. [Google Scholar]
- Hyderabad Population 2021 (Demographics, Maps, Graphs). Available online: https://worldpopulationreview.com/world-cities/hyderabad-population (accessed on 20 February 2021).
- Van Rooijen, D.J.; Biggs, T.W.; Smout, I.; Drechsel, P. Urban growth, wastewater production and use in irrigated agriculture: A comparative study of Accra, Addis Ababa and Hyderabad. Irrig. Drain. Syst. 2010, 24, 53–64. [Google Scholar] [CrossRef] [Green Version]
- NSSO and MSPI. Household Consumption of Various Goods and Services in India; Ministry of Statistics and Program Implementation: Delhi, India, 2012; Volume 558. [Google Scholar]
- NIN. Nation Institute of Nutrition Dietary Guidelines; Hyderabad, Indian Council of Medical research: Hyderabad, India, 2011; ISBN 1864965746. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of farm animals and animal products. Volume 2: Appendices. Water Res. 2010, 2, 122. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 2020, 1–9. [Google Scholar] [CrossRef]
- Davis, K.F.; Chhatre, A.; Rao, N.D.; Singh, D.; Ghosh-Jerath, S.; Mridul, A.; Poblete-Cazenave, M.; Pradhan, N.; DeFries, R. Assessing the sustainability of post-Green Revolution cereals in India. Proc. Natl. Acad. Sci. USA 2019, 116, 25034–25041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K.F.; Chiarelli, D.D.; Rulli, M.C.; Chhatre, A.; Richter, B.; Singh, D.; DeFries, R. Alternative cereals can improve water use and nutrient supply in India. Sci. Adv. 2018, 4, eaao1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurram, M.K.; Kinthada, N.R. Influence of Demographic and Socio-Economic Variations in Shaping Urban Structure—A Ward Level Study on Hyderabad, Telangana using Remote Sensing and GIS Techniques. Int. J. Eng. Sci. Math. 2018, 7, 55–63. [Google Scholar]
- Agilan, V.; Umamahesh, N.V. Detection and attribution of non-stationarity in intensity and frequency of daily and 4-h extreme rainfall of Hyderabad, India. J. Hydrol. 2015, 530, 677–697. [Google Scholar] [CrossRef]
- Vemula, S.; Srinivasa Raju, K.; Sai Veena, S. Modelling impact of future climate and land use land cover on flood vulnerability for policy support—Hyderabad, India. Water Policy 2020, 22, 733–747. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Tu, C.; Rulli, M.C.; D’odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 2019, 14. [Google Scholar] [CrossRef]
- Bala, R.; Prasad, R.; Yadav, V.P.; Sharma, J. Spatial variation of urban heat island intensity in urban cities using modis satellite data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Sultana, S.; Satyanarayana, A.N.V. Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: Impact of urbanization. Int. J. Remote Sens. 2018, 39, 6692–6730. [Google Scholar] [CrossRef]
- Dimpiri So, Just Why Did Hyderabad Flood? Available online: https://www.downtoearth.org.in/blog/water/so-just-why-did-hyderabad-flood--73875 (accessed on 22 December 2020).
- Varma, R. Water Scarcity May Cause Upto 6% Loss in GDP: World Bank. Available online: https://www.downtoearth.org.in/news/water/water-scarcity-may-cause-upto-6-loss-in-gdp-world-bank-53816 (accessed on 22 December 2020).
- Van Rooijen, D.J.; Turral, H.; Biggs, T.W. Sponge city: Water balance of mega-city water use and wastewater use in Hyderabad, India. Irrig. Drain. 2005, 54, 81–91. [Google Scholar] [CrossRef]
Food Group | Total Food Consumption (million tons/year) | Percentage Equivalent of Total Food Consumption | Total Embedded Water (MCM/year) | Percent Equivalent of Total Embedded Water | Per Capita Consumption (Kg/year) | Production WF (Liters/Kg) | Difference between Percent Equivalent of Total Embedded Water and Percent Equivalent of Total Food Consumption | Category |
---|---|---|---|---|---|---|---|---|
Cereals | 1.04 | 33 | 2973 | 44 | 111.21 | 2839 | 11 | Water-intensive |
Pulses | 0.1 | 3 | 453 | 7 | 11.2 | 4300 | 4 | Water-intensive |
Sugars | 0.1 | 3 | 229 | 3 | 10.56 | 2255 | 0 | Water-neutral |
Milk products | 0.69 | 22 | 1387 | 20 | 73.29 | 2011 | −2 | Water-neutral |
Fats and oils | 0.1 | 3 | 341 | 5 | 10.67 | 3399 | 2 | Water-neutral |
Vegetables | 0.75 | 24 | 411 | 6 | 80.52 | 543 | −18 | Water-friendly |
Fruits | 0.27 | 9 | 319 | 5 | 29.52 | 1159 | −4 | Water-friendly |
Livestock | 0.09 | 3 | 633 | 9 | 10.56 | 6376 | 6 | Water-intensive |
Coffee and tea | 0.01 | 0 | 82 | 1 | 1.25 | 6997 | 1 | Water-neutral |
Economic Class | Spending Capacity (Rupees/Capita/Month) | Population | Per capita Embedded Water Content (Cubic Meters/Capita/Year) | Total Embedded Water (MCM/year) |
---|---|---|---|---|
1 | <725 | 131806 | 493 | 65 |
2 | 860 | 244783 | 515 | 126 |
3 | 1090 | 593128 | 574 | 341 |
4 | 1295 | 941472 | 619 | 582 |
5 | 1510 | 997961 | 652 | 650 |
6 | 1760 | 1063864 | 683 | 727 |
7 | 2070 | 988546 | 713 | 705 |
8 | 2460 | 1289817 | 745 | 961 |
9 | 3070 | 1054449 | 795 | 838 |
10 | 4280 | 1242744 | 830 | 1032 |
11 | 6015 | 480151 | 917 | 440 |
12 | >6015 | 386004 | 955 | 369 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D., K.R.; Regonda, S.K.; Dornadula, C. Water and Food Nexus: Role of Socio-Economic Status on Water–Food Nexus in an Urban Agglomeration Hyderabad, India Using Consumption Water Footprint. Water 2021, 13, 637. https://doi.org/10.3390/w13050637
D. KR, Regonda SK, Dornadula C. Water and Food Nexus: Role of Socio-Economic Status on Water–Food Nexus in an Urban Agglomeration Hyderabad, India Using Consumption Water Footprint. Water. 2021; 13(5):637. https://doi.org/10.3390/w13050637
Chicago/Turabian StyleD., Koteswara Rao., Satish K. Regonda, and Chandrasekharam Dornadula. 2021. "Water and Food Nexus: Role of Socio-Economic Status on Water–Food Nexus in an Urban Agglomeration Hyderabad, India Using Consumption Water Footprint" Water 13, no. 5: 637. https://doi.org/10.3390/w13050637
APA StyleD., K. R., Regonda, S. K., & Dornadula, C. (2021). Water and Food Nexus: Role of Socio-Economic Status on Water–Food Nexus in an Urban Agglomeration Hyderabad, India Using Consumption Water Footprint. Water, 13(5), 637. https://doi.org/10.3390/w13050637