Water-Saving Agricultural Technologies: Regional Hydrology Outcomes and Knowledge Gaps in the Eastern Gangetic Plains—A Review
Abstract
:1. Introduction
2. Conservation Agriculture
2.1. Philosophies and Benefits
Main Findings | References |
---|---|
Apparent and actual water saving | |
Water-saving technologies make only narrowly perceived local water saving without considering irrigation return flows. | [94,95] |
Percolation from irrigated fields recharges the underlying aquifer in many groundwater basins, including the IGP basin, from where it is recoverable for reuse; so is not a loss. | [54,96,97,98,99,100,101,102] |
Water-saving by one user may be a loss to another over large spatial scale. So, reducing percolation does not always save water. | [75,95,103,104] |
Reduction in evaporation and water-flows to non-recoverable sinks (e.g., polluted water sources) makes actual water saving. | [105,106,107] |
Impacts of water-saving measures on water usage | |
Alternate wetting and drying (AWD) water management method saves between 15% and 60% of water compared to continuous standing water rice system. | [60,108,109,110,111,112] |
Demand for water increases when technological intervention adds more value to it (e.g., reduced cost of water due to increased irrigation efficiency); this is the re-bound effect. | [75,113,114,115,116] |
Re-bound effect is a potential hindrance in water resource management. | [117] |
Impacts of water-saving measures on regional water balance | |
Water-saving measures over regional scales cause decline in groundwater level by limiting recharge and exert stress on regional hydrology and ecology. | [38,40,77,118] |
Most rivers and aquifer systems are hydraulically connected in Bangladesh and the Bengal Basin. | [119,120] |
Separate management of surface and groundwater in the interconnected hydrologic systems hinders water resource allocation. | [121,122,123] |
Knowledge gaps in certainty and scale-effect in water saving | |
Impacts of water-saving technologies on the degree of actual water-savings and overall water usage in groundwater-based irrigation systems are poorly understood at larger spatial scales. | [75,95,115,116,124] |
The components of water balance in the Eastern Gangetic Plain (EGP) basin have not been quantified yet. | [106,125] |
Focusing on only local efficiency of water use and ignoring the return flows is a risky perception. | [126] |
Knowledge gaps in formulating proper policy for water resources management | |
Lack of attention, improper legislation and ineffective/less-effective institutions are the common problems in governing groundwater in many countries, especially in the face of re-bound effect. | [75,127,128,129] |
Reliable detail information on water reserves, safe yield, water withdrawal patterns and water quality dynamics in the aquifers is lacking in most of the EGP basin. | [130] |
Whether water-saving technologies can maintain sustainable development and what more need to be done for this in future remain uncertain. | [39] |
Appropriate strategy for water management should be regionally suited and must establish strong regulation and policy. This is a topic of future research for the Indo-Gangetic Plains (IGP) basin. | [9,131,132,133,134] |
2.2. Impacts on Soil and Water Use
3. Agricultural Water–Saving
3.1. Water-Saving Measures
3.2. Apparent and Actual Water-Saving
3.3. Impacts on Water Use
4. Regional Hydrology Outcomes
5. Gaps in Current Knowledge
5.1. Uncertainty in Water-Saving
5.2. Limited Knowledge of Recharge–Discharge Interaction
5.3. Uncertain Causes of Groundwater Decline
5.4. Inadequate Understanding of Scale-Effects
5.5. Weakness in Policy
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parry, M. Food and energy security: Exploring the challenges of attaining secure and sustainable supplies of food and energy. Food Energy Secur. 2012, 1, 1–2. [Google Scholar] [CrossRef]
- World Bank. World Development Report: Agriculture for Development; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Fendorf, S.; Benner, S.G. Hydrology: Indo-Gangetic groundwater threat. Nat. Geosci. 2016, 9, 732–733. [Google Scholar] [CrossRef]
- Bharati, L.; Sharma, B.R.; Smakthin, V. (Eds.) The Ganges River Basin: Status and Challenges in Water, Environment and Livelihoods, 1st ed.; Routledge: London, UK/New York, NY, USA, 2016. [Google Scholar]
- Jain, M.; Singh, B.; Srivastava, A.A.K.; Malik, R.K.; McDonald, A.J.; Lobell, D.B. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt. Env. Res. Lett. 2017, 12, 094011. [Google Scholar] [CrossRef]
- Soneja, S.I.; Tielsch, J.M.; Khatry, S.K.; Curriero, F.C.; Breysse, P.N. Highlighting uncertainty and recommendations for improvement of black carbon biomass fuel-based emission inventories in the Indo-Gangetic Plain region. Curr. Environ. Health Rep. 2016, 3, 73–80. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Rangarajan, R.; Scanlon, B.R.; Malakar, P.; Verma, S. Long-term groundwater recharge rates across India by in situ measurements. Hydrol. Earth Syst. Sci. 2019, 23, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Timsina, J.; Connor, D.J. Productivity and management of R–W cropping systems: Issues and challenges. Field Crops Res. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- Urfels, A.; McDonald, A.J.; Krupnik, T.J.; van Oel, P.R. Drivers of groundwater utilization in water-limited rice production systems in Nepal. Water Int. 2020, 45, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Narayanamoorthy, A.; Deshpande, R.S. Where Water Seeps: Towards a New Phase in India’s Irrigation Reforms; Academic Foundation: New Delhi, India, 2005. [Google Scholar]
- Narayanamoorthy, A.; Hanjra, M.A. Rural infrastructure and agricultural output linkages: A study of 256 Indian districts. Indian J. Agric. Econ. 2006, 61, 444–459. [Google Scholar]
- Vaidyanathan, A.; Krishanakumar, A.; Rajagopal, A.; Varatharajan, D. Impact of irrigation on productivity of land. J. Indian School Polit. Econ. 1994, 6, 60–145. [Google Scholar]
- Renner, J. Global Irrigated Area at Record Levels, But Expansion Slowing; Worldwatch Institute: Washington, DC, USA, 2012; Available online: http://www.worldwatch.org/global-irrigated-area-record-levels-expansion-slowing (accessed on 4 September 2019).
- BADC (Bangladesh Agricultural Corporation). Data on Irrigation and Groundwater Tables; Bangladesh Agricultural Development Corporation: Dhaka, Bangladesh, 2016.
- Zilberman, D.; Taylor, R.; Shim, M.E.; Gordon, B. How politics and economics affect irrigation and conservation. Choices 2017, 32, 1–6. [Google Scholar]
- Santeramo, F.G. On the composite indicators for food security: Decisions matter. Food Rev. Int. 2015, 31, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Loeve, R.; Dong, B.; Hong, L.; Chen, C.D.; Zhang, S.; Barker, R. Transferring water from irrigation to higher valued uses: A case study of the Zhanghe irrigation system in China. Paddy Water Environ. 2007, 5, 263–269. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leemans, R.; de Groot, R.S. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Hoque, M.A.; Burgess, W.G. 14C-dating of deep groundwater in the Bengal Aquifer System, Bangladesh: Implications for aquifer anisotropy recharge sources and sustainability. J. Hydrol. 2012, 444, 209–220. [Google Scholar] [CrossRef]
- Federico, G. Feeding the World: An Economic History of Agriculture, 1800–2000, 1st ed.; Princeton University Press: New York, NY, USA, 2008. [Google Scholar]
- Hansen, J.; Hellin, J.; Rosenstock, T.; Fisher, E.; Cairns, J.; Stirling, C.; Lamanna, C.; van Etten, J.; Rose, A.; Campbell, B. Climate risk management and rural poverty reduction. Agric. Syst. 2019, 172, 28–46. [Google Scholar] [CrossRef]
- Shah, T.; Roy, A.D.; Qureshi, A.S.; Wang, J. Sustaining Asia’s Groundwater Boom: An Overview of Issues and Evidence. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2003; Volume 27, pp. 130–141. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization of the United Nations). AQUASTAT: FAO Database. Available online: http://www.fao.org/nr/water/aquastat/data/query/index.html (accessed on 12 September 2020).
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [Green Version]
- Alam, K. Farmers’ adaptation to water scarcity in drought-prone environments: A case study of Rajshahi District, Bangladesh. Agric. Water Manag. 2015, 148, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Pathak, H.; Gupta, R.K. Sustainability of the rice–wheat crop-ping system: Issues, constraints, and remedial options. J. Crop Improv. 2007, 19, 125–136. [Google Scholar] [CrossRef]
- Hira, G.S. Water management in northern states and the food security of India. J. Crop Improv. 2009, 23, 136–157. [Google Scholar] [CrossRef]
- Humphreys, E.; Kukal, S.S.; Christen, E.W.; Hira, G.S.; Sharma, R.K. Halting the Groundwater Decline in North-West India—Which Crop Technologies Will Be Winners? Adv. Agron. 2010, 109, 155–217. [Google Scholar]
- Stevenson, J.R.; Villoria, N.; Byerlee, D.; Kelley, T.; Maredia, M. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc. Natl. Acad. Sci. USA 2013, 110, 8363–8368. [Google Scholar] [CrossRef] [Green Version]
- Montpellier Panel. Sustainable Intensification: A New Paradigm for African Agriculture, London. 2013. Available online: https://farmingfirst.org/2013/04/sustainable-intensification-a-new-paradigm-for-african-agriculture/ (accessed on 26 February 2021).
- Kabir, M.S.; Salam, M.U.; Chowdhury, A.; Rahman, N.M.F.; Iftekharuddaula, K.M.; Rahman, M.S.; Rashid, M.H.; Dipti, S.S.; Islam, A.; Latif, M.A.; et al. Rice vision for Bangladesh: 2050 and beyond. Bangladesh Rice J. 2015, 19, 1–18. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Rodell, M.; Wada, Y.; Chattopadhyay, S.; Velicogna, I.; Pangaluru, K.; Famiglietti, J.S. Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Sci. Rep. 2017, 7, 7453. [Google Scholar] [CrossRef] [Green Version]
- Gleick, P.H.; Heberger, M. Water and Conflict. In The World’s Water; Island Press: Washington, DC, USA, 2014; pp. 159–171. [Google Scholar]
- PARC-RWC. Pakistan Agricultural Research Council–Rice–Wheat Consortium (PARC-RWC) for the Indo-Gangetic Plains. In Proceedings of the National Workshop on Rice–Wheat Systems, Islamabad, Pakistan, 11–12 December 2002; Pakistan Agricultural Research Council and Rice–Wheat Consortium for the Indo-Gangetic Plains: Islamabad, Pakistan/New Delhi, India, 2003; p. 118. [Google Scholar]
- Mujeeb-ur-Rehman, H.; Ali, S.; Akram, M.M. Resource conservation strategy for enhancing wheat productivity in Pakistan. Mycopath 2011, 9, 79–85. [Google Scholar]
- Tesfaye, K.; Khatri-Chhetri, A.; Aggarwal, P.K.; Mequanint, F.; Shirsath, P.B.; Stirling, C.M.; Jat, M.L.; Rahut, D.B.; Erenstein, O. Assessing climate adaptation options for cereal-based systems in the eastern Indo-Gangetic Plains, South Asia. J. Agric. Sci. 2019, 157, 189–210. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, H.; Huo, Z.; Wang, F.; Shock, C.C.; Clothier, B.E. Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table. Agric. Water Manag. 2016, 171, 131–141. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China. Hydrol. Earth Syst. Sci. 2014, 18, 3951–3967. [Google Scholar] [CrossRef] [Green Version]
- Tabbal, D.F.; Bouman, B.A.M.; Bhuiyan, S.I.; Sibayan, E.B.; Sattar, M.A. On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agric. Water Manag. 2002, 56, 93–112. [Google Scholar] [CrossRef]
- Mays, L.W. Groundwater resources sustainability: Past, present, and future. Water Resour. Manag. 2013, 27, 4409–4424. [Google Scholar] [CrossRef]
- Grogan, D.S.; Wisser, D.; Prusevich, A.; Lammers, R.B.; Frolking, S. The use and re-use of unsustainable groundwater for irrigation: A global budget. Environ. Res. Lett. 2017, 12, 034017. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z.; Huo, Z.; Qu, Z.; Xia, Y.; Fernald, A. Impacts of agricultural water saving practice on regional groundwater and water consumption in an arid region with shallow groundwater. Environ. Earth Sci. 2016, 75, 1204. [Google Scholar] [CrossRef]
- Shahid, S. Spatial and temporal characteristics of droughts in the western part of Bangladesh. Hydrol. Process. 2008, 22, 2235–2247. [Google Scholar] [CrossRef]
- Shahid, S.; Behrawan, H. Drought risk assessment in the western part of Bangladesh. Nat. Hazards 2008, 46, 391–413. [Google Scholar] [CrossRef]
- Jahan, C.; Mazumder, Q.H.; Islam, A.T.M.M.; Adham, M. Impact of irrigation in Barind area, North-west Bangladesh-an evaluation based on the meteorological parameters and fluctuation trend in groundwater table. J. Geol. Soc. India 2010, 76, 134–142. [Google Scholar] [CrossRef]
- Jahan, C.; Mazumder, Q.H.; Akter, N.; Adham, M.I.; Zaman, M. Hydrogeological environment and groundwater occurrences in the plio-pleistocene aquifer in Barind area, North-west Bangladesh. Bangladesh Geosci. J. 2012, 16, 23–37. [Google Scholar]
- Shamsudduha, M.; Taylor, R.; Longuevergne, L. Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water Resour. Res. 2012, 48, W02508. [Google Scholar] [CrossRef] [Green Version]
- Mojid, M.A.; Parvez, M.F.; Mainuddin, M.; Hodgson, G. Water table trend—A sustainability status of groundwater development in North-West Bangladesh. Water 2019, 11, 1182. [Google Scholar] [CrossRef] [Green Version]
- Takara, K.; Ikebuchi, S. Japan’s 1994 drought in terms of drought duration curve. In Proceedings of the 5th Symposium of Water Resources, Japan, 12–14 November 1997; pp. 467–477. [Google Scholar]
- Sajjan, A.; Muhammed, B.; Dey, N.C. Impact of 1994–95 Drought in the North-West of Bangladesh through Questionnaire Survey. In Proceedings of the 2nd Annual Paper Meet of Agriculture Engineering Division; Institution of Engineers: Bangladesh, 2002; Volume 35, pp. 31–35. [Google Scholar]
- Dey, N.C.; Alam, M.S.; Sajjan, A.K.; Bhuiyan, M.; Ghose, L.; Ibaraki, Y.; Karim, F. Assessing environmental and health impact of drought in the North-west Bangladesh. J. Environ. Sci. Nat. Resour. 2011, 4, 89–97. [Google Scholar] [CrossRef]
- Dey, N.C.; Saha, R.; Parvez, M.; Bala, S.K.; Islam, A.S.; Paul, J.K.; Hossain, M. Sustainability of groundwater use for irrigation of dry-season crops in northwest Bangladesh. Groundwater Sustain. Dev. 2017, 4, 66–77. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Bonsor, H.C.; Ahmed, K.M.; Burgess, W.G.; Basharat, M.; Calow, R.C.; Dixit, A.; Foster, S.S.D.; Gopal, K.; Lapworth, D.J.; et al. Groundwater Quality and Depletion in the Indo-Gangetic Basin Mapped From in Situ Observations. Nat. Geosci. 2016, 9, 762–766. [Google Scholar] [CrossRef]
- Akhilesh, S. Zero tillage – A profitable resource conservation technology in agriculture. Adv. Plants Agric. Res. 2017, 6, 24–25. [Google Scholar] [CrossRef] [Green Version]
- Gatto, M.; Petsakos, A.; Hareau, G. Sustainable Intensification of Rice-Based Systems with Potato in Eastern Indo-Gangetic Plains. Am. J. Potato Res. 2020, 97, 162–174. [Google Scholar] [CrossRef] [Green Version]
- ICAR (Indian Council of Agricultural Research). State-Specific Interventions for Higher Agricultural Growth. 2018. Available online: http://www.icar.org.in/files/state-specific/chapter/125.htm (accessed on 11 September 2020).
- Wolff, P.; Stein, T.M. Water efficiency and conservation in agriculture–opportunities and limitations. Agric. Rural Dev. 1998, 2, 2–20. [Google Scholar]
- Liu, Y.; Yu, X.; He, Y. The Research Progress of Water-Saving Irrigation in China Since 2000. In Advanced Materials Research; Trans Tech Publications Ltd.: Bach, Switzerland, 2014; Volume 955, pp. 3206–3210. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Gu, W.; Liu, H. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agric. Water Manag. 2015, 150, 67–80. [Google Scholar] [CrossRef]
- Lamaddalena, N.; Shatanawi, M.; Todorovic, M.; Bogliotti, C.; Albrizio, R. Water use efficiency and water productivity. WASAMED Projects (EU Contract ICA3-CT-2002-10013). In Proceedings of the 4th WASAMED Workshop, Aman-Jordan. Options Mediterraneennes SERIES B: Studies and Research, Bari, Italy, 26–30 September 2005; Number 57, CIHCIHEAM/IAMB—EU DG IAMB. 2007; pp. 5–6. [Google Scholar]
- Perry, C.; Steduto, P.; Allen, R.G.; Burt, C.M. Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities. Agric. Water Manag. 2009, 96, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
- Heydari, N. Water productivity in agriculture: Challenges in concepts, terms and values. Irrig. Drain. 2014, 63, 22–28. [Google Scholar] [CrossRef]
- Fishman, R.; Devineni, N.; Raman, S. Can improved agricultural water use efficiency save India’s groundwater? Environ. Res. Lett. 2015, 10, 084022. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.H.; Shao, G.C.; Meng, J.J.; Chen, C.R.; Huang, D.D. Variable fuzzy assessment of water use efficiency and benefits in irrigation district. Water Sci. Eng. 2015, 8, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.M.; Pereira, L.S.; Fang, S.X.; Dong, B. Modelling and multi criteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin. Agric. Water Manag. 2007, 94, 93–108. [Google Scholar] [CrossRef]
- Khan, S. Pathways for Realizing Water Conservancy in Irrigation Systems. In Proceedings of the International Forum on Water Resources Management and Irrigation Modernization in Shanxi Province, China; FAO Rap Publication: Roma, Italy, 2007. [Google Scholar]
- Pereira, L.S.; Gonçalves, J.M.; Dong, B.; Mao, Z.; Fang, S.X. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China. Agric. Water Manag. 2007, 93, 109–122. [Google Scholar] [CrossRef]
- Han, D.; Song, X.; Currell, M.J.; Cao, G.; Zhang, Y.; Kang, Y. A survey of groundwater levels and hydro-geochemistry in irrigated fields in the Karamay agricultural development area, Northwest China: Implications for soil and groundwater salinity resulting from surface water transfer for irrigation. J. Hydrol. 2011, 405, 217–234. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Soil Tillage Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Jat, R.A.; Wani, P.S.; Saharwat, K.L. Conservation agriculture in the semi-arid tropics: Prospects and problems. Advan. Agron. 2012, 117, 192–273. [Google Scholar]
- Peterson, J.M.; Ding, Y. Economic adjustments to groundwater depletion in the high plains: Do water-saving irrigation systems save water? Am. J. Agric. Econ. 2005, 87, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.P.; Tian, H.Y.; Guo, B.T. Determination method of water saving threshold in arid area. Procedia Eng. 2012, 28, 873–876. [Google Scholar]
- Masih, I.; Giordano, M. Constraints and opportunities for water savings and increasing productivity through Resource Conservation Technologies in Pakistan. Agric. Ecosyst. Environ. 2014, 187, 106–115. [Google Scholar]
- Rizwan, M.; Bakhsh, A.; Li, X.; Anjum, L.; Jamal, K.; Hamid, S. Evaluation of the impact of water management technologies on water savings in the lower chenab canal command area, Indus River Basin. Water 2018, 10, 681. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.; Tuinhof, A.; Kemper, K.; Garduno, H.; Nanni, M. Groundwater Management Strategies: Facets of the Integrated Approach; (No30091, p. 1); The World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Seckler, D.; Molden, D.; Sakthivadivel, R. The concept of efficiency in water resources management and policy. Water Product. Agric. Limits Oppor. Improv. 2003, 1, 37–51. Available online: https://hdl.handle.net/10568/36992 (accessed on 4 September 2019).
- Harrington, L.; Erenstein, O. Conservation agriculture and resource conserving technologies: A global perspective. Agromeridian 2005, 1, 32–43. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Conservation Agriculture. 2007. Available online: http://www.fao.org/conservation-agriculture/en/ (accessed on 12 September 2020).
- FAO (Food and Agriculture Organization of the United Nations). 2012. Available online: http://www.fao.org/ag/ca/6c.html (accessed on 4 September 2019).
- Hobbs, P.R. Conservation agriculture: What is it and why is it important for future sustainable food production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, D.; Jha, R.K.; Tiwari, T.P.; Gathala, M.K.; Shrestha, H.K.; Panday, D. Is conservation agriculture a potential option for cereal-based sustainable farming system in the Eastern Indo-Gangetic Plains of Nepal? Cogent Food Agric. 2018, 4, 1557582. [Google Scholar]
- Dumanski, J.; Peiretti, R.; Benetis, J.; McGarry, D.; Pieri, C. The paradigm of conservation tillage. Proc. World Assoc. Soil Water Conserv. 2006, 1, 58–64. [Google Scholar]
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice-wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crops Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Conservation Agriculture; Food and Agriculture Organization: Rome, Italy, 2018; Available online: http://www.fao.org/conservationagriculture/en/ (accessed on 27 May 2018).
- Islam, S.; Gathala, M.K.; Tiwari, T.P.; Timsina, J.; Laing, A.M.; Maharjan, S.; Chowdhury, A.K.; Bhattacharya, P.M.; Dhar, T.; Mitra, B.; et al. Conservation agriculture based sustainable intensification: Increasing yields and water productivity for smallholders of the Eastern Gangetic Plains. Field Crops Res. 2019, 238, 1–17. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- CTIC (Conservation Tillage Information Center). National Crop Residue Management Survey; NACD’s Conservation Technology Information Center: West Lafayette, IN, USA, 2004. [Google Scholar]
- Goss, M.J.; Carvalho, M.; Brito, I. Functional Diversity of Mycorrhiza and Sustainable Agriculture: Management to Overcome Biotic and Abiotic Stresses; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Bhan, S.; Behera, U.K. Conservation agriculture in India–Problems, prospects and policy issues. Int. Soil Water Conserv. Res. 2014, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.K.; Ghosh, A.; Dhar, T.; Bhattacharya, P.M.; Mitra, B.; Rakesh, S.; Paneru, P.; Shrestha, S.R.; Manandhar, S.; Beura, K.; et al. Trends in key soil parameters under conservation agriculture-based sustainable intensification farming practices in the Eastern Ganga Alluvial Plains. Soil Res. 2019, 57, 883–893. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of Conservation Agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Wang, J.; Yuan, J.; Zhang, W. Modeling of soil water regime and water balance in a transplanted rice field experiment with reduced irrigation. Water 2017, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.; Steduto, P.; Karajeh, F. Does Improved Irrigation Technology Save Water? A Review of the Evidence; Food and Agriculture Organization of the United Nations: Cairo, Egypt, 2017; p. 42. [Google Scholar]
- Iwasaki, Y.; Ozaki, M.; Nakamura, K.; Horino, H.; Kawashima, S. Relationship between increment of groundwater level at the beginning of irrigation period and paddy filed area in the Tedori River Alluvial Fan Area, Japan. Paddy Water Environ. 2013, 11, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Fujihara, Y.; Yamada, R.; Oda, M.; Fujii, H.; Ito, O.; Kashiwagi, J. Effects of puddling on percolation and paddy yields in rainfed lowland paddy cultivation: Case study in Khammouane Province, Central Laos. Agric. Sci. 2013, 4, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Šimůnek, J.; Jing, L.; Zhang, Z.; Ni, L. Evaluation of water movement and water losses in a direct-seeded-paddy field experiment using Hydrus-1D. Agric. Water Manag. 2014, 142, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Bonsor, H.C.; MacDonald, A.M.; Ahmed, K.M.; Burgess, W.G.; Basharat, M.; Calow, R.C.; Dixit, A.; Foster, S.S.D.; Gopal, K.; Lapworth, D.J.; et al. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeol. J. 2017, 25, 1377–1406. [Google Scholar] [CrossRef] [Green Version]
- Adarsh, S.; Thomas, G. Artificial groundwater recharge through rice (Oryza sativa L.) cultivation: A systematic review. Int. J. Chem. Stud. 2019, 7, 1856–1860. [Google Scholar]
- Rushton, K.R.; Zaman, M.A.; Hasan, M. Monitoring groundwater heads and estimating recharge in multi-aquifer systems illustrated by an irrigated area in North-West Bangladesh. Sustain. Water Resour. Manag. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Xie, H.; Longuevergne, L.; Ringler, C.; Scanlon, B.R. Integrating groundwater irrigation into hydrological simulation of India: Case of improving model representation of anthropogenic water use impact using GRACE. J. Hydrol. Reg. Stud. 2020, 29, 100681. [Google Scholar] [CrossRef]
- Molden, D.; Fraiture, C.D.E. Comprehensive assessment of water management in agriculture. Agric. Water Manag. 2010, 97, 493–578. [Google Scholar]
- Mainuddin, M.; Maniruzzaman, M.; Alam, M.M.; Mojid, M.A.; Schmidt, E.J.; Islam, M.T.; Scobie, M. Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh. Agric. Water Manag. 2020, 240, 106294. [Google Scholar] [CrossRef]
- Foster, S.; Chilton, J.; Moench, M.; Cardy, F.; Schiffler, M. Groundwater in Rural Development: Facing the Challenges of Supply and Resource Sustainability; Technical Paper 463; World Bank: Washington, DC, USA, 2000; p. 98. [Google Scholar]
- Humphreys, E.; Meisner, C.; Gupta, R.; Timsina, J.; Beecher, H.G.; Lu, T.Y.; Yadvinder-Singh, Y.S.; Gill, M.A.; Masih, I.; Guo, Z.J.; et al. Water saving in rice-wheat systems. Plant Product. Sci. 2005, 8, 242–258. [Google Scholar] [CrossRef]
- LaHue, G.T.; Linquist, B.A. The contribution of percolation to water balances in water-seeded rice systems. Agric. Water Manag. 2021, 243, 106445. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Hira, G.S.; Rachhpal, S.; Kukal, S.S. Soil matric suction: A criterion for scheduling irrigation to rice (Oryza sativa). Indian J. Agric. Sci. 2002, 72, 236–237. [Google Scholar]
- Humphreys, E.; Kukal, S.S.; Amanpreet, K.; Sudhir, T.; Sudhir, Y.; Yadvinder, S.; Balwinder, S.; Timsina, J.; Dhillon, S.S.; Prashar, A.; et al. Permanent Beds for Rice–Wheat Systems in Punjab, India 2: Water Balance and Soil Water Dynamics. In ACIAR Proceedings Series; ACIAR: Canberra, Australia, 2008; pp. 37–61. [Google Scholar]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. Alternate wetting and moderate soil drying improves root and shoot growth in rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Feng, Z.Z.; Wang, X.K.; Feng, Z.W. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agric. Water Manag. 2005, 71, 131–143. [Google Scholar] [CrossRef]
- Berbel, J.; Gutiérrez-Martín, C.; Rodríguez-Díaz, J.A.; Camacho, E.; Montesinos, P. Literature review on re-bound effect of water saving measures and analysis of a Spanish case study. Water Resour. Manag. 2015, 29, 663–678. [Google Scholar] [CrossRef] [Green Version]
- Loch, A.; Adamson, D. Drought and the Re-bound Effect: A Murray–Darling Basin Example. Nat. Hazards 2015, 79, 1429–1449. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Linstead, C. The contribution of improvements in irrigation efficiency to environmental flows. Front. Environ. Sci. 2018, 6, 48. [Google Scholar] [CrossRef]
- European Commission (EC). A Blueprint to Safeguard Europe’s Water Resources, Brussels. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0673 (accessed on 12 September 2020).
- Foster, S.; Pulido-Bosch, A.; Vallejos, Á.; Molina, L.; Llop, A.; MacDonald, A.M. Impact of irrigated agriculture on groundwater-recharge salinity: A major sustainability concern in semi-arid regions. Hydrogeol. J. 2018, 26, 2781–2791. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Roehrig, J. Estimation of Potential Recharge and Groundwater Resource Assessment-A Case Study in Low Barind Area, Bangladesh. In Conference on International Agricultural Research for Development; University of Bonn: Bonn, Germany, 2006; pp. 11–13. [Google Scholar]
- Michael, H.A.; Voss, C.I. Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis. Hydrogeol. J. 2009, 17, 1561–1577. [Google Scholar] [CrossRef]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water: A Single Resource. USGS Circular 1139; US Geological Survey: Denver, CO, USA, 1998. [Google Scholar]
- Fullagar, I.; Brodie, R.; Sundaram, B.; Hostetler, S.; Baker, P. Managing Connected Surface Water and Groundwater Resources. In Science for Decision Makers; Australian Government, Bureau of Rural Sciences: Canberra, Australia, 2006. [Google Scholar]
- Brkić, Ž.; Kuhta, M.; Larva, O.; Gottstein, S. Groundwater and connected ecosystems: An overview of groundwater body status assessment in Croatia. Environ. Sci. Eur. 2019, 31, 75. [Google Scholar] [CrossRef]
- Loeve, R.; Dong, B.; Molden, D. Field-Level Water Savings in the Zhanghe Irrigation System and the Impact at the System Level. In Proceedings of the International Workshop on Water-wise Rice Production, Los Baños, Philippines, 8–11 April 2002; p. 356. [Google Scholar]
- Arif, C.; Setiawan, B.I.; Mizoguchi, M. Estimation of water balance components in paddy fields under non-flooded irrigation regimes by using excel solver. J. Agron. 2012, 11, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.E.; Grafton, R.Q.; Kirby, M.; Hanjra, M.A. Understanding irrigation water use efficiency at different scales for better policy reform: A case study of the Murray-Darling Basin, Australia. Water Policy 2011, 13, 1–17. [Google Scholar] [CrossRef]
- Ahmad, M.U.D.; Turral, H.; Masih, I.; Giordano, M.; Masood, Z. Water Saving Technologies: Myths and Realities Revealed in Pakistan’s Rice-Wheat Systems; International Water Management Institute (IWMI): Anand, India, 2007. [Google Scholar]
- Mechlem, K. Groundwater Governance: The Role of Legal Frameworks at the Local and National Level – Established Practice and Emerging Trends. J. Water 2016, 347, 347. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S.; Saha, B.; Saha, B.; Uddin, M.S.; Panna, C.H.; Bhattacharya, P.; Saha, R. Groundwater governance in Bangladesh: Established practices and recent trends. Groundwater for Sust. Dev. 2019, 8, 69–81. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Ahmad, Z.U.; Timothy, J.K. Moving from resource development to resource management: Problems, prospects and policy recommendations for sustainable groundwater management in Bangladesh. Water Resour. Manag. 2015, 29, 4269–4283. [Google Scholar] [CrossRef]
- Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Theesfeld, I. Institutional challenges for national groundwater governance: Policies and issues. Ground Water 2010, 48, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sophocleous, M.A. From safe yield to sustainable development of water resources and the Kansas experience. J. Hydrol. 2000, 235, 27–43. [Google Scholar] [CrossRef]
- Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Bhushan, L.; Ladha, J.K.; Gupta, R.K.; Singh, S.; Tirol-Padre, A.; Saharawat, Y.S.; Gathala, M.; Pathak, H. Saving of water and labor in a rice–wheat system with no tillage and direct seeding technologies. Agron. J. 2007, 99, 1288–1296. [Google Scholar] [CrossRef]
- Gathala, M.K.; Timsina, J.; Islam, S.; Rahman, M.; Hossain, I.; Rashid, H.-A.; Ghosh, A.K.; Krupnik, T.J.; Tiwari, T.P.; McDonald, A. Conservation agriculture based tillage and crop establishment options can maintain farmers’ yields and increase profits in South Asia’s rice-maize systems: Evidence from Bangladesh. Field Crops Res. 2015, 172, 85–98. [Google Scholar] [CrossRef]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Ghosh, A.; Rathore, N.S.; Kumar, B.; Pradhan, S.; Majumdar, K.; Satyanarayana, T.; Jat, M.L.; et al. Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water use and radiation conversion under a semiarid agro-ecosystem. Agric. Water Manag. 2017, 192, 306–319. [Google Scholar] [CrossRef]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium textured soil under a seven-year rice–wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Parihar, C.M.; Yadav, M.R.; Jat, S.L.; Singh, A.K.; Kumar, B.; Pradhan, S.; Chakraborty, D.; Jat, M.L.; Jat, R.K.; Saharawat, Y.S.; et al. Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil Tillage Res. 2016, 161, 116–128. [Google Scholar]
- Singh, V.K.; Singh, Y.; Dwivedi, B.S.; Singh, K.S.; Majumdar, K.; Jat, M.L.; Mishra, R.P.; Rani, M. Soil physical properties, yield trends and economics after five years of conservation agriculture based rice−maize system in north-western India. Soil Tillage Res. 2016, 155, 133–148. [Google Scholar]
- Clemmens, A.J.; Allen, R.G. Impact of agricultural water conservation on water availability. In Impacts of Global Climate Change; ASCE: Reston, VA, USA, 2005; pp. 1–14. [Google Scholar]
- Jat, M.L.; Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Jat, A.S.; Kumar, V.; Sharma, S.K.; Kumar, V.; Gupta, R. Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil Tillage Res. 2009, 105, 112–121. [Google Scholar]
- Nangia, V.; Ahmad, M.D.; Jiantao, D.; Changrong, Y.; Hoogenboom, G.; Xurong, M.; Wenqing, H.; Shuang, L.; Qin, L. Effects of conservation agriculture on land and water productivity of rainfed maize in the Yellow River Basin, China. Int. J. Agric. Biol. Eng. 2010, 3, 5–18. [Google Scholar]
- Pandey, D.; Agrawal, M.; Bohra, J.S. Greenhouse gas emissions from rice crop with different tillage permutations in rice–wheat system. Agric. Ecosys. Environ. 2012, 159, 133–144. [Google Scholar] [CrossRef]
- Saharawat, Y.S.; Ladha, J.K.; Pathak, H.; Gathala, M.K.; Chaudhary, N.; Jat, M.L. Simulation of resource-conserving technologies on productivity, income and greenhouse gas GHG emission in rice-wheat system. J. Soil Sci. Environ. Manag. 2012, 3, 9–22. [Google Scholar]
- Wang, J.; Rothausen, S.G.; Conway, D.; Zhang, L.; Xiong, W.; Holman, I.P.; Li, Y. China’s water–energy nexus: Greenhouse-gas emissions from groundwater use for agriculture. Environ. Res. Lett. 2012, 7, 014035. [Google Scholar] [CrossRef]
- Reicosky, D.C. Carbon sequestration and environmental benefits from no-till systems. In No-Till Farming Systems; Special Publication No. 3; Goddard, T., Zoebisch, M.A., Gan, Y.T., Ellis, W., Watson, A., Sombatpanit, S., Eds.; World Association of Soil and Water Conservation (WASWC): Bangkok, Thailand, 2008; pp. 43–58. [Google Scholar]
- Nelson, R.G.; Hellwinckel, C.M.; Brandt, C.C.; West, T.O.; De La Ugarte, T.; Marland, G. Energy uses and carbon dioxide emissions from cropland production in the United States, 1990–2004. J. Environ. Qual. 2009, 38, 418–425. [Google Scholar] [CrossRef]
- West, O.T.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Lal, R. No-tillage and carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. 2008, 72, 693–701. [Google Scholar] [CrossRef] [Green Version]
- CTIC (Conservation Tillage Information Center)/FAO. Mitigating Climate Change: Conservation Agriculture Stores Soil Carbon. In Proceedings of the Recommendations of the Conservation Agriculture Carbon Offset Consultation, West Lafayette, IN, USA, 28–30 October 2008; Available online: http://www.fao.org/ag/ca (accessed on 10 September 2019).
- Hobbs, P.R.; Giri, G.S.; Grace, P. Reduced and Zero Tillage Options for the Establishment of Wheat after Rice in South Asia; Rice-Wheat Consortium Paper Series 2; Rice-Wheat Consortium: New Delhi, India, 1997. [Google Scholar]
- Gupta, R.K.; Naresh, R.K.; Hobbs, P.R.; Ladha, J.K. Adopting Conservation Agriculture in the Rice-Wheat System of the Indo-Gangetic Plains: New Opportunities for Saving Water. In Water Wise Rice Production. Water Wise Rice Production, Proceedings of the International Workshop on Water Wise Rice Production, Los Banos, Philippines, April 8–11, 2002; IRRI: Laguna, Philippines, 2002; pp. 207–222. [Google Scholar]
- Hobbs, P.R.; Gupta, R.K. Rice-Wheat Cropping Systems in the Indo-Gangetic Plains: Issues of Water Productivity in Relation to New Re-source-Conserving Technologies. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CABI Publications: Wallingford, UK, 2003. [Google Scholar]
- Erenstein, O.; Farooq, U.; Malik, R.K.; Sharif, M. On-farm impacts of zero tillage wheat in South Asia’s rice-wheat systems. Field Crops Res. 2008, 105, 240–252. [Google Scholar] [CrossRef]
- Mahboubi, A.A.; Lal, R.; Fausey, N.R. Twenty-eight years of tillage effects on two soils in Ohio. Soil Sci. Soc. Am. J. 1993, 57, 506–512. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Peterson, G.A.; Reule, C.A. Tillage system and crop rotation effects on dryland crop yields and soil carbon in the Central Great Plains. Agron. J. 2002, 94, 429–1436. [Google Scholar] [CrossRef] [Green Version]
- Eze, S.; Dougill, A.J.; Banwart, S.A.; Hermans, T.D.; Ligowe, I.S.; Thierfelder, C. Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems. Soil Tillage Res. 2020, 201, 104639. [Google Scholar]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Castellanos-Navarrete, A.; Mezzalama, M.; Wall, P.; Deckers, J.; Sayre, K.D. Conservation Agriculture, Improving Soil Quality for Sustainable Production Systems. In Advances in Soil Science: Food Security and Soil Quality; CRC Press: Boca Raton, FL, USA, 2010; pp. 137–208. [Google Scholar]
- Lal, R. Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. I. Crop yield and soil physical properties. Soil Tillage Res. 1997, 42, 145–160. [Google Scholar]
- Roper, M.M.; Ward, P.R.; Keulen, A.F.; Hill, J.R. Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil Tillage Res. 2013, 126, 143–150. [Google Scholar]
- Singh, A.; Phogat, V.K.; Dahiya, R.; Batra, S.D. Impact of long-term zero till wheat on soil physical properties and wheat productivity under rice–wheat cropping system. Soil Tillage Res. 2014, 140, 98–105. [Google Scholar]
- Somasundaram, J.; Reeves, S.; Wang, W.; Heenan, M.; Dalal, R. Impact of 47 years of no-tillage and stubble retention on soil aggregation and carbon distribution in a Vertisol. Land Degrad. Dev. 2017, 28, 1589–1602. [Google Scholar]
- Alvarez, R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag. 2005, 21, 38–52. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E.; Wang, W.J.; Reeves, S.; Gibson, I. Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilization. Soil Tillage Res. 2011, 112, 133–139. [Google Scholar]
- Shaver, T.M.; Peterson, G.A.; Ahuja, L.R.; Westfall, D.G.; Sherrod, L.A.; Dunn, G. Surface soil properties after twelve years of dryland no-till management. Soil Sci. Soc. Am. J. 2002, 66, 1292–1303. [Google Scholar] [CrossRef] [Green Version]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar]
- Bissett, M.J.; O’Leary, G.J. Effects of conservation tillage on water infiltration in two soils in south-eastern Australia. Aust. J. Soil Res. 1996, 34, 299–308. [Google Scholar] [CrossRef]
- McGarry, D.; Bridge, B.J.; Radford, B.J. Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil Tillage Res. 2000, 53, 105–115. [Google Scholar]
- Sayre, K.D.; Hobbs, P.R. The Raised-Bed System of Cultivation for Irrigated Production Conditions. In Sustainable Agriculture and the International Rice-Wheat System; Lal, R., Hobbs, P., Uphoff, N., Hansen, D.O., Eds.; Ohio State University: Columbus, OH, USA, 2004. [Google Scholar]
- Allmaras, R.R.; Rickman, R.W.; Ekin, L.G.; Kimball, B.A. Chiseling influences on soil hydraulic properties. Soil Sci. Soc. Am. J. 1977, 41, 796–803. [Google Scholar] [CrossRef]
- Benjamin, J.G. Tillage effects on near-surface soil hydraulic properties. Soil Tillage Res. 1993, 26, 277–288. [Google Scholar]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in Southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar]
- Kahlown, M.A.; Azam, M.; Kemper, W.D. Soil management strategies for rice–wheat rotations in Pakistan’s Punjab. J. Soil Water Conserv. 2006, 61, 40–44. [Google Scholar]
- Farooq, U.; Muhammad, S.; Erenstein, O. Adoption and Impacts of Zero-Tillage in the Rice–Wheat Zone of Irrigated Punjab, Pakistan; CIMMYT and the Rice–Wheat Consortium for the Indo-Gangetic Plains: New Delhi, India, 2007; p. 69. [Google Scholar]
- Gupta, R.; Seth, A. A review of resource conserving technologies for sustainable management of the rice–wheat cropping systems of the Indo-Gangetic plains (IGP). Crop Protect. 2007, 26, 436–447. [Google Scholar] [CrossRef]
- Jat, R.K.; Singh, R.G.; Kumar, M.; Jat, M.L.; Parihar, C.M.; Bijarniya, D.; Sutaliya, J.M.; Jat, M.K.; Parihar, M.D.; Kakraliya, S.K.; et al. Ten years of conservation agriculture in a rice–maize rotation of Eastern Gangetic Plains of India: Yield trends, water productivity and economic profitability. Field Crops Res. 2019, 232, 1–10. [Google Scholar] [CrossRef]
- Mohammad, A.; Sudhishri, S.; Das, T.K.; Singh, M.; Bhattacharyya, R.; Dass, A.; Khanna, M.; Sharma, V.K.; Dwivedi, N.; Kumar, M. Water balance in direct-seeded rice under conservation agriculture in north-western indo-gangetic plains of India. Irrig. Sci. 2018, 36, 381–393. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Global Diagnostic of Groundwater Governance—Thematic Papers. 2016. Available online: http://www.groundwatergovernance.org/resources/thematic-papers/en/ (accessed on 12 September 2020).
- Gleick, P.H.; Christian−Smith, J.; Cooley, H. Water−use efficiency and productivity: Rethinking the basin approach. Water Int. 2011, 36, 784–798. [Google Scholar] [CrossRef]
- Johnson, N.; Revenga, C.; Echeverria, J. Managing Water for People and Nature. Science 2001, 292, 1071–1072. [Google Scholar] [CrossRef]
- Mao, Z. Water Efficient Irrigation and Environmentally Sustainable Irrigated Rice Production in China. International Commission on Irrigation and Drainage. 2001. Available online: https://www.icid.org/wat_mao.pdf (accessed on 12 September 2020).
- Liang, Y.; Li, F.; Nong, M.; Luo, H.; Zhang, J. Microbial activity in paddy soil and water use efficiency of rice as affected by irrigation method and nitrogen level. Comm. Soil Sci. Plant Anal. 2015, 47, 19–31. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xiao, C.; Yang, H. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2013, 11, 381–395. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, X.; Chen, Y.; Liu, J.; Gu, J.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Prathapar, S.A.; Qureshi, A.S. Modelling the effects of deficit irrigation on soil salinity, depth to water table and transpiration in semi-arid zones with monsoonal rains. Water Resour. Dev. 1999, 15, 141–159. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Feng, L.; Tuong, T.P.; Lu, G.; Wang, H.; Feng, Y. Exploring options to grow rice using less water in northern China using a modelling approach II. Quantifying yield, water balance components and water productivity. Agric. Water Manag. 2007a, 88, 23–33. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M. Root morphology, hydraulic conductivity and plant water relations of high−yielding rice grown under aerobic conditions. Ann. Bot. 2011, 108, 575–583. [Google Scholar] [CrossRef] [PubMed]
- El-Sadek, A. Water use optimisation based on the concept of partial rootzone drying. Ain Shams Eng. J. 2014, 5, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, S.; Yang, J.; Zhang, J. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation. Field Crops Res. 2008, 108, 71–81. [Google Scholar] [CrossRef]
- Feng, L.P.; Bouman, B.A.M.; Tuong, T.P.; Cabangon, R.J.; Li, Y.L.; Lu, G.A.; Feng, Y.H. Exploring options to grow rice using less water in northern China using a modeling approach – 1. Field experiments and model evaluation. Agric. Water Manag. 2007, 88, 1–13. [Google Scholar] [CrossRef]
- Zaman, A.; Gangarani, T. Aerobic Rice Cultivation on Adoption of Water Saving Technologies and Improving Agronomic Practices during Summer Season under Conservation Agriculture. In Proceedings of the Conference on Conservation Agriculture for Smallholders in Asia and Africa, Mymensingh, Bangladesh, 7–11 December 2014; Vance, W., Bell, R.W., Haque, M.E., Eds.; 2014. Published as an E-book. [Google Scholar]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Onishi, T.; Ito, K. Effects of plastic-hole mulching on effective rainfall and readily available soil moisture under soybean (Glycine max) cultivation. Paddy Water Environ. 2017, 15, 659–668. [Google Scholar] [CrossRef]
- Kader, M.A.; Nakamura, K.; Senge, M.; Mojid, M.A.; Kawashima, S. Numerical simulation of water-and heat-flow regimes of mulched soil in rain-fed soybean field in central Japan. Soil Tillage Res. 2019, 191, 142–155. [Google Scholar]
- Igbadun, H.E.; Salim, B.A.; Tarimo, A.K.P.R.; Mahoo, H.F. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrig. Sci. 2008, 27, 11–23. [Google Scholar] [CrossRef]
- Karam, F.; Lahoud, R.; Masaad, R.; Kabalan, R.; Breidi, J.; Chalita, C.; Rouphael, Y. Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions. Agric. Water Manag. 2007, 90, 213–223. [Google Scholar] [CrossRef]
- Gowing, J.W.; Rose, D.A.; Ghamarnia, H. The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater. Agric. Water Manag. 2009, 96, 517–524. [Google Scholar] [CrossRef]
- Zhou, Y. A critical review of groundwater budget myth, safe yield and sustainability. J. Hydrol. 2009, 370, 207–213. [Google Scholar] [CrossRef]
- Rao, S.S.; Tanwar, S.P.S.; Regar, P.L. Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment. Agric. Water Manag. 2016, 169, 14–25. [Google Scholar] [CrossRef]
- Babajimopoulos, C.; Panoras, A.; Georgoussis, H.; Arampatzisb, G.; Hatzigiannakisb, E.; Papamichail, D. Contribution to irrigation from shallow groundwater table under field conditions. Agric. Water Manag. 2007, 92, 205–210. [Google Scholar] [CrossRef]
- Keller, A.; Keller, J.; Seckler, D. Integrated Water Resource Systems: Theory and Policy Implications; Research Report 3; International Water Management Institute: Colombo, Sri Lanka, 1996. [Google Scholar]
- Ahmad, M.U.D.; Bastiaanssen, W.G.; Feddes, R.A. Sustainable use of groundwater for irrigation: A numerical analysis of the subsoil water fluxes. Irrigation and Drainage. J. Int. Comm. Irrig. Drain. 2002, 51, 227–241. [Google Scholar] [CrossRef]
- Tuong, T.P.; Bouman, B.A.M.; Mortimer, M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice based systems in Asia. Plant Product. Sci. 2005, 8, 231–241. [Google Scholar] [CrossRef]
- Huang, H.-C.; Liu, C.-W.; Chen, S.-K.; Chen, J.-S. Analysis of percolation and seepage through paddy bunds. J. Hydrol. 2003, 284, 13–25. [Google Scholar] [CrossRef]
- Ahmad, M.D.; Kirby, M.; Islam, M.S.; Hossain, M.J.; Islam, M.M. Groundwater use for irrigation and its productivity: Status and opportunities for crop intensification for food security in Bangladesh. Water Resour. Manag. 2014, 28, 1415–1429. [Google Scholar] [CrossRef]
- Acharjee, T.K.; van Halsema, G.; Ludwig, F.; Hellegers, P.; Supit, I. Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agric. Syst. 2019, 168, 131–143. [Google Scholar] [CrossRef]
- Khan, S.; Best, L.; Wang, B. Surface-Ground Water Interaction Model of the Murrumbidgee Irrigation Area; CSIRO Land and Water Technical Report 36/02; CSIRO Land and Water: Griffith, Australia, 2002. [Google Scholar]
- Seckler, D. The Sardar Sarovar Project in India: A Commentary on the Report of the Independent Review. Water Resources and Irrigation Division (Discussion Paper 8); Winrock International: Arlington, VA, USA, 1992. [Google Scholar]
- Seckler, D. The New Era of Water Resources Management: From ‘Dry’ to ‘Wet’ Savings; Research Report No. 1; International Irrigation Management Institute (IIMI): Colombo, Sri Lanka, 1996. [Google Scholar]
- Frederiksen, H.D.; Perry, C. Needs and Priorities in Water-Related Research; Draft Paper; International Irrigation Management Institute (IIMI): Colombo, Sri Lanka, 1995. [Google Scholar]
- Keller, A.; Keller, J.; Seckler, D. Integrated Water Resource Systems: Theory and Policy Implications; International Irrigation Management Institute (IIMI): Colombo, Sri Lanka, 1995. [Google Scholar]
- Simons, G.W.H.; Bastiaanssen, W.G.M.; Cheema, M.J.M.; Ahmad, B.; Immerzeel, W.W. A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan. Agric. Water Manag. 2020, 236, 106174. [Google Scholar] [CrossRef]
- Molden, D. Accounting for Water Use and Productivity; SWIM Paper 1; International Water Management Institute (IWMI): Colombo, Sri Lanka, 1997. [Google Scholar]
- Garrick, D.; Bark, R.; Connor, J.; Banerjee, O. Environmental water governance in federal rivers: Opportunities and limits for subsidiarity in Australia’s Murray–Darling River. Water Policy 2012, 14, 915–936. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, Z. Scale effects of ecological safety of water-saving irrigation: A case study in the arid inland river basin of Northwest China. Water 2019, 11, 1886. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, B.S.; Khera, K.L.; Prihar, S.S.; Singh, B. Irrigation needs and yield of rice on a sandy-loam soil as affected by continuous and intermittent submergence. Indian J. Agric. Sci. 1980, 50, 492–496. [Google Scholar]
- Li, Y.; Barker, R. Increasing water productivity for paddy irrigation in China. Paddy Water Environ. 2004, 2, 187–193. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Lampayan, R.M.; Tuong, T.P. Water Management in Irrigated Rice: Coping with Water Scarcity; International Rice Research Institute, IRRI: Los Banos, Philippines, 2007. [Google Scholar]
- Sattar, M.A.; Maniruzzaman, M.I.; Kashem, M.A. National Workshop Proceedings on AWD Technology for Rice Production in Bangladesh; Bangladesh Rice Research Institute: Gazipur, Bangladesh, 2009; p. 54. [Google Scholar]
- Li, T.; Humphreys, E.; Gill, G.; Kukal, S.S. Evaluation and application of ORYZA2000 for irrigation scheduling of puddled transplanted rice in North-West India. Field Crops Res. 2011, 122, 104–117. [Google Scholar]
- Xu, J.; Wei, Q.; Yu, Y.; Peng, S.; Yang, S. Influence of water management on the mobility and fate of copper in rice field soil. J. Soils Sediments 2013, 13, 1180–1188. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Xu, Y.J.; Huang, Z. Influence of irrigation water discharge frequency on soil salt removal and rice yield in a semi-arid and saline-sodic area. Water 2013, 5, 578–592. [Google Scholar] [CrossRef]
- Chivenge, P.; Angeles, O.; Hadi, B.; Acuin, C.; Connor, M.; Stuart, A.; Puskur, R.; Johnson-Beebout, S. Ecosystem Services in Paddy Rice Systems. In The Role of Ecosystem Services in Sustainable Food Systems; Academic Press: Cambridge, MA, USA, 2020; pp. 181–201. [Google Scholar]
- Sudo, M.; Goto, Y.; Iwama, K.; Hida, Y. Herbicide discharge from rice paddy fields by surface runoff and percolation flow: A case study in paddy fields in the Lake Biwa basin, Japan. J. Pestic. Sci. 2018, 43, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Salas, W.; De Angelo, B.; Rose, S. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. J. Environ. Qual. 2006, 35, 1554–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassmann, R.; Nelson, G.C.; Peng, S.B.; Sumfleth, K.; Jagadish, S.V.K.; Hosen, Y.; Rosegrant, M.W. Rice and Global Climate Change. In Rice in the Global Economy: Strategic Research and Policy Issues for Food Security; Pandley, S., Byerlee, D., Dawe, D., Dobermann, A., Mohanty, S., Rozelle, S., Eds.; International Rice Research Institute: Los Baños, Philippines, 2010; pp. 411–432. [Google Scholar]
- Das, S.; Chou, M.-L.; Jean, J.-S.; Liu, C.-C.; Yang, H.-J. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Sci. Total Environ. 2016, 542, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Linquist, B.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; DaRoda, E.F.F.; Van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2014, 21, 407–417. [Google Scholar] [CrossRef]
- Kürschner, E.; Henschel, C.; Hildebrandt, T.; Jülich, E.; Leineweber, M.; Paul, C. Water Saving in Rice Production-Dissemination, Adoption and Short Term Impacts of Alternate Wetting and Drying (AWD) in Bangladesh; SLE Publication Series S 241; Zerbe Druck & Werbung: Berlin, Germany, 2010. [Google Scholar]
- Nalley, L.L.; Linquist, B.; Kovacs, K.F.; Anders, M.M. The economic viability of alternate wetting and drying irrigation in Arkansas rice production. Agron. J. 2015, 107, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Rothenberg, S.E.; Anders, M.; Ajami, N.J.; Petrosino, J.F.; Balogh, E. Water management impacts rice methylmercury and the soil microbiome. Sci. Total Environ. 2016, 572, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Jalota, S.K.; Singh, K.B.; Chahal, G.B.S.; Gupta, R.K.; Chakraborty, S.; Sood, A.; Ray, S.S.; Panigrahy, S. Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study. Agric. Water Manag. 2009, 96, 1096–1104. [Google Scholar] [CrossRef]
- Neumann, R.B.; Polizzotto, M.L.; Badruzzaman, A.B.M.; Ali, M.A.; Zhang, Z.; Harvey, C.F. Hydrology of a groundwater-irrigated rice field in Bangladesh: Seasonal and daily mechanisms of infiltration. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Walker, S.H.; Rushton, K.R. Verification of lateral percolation losses from irrigated rice fields by a numerical-model. J. Hydrol. 1984, 71, 335–351. [Google Scholar] [CrossRef]
- Tuong, T.P.; Wopereis, M.C.S.; Marquez, J.A.; Kropff, M.J. Mechanisms and control of percolation losses in irrigated puddled rice fields. Soil Sci. Soc. Am. J. 1994, 58, 1794–1803. [Google Scholar] [CrossRef] [Green Version]
- Patil, M.D.; Das, B.S.; Bhadoria, P.B.S. A simple bund plugging technique for improving water productivity in wetland rice. Soil Tillage Res. 2011, 112, 66–75. [Google Scholar]
- Patil, M.D.; Das, B.S. Assessing the effect of puddling on preferential flow processes through under bund area of lowland rice field. Soil Tillage Res. 2013, 134, 61–71. [Google Scholar]
- Liu, C.W.; Huang, H.C.; Chen, S.K.; Kuo, Y.M. Subsurface return flow and ground water recharge of terrace fields in northern Taiwan 1. JAWRA J. J. Am. Water Resour. Assoc. 2004, 40, 603–614. [Google Scholar] [CrossRef]
- Chen, Z.; Govindaraju, R.S.; Kavvas, M.L. Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields-1. Development of models. Water Resour. Res. 1994, 30, 523–534. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, L.; Lin, L.; Yang, J.; Ye, M. A fully coupled numerical modeling for regional unsaturated-saturated water flow. J. Hydrol. 2012, 475, 188–203. [Google Scholar] [CrossRef]
- Liu, C.W.; Chen, S.K.; Jou, S.W.; Kuo, S.F. Estimation of the infiltration rate of a paddy field in Yun-Lin Taiwan. Agric. Syst. 2001, 68, 41–54. [Google Scholar] [CrossRef]
- Tournebize, J.; Watanabe, H.; Takagi, K.; Nishimura, T. The development of a coupled model (PCPF-SWMS) to simulate water flow and pollutant transport in Japanese paddy fields. Paddy Water Environ. 2006, 4, 39–51. [Google Scholar] [CrossRef]
- Humphreys, E.; Muirhead, W.A.; Fawcett, B.J. The Effect of Puddling and Compaction on Deep Percolation and Rice Yield in Temperate Australia. In Soil and Water Engineering for Paddy Field Management, Proceedings of the International Workshop held at the Asian Institute of Technology, 28−30 January, 1992, Bangkok, Thailand; Murty, V.V.N., Koga, K., Eds.; CSIRO: Canberra, Australia, 1992; pp. 212–219. [Google Scholar]
- Kukal, S.S.; Aggarwal, G.C. Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field. Agric. Water Manag. 2002, 57, 49–59. [Google Scholar] [CrossRef]
- Chen, S.K.; Liu, C.W. Analysis of water movement in paddy rice fields (I) experimental studies. J. Hydrol. 2002, 260, 206–215. [Google Scholar] [CrossRef]
- Wencai, D.; Fangfei, C.; Qiang, F.; Chengpeng, C.; Xue, M.; Xianye, Y. Effect of soybean roots and a plough pan on the movement of soil water along a profile during rain. Appl. Water Sci. 2019, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, E.; Muirhead, W.A.; Fawcett, B.J.; Townsend, J.T.; Murray, E.A. Puddling in Mechanized Rice Culture: Impacts on Water Use and the Productivity of Rice and Post-Rice Crops. In Management of Clay Soils for Rainfed Lowland Rice-based Cropping Systems; ACIAR Proceedings No. 70; Kirchhof, G., So, H.B., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 1996; pp. 213–218. [Google Scholar]
- Aggarwal, G.C.; Sidhu, A.S.; Sekhon, N.K.; Sandhu, K.S.; Sur, H.S. Puddling and N management effects on crop response in a rice–wheat cropping system. Soil Tillage Res. 1995, 36, 129–139. [Google Scholar]
- Sharma, P.K.; Bhagat, R.M. Puddling and compaction effects on water permeability of texturally different soils. J. Indian Soc. Soil Sci. 1993, 41, 1–6. [Google Scholar]
- Singh, V.P.; Wichkam, T.H. Water Movement through Wet Soils. In Proceedings of the Symposium on Soils and Rice; IRRI: Los Banos, Phillipines, 1977; Volume 2. [Google Scholar]
- Tabbal, D.F.; Lampayan, R.M.; Bhuiyan, S.I. Water Efficient Irrigation Technique for Rice. In Proceedings of the International Workshop on Soil and Water Engineering for Paddy Field Management, Asian Institute of Technology, Bangkok, Thailand, 28–30 January 1992; pp. 146–159. [Google Scholar]
- Bouman, B.A.M.; Wopereis, M.C.S.; Kroff, M.J.; Ten Berge, H.F.M.; Tuong, T.P. Water use efficiency of flooded rice fields. (II) Percolation and seepage losses. Agric. Water Manag. 1994, 26, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Guerra, L.C.; Bhuiyan, S.I.; Tuong, T.P.; Barker, R. Producing More Paddy with Less Water from Irrigated Systems; SWIM Paper 5 International Water Management Institute (IWMI): Colombo, Sri Lanka, 1998. [Google Scholar]
- Sanchez, P. Soil Management in Rice Cultivation. In Properties and Management of Soils in the Tropics; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Greening, A.L.; Greene, L.D.; Difiglio, C. Energy efficiency and consumption—The re-bound effect—A survey. Energy Policy 2000, 28, 389–401. [Google Scholar] [CrossRef]
- Caswell, M.; Zilberman, D. The effects of well depth and land quality on the choice of irrigation technology. Am. J. Agric. Econ. 1986, 68, 798–811. [Google Scholar] [CrossRef]
- Kemper, K.E. Ground water—From development to management. Hydrogeol. J. 2004, 12, 3–5. [Google Scholar] [CrossRef]
- Burt, C.M.; Clemmens, A.J.; Strelkoff, T.S.; Solomon, K.H.; Bliesner, R.D.; Hardy, L.A.; Howell, T.A.; Eisenhauer, D.E. Irrigation performance measures: Efficiency and uniformity. J. Irrig. Drain. Eng. 1997, 123, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Huffaker, R.; Whittlesey, N. Agricultural Water Conservation Legislation: Will It Save Water? Choices 1995, 4, 24–28. [Google Scholar]
- Whittlesey, N.K. Improving Irrigation Efficiency through Technology Adoption: When Will It Conserve Water? In Water Resources Perspectives: Evaluation, Management and Policy; Alsharhan, A.S., Wood, W.W., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 53–62. [Google Scholar]
- Pfeiffer, L.; Lin, C.-Y.C. Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. J. Environ. Econ. Manag. 2013, 67, 189–208. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Shi, L.; Zeng, J.; Yang, J.; Zha, Y.; Yao, Y.; Cao, G. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China. J. Hydrol. 2016, 543, 433–449. [Google Scholar] [CrossRef]
- Alley, W.M.; Healy, R.W.; LaBaugh, J.W.; Reilly, T.E. Flow and storage in groundwater systems. Science 2002, 296, 1985–1990. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Kanae, S. Global hydrologic cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Zhang, Z.B.; Janssen, M.; Lennartz, B. Infiltration properties of paddy fields under intermittent irrigation. Paddy Water Environ. 2014, 12, 17–24. [Google Scholar] [CrossRef]
- Matsuno, Y.; Nakamura, K.; Masumoto, T.; Matsui, H.; Kato, T.; Sato, Y. Prospects for multi functionality of paddy rice cultivation in Japan and other countries in monsoon Asia. Paddy Water Environ. 2006, 4, 189–197. [Google Scholar] [CrossRef]
- MPO (Master Plan Organization). Groundwater Resources of Bangladesh; Technical Report no 5.; Master Plan Organization: Dhaka, Bangladesh, 1987. [Google Scholar]
- Bredehoeft, J.D. The water budget myth revisited: Why hydrogeologists model. Ground Water 2002, 40, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Revelle, R.; Lakshminarayana, V. The Ganges water machine. Science 1975, 188, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Voss, C.I.; Yu, W.; Michael, H.A. Water resources management in the Ganges Basin: A comparison of three strategies for conjunctive use of groundwater and surface water. Water Resour. Manag. 2014, 28, 1235–1250. [Google Scholar] [CrossRef]
- Kiriyama, T.; Ichikawa, T. Preservation of ground water basin recharging by paddy filed. Proc. Hydraul. Eng. 2004, 48, 373–378, (in Japanese with English abstract). [Google Scholar] [CrossRef]
- Beecher, H.G.; Hume, I.H.; Dunn, B.W. Improved method for assessing rice soil suitability to restrict recharge. Aust. J. Exp. Agric. 2002, 42, 297–307. [Google Scholar] [CrossRef]
- Patle, G.T.; Singh, D.K.; Sarangi, A.; Sahoo, R.N. Modelling of groundwater recharge potential from irrigated paddy field under changing climate. Paddy Water Environ. 2017, 15, 413–423. [Google Scholar] [CrossRef]
- Sir MacDonald, Partners Limited. Water Balance Studies Bangladesh; Final Report, Report II Groundwater; Demter House: Station Road, Cambridge, UK, 1983. [Google Scholar]
- Harvey, C.F.; Ashfaque, K.N.; Yu, W.; Badruzzaman, A.B.M.; Ali, M.A.; Oates, P.M.; Michael, H.A.; Neumann, R.B.; Beckie, R.; Islam, S.; et al. Groundwater dynamics and arsenic contamination in Bangladesh. Chem. Geol. 2006, 228, 112–136. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G.; Ahmed, K.M.; Zahid, A. The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: Evidence from Bangladesh. Hydrogeol. J. 2011, 19, 901–916. [Google Scholar] [CrossRef]
- Akhtar, M.R. Impact of resource conservation technologies for sustainability of irrigated agriculture in Punjab-Pakistan. Pak. J. Agric. Res. 2006, 44, 239–255. [Google Scholar]
- Sarwar, M.N.; Goheer, M.A. Adoption and Impact of Zero Tillage Technology for Wheat in Rice-Wheat System—Water and Cost Saving Technology. A case study from Pakistan (Punjab). In Proceedings of the International Forum on Water Environmental Governance in Asia, Bangkok, Thailand, 14–15 March 2007. [Google Scholar]
- Erenstein, O.; Laxmi, V. Zero tillage impacts in India’s rice-wheat systems: A review. Soil Tillage Res. 2008, 100, 1–14. [Google Scholar]
- Hobbs, P.R.; Govaerts, B. How Conservation Agriculture Can Contribute to Buffering Climate Change. In Climate Change and Crop Production; Reynolds, M., Ed.; CAB International: Wallingford, UK, 2009. [Google Scholar]
- Pathak, H. Greenhouse Gas Mitigation in Rice-Wheat System with Resource Conserving Technologies. In Proceedings of the 4th World Congress on Conservation Agriculture, New Delhi, India, 4–7 February 2009. [Google Scholar]
- Garg, K.K.; Das, B.S.; Safeeq, M.; Bhadoria, P.B. Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agric. Water Manag. 2009, 96, 1705–1714. [Google Scholar] [CrossRef] [Green Version]
- Törnqvist, R.; Jarsjö, J. Water savings through improved irrigation techniques: Basin-scale quantification in semi-arid environments. Water Resour. Manag. 2012, 26, 949–962. [Google Scholar] [CrossRef]
- Elhassan, A.M.; Goto, A.; Mizutani, M. Combining a tank model with a groundwater model for simulating regional groundwater flow in an alluvial fan. Trans. JSIDRE 2001, 215, 21–29. [Google Scholar]
- Chen, S.K.; Liu, C.W.; Huang, H.C. Analysis of water movement in paddy rice fields (II) simulation studies. J. Hydrol. 2002, 268, 259–271. [Google Scholar] [CrossRef]
- Anan, M.; Yuge, K.; Nakano, Y.; Saptomo, S.; Haraguchi, T. Quantification of the effect of rice paddy area changes on recharging groundwater. Paddy Water Environ. 2007, 5, 41–47. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Nakamura, K.; Horino, H.; Kawashima, S. Assessment of factors influencing groundwater-level change using groundwater flow simulation, considering vertical infiltration from rice-planted and crop-rotated paddy fields in Japan. Hydrogeol. J. 2014, 22, 1841–1855. [Google Scholar] [CrossRef] [Green Version]
- Riasat, A.; Mallants, D.; Walker, G.; Silberstein, R. A review of groundwater recharge under irrigated agriculture in Australia. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 27 April–2 May 2014. [Google Scholar]
- Walker, G.R.; Currie, D.; Smith, T. Modelling recharge from irrigation developments with a perched water table and deep unsaturated zone. Water 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Peña-Arancibia, J.L.; Mainuddin, M.; Ahmad, G.R.; Hodgson, G.; Murad, K.F.I.; Ticehurst, C. Groundwater use and rapid irrigation expansion in a changing climate: Hydrological drivers in one of the world’s food bowls. J. Hydrol. 2020, 581, 124300. [Google Scholar] [CrossRef]
- Kumar, K.; Gupta, S.K. Decline of groundwater tables in the upper Yamuna basin: Causes and management strategies. Irrig. Drain. 2010, 59, 606–620. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.; Qu, Z.; Pereira, L.S. Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agric. Water Manag. 2010, 98, 301–313. [Google Scholar] [CrossRef]
- Mustafa, T.M.S.; Shamsudduha, M.; Huysmans, M. Effect of Irrigation Return Flow on Groundwater Recharge in an Overexploited Aquifer in Bangladesh. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 17–24 April 2016. [Google Scholar]
- Ren, D.Y.; Xu, X.; Hao, Y.Y.; Huang, G.H. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Humphreys, E.; Gaydon, D.S. Options for increasing the productivity of the rice–wheat system of North-West India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer? Field Crops Res. 2015, 173, 81–94. [Google Scholar]
- Dillon, P.J.; Escalante, E.F.; Tuinhof, A. Management of aquifer recharge and discharge processes and aquifer storage equilibrium. In GEF-FAO Groundwater Governance Thematic Paper 4: Groundwater Governance—A Global Framework for Action; Global Environment Facility (GEF): Washington, DC, USA, 2012. [Google Scholar]
- Frederiksen, H.D.; Allen, R.G. A common basis for analysis, evaluation and comparison of off stream water uses. Water Int. 2011, 36, 266–282. [Google Scholar] [CrossRef]
- Khan, S.; Blackwell, J.; Rana, T.; Beddek, R. What are the Options for Managing Extreme Climate Variability in Australian Catchments? In Catchment Companions Growing Together. Proceedings of the 50th ANCID National Irrigation Conference, Shepparton, VIC, Australia, 19–22 October 2003; Australian National Committee on Irrigation and Drainage: Shepparton, Australia, 2003. [Google Scholar]
- Duvert, C.; Jourde, H.; Raiber, M.; Cox, M.E. Correlation and spectral analyses to assess the response of a shallow aquifer to low and high frequency rainfall fluctuations. J. Hydrol. 2015, 527, 894–907. [Google Scholar] [CrossRef]
- Alley, W.M.; Leake, S.A. The journey from safe yield to sustainability. Ground Water 2004, 42, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.; Perry, C.; Hirata, R.; Garduno, H. Groundwater Resource Accounting: Critical for Effective Management in a ‘Changing World; The World Bank: Washington, DC, USA, 2009; Volume 51785, pp. 1–12. [Google Scholar]
- Narayana, P.; Scott, C. Effectiveness of legislative controls on groundwater extraction. In Proceedings of the Third IWMI-Tata Annual Water Policy Workshop, Anand, India, 17–19 February 2004. [Google Scholar]
- Shah, T. Taming the Anarchy: Groundwater Governance in South Asia; RFF Press: Washington, DC, USA, 2009. [Google Scholar]
- Salem, G.S.A.; Kazama, S.; Komori, D.; Shahid, S.; Dey, N.C. Optimum abstraction of groundwater for sustaining groundwater level and reducing irrigation cost. Water Resour. Manag. 2017, 31, 1947–1959. [Google Scholar] [CrossRef]
- MOA; FAO. Master Plan for Agricultural Development in the Southern Region of Bangladesh; Ministry of Agriculture (MoA, Government of Bangladesh of Bangladesh) and United Nations Food and Agriculture Organization: Dhaka, Bangladesh, 2013; p. 104.
- Bell, A.R.; Bryam, E.; Ringler, C.; Ahmed, A.U. Rice productivity in Bangladesh: What are the benefits of irrigation? Land Use Policy 2015, 48, 1–12. [Google Scholar] [CrossRef]
- Bernier, Q.; Sultana, P.; Bell, A.R.; Ringler, C. Water management and livelihood choices in southwestern Bangladesh. J. Rural Stud. 2016, 45, 134–145. [Google Scholar] [CrossRef]
- Ambast, S.K.; Tyagi, N.K.; Raul, S.K. Management of declining groundwater in the Trans Indo-Gangetic Plain (India): Some options. Agric. Water Manag. 2006, 82, 279–296. [Google Scholar] [CrossRef]
- Moulds, S.; O’Keeffe, J.I.M.M.Y.; Buytaert, W.; Mijic, A. Climate Change Impacts on the Water Resources of the Ganges Basin; Grantham Institute Briefing Note 6: London, UK, 2017. [Google Scholar]
- Kirby, J.M.; Ahmad, M.D.; Mainuddin, M.; Palash, W.; Quadir, M.E.; Shah-Newaz, S.M.; Hossain, M.M. The impact of irrigation development on regional groundwater resources in Bangladesh. Agric. Water Manag. 2015, 159, 264–276. [Google Scholar] [CrossRef]
CA Practices | Benefits | Magnitude | References |
---|---|---|---|
Zero tillage/ laser land leveling/ bed and furrow planting | Water saving | 23–45% | [175] |
Zero tillage | Water saving | 5–15% | [176] |
Laser land leveling | Water saving | 25% | [177] |
Permanent bed | Water saving | 10.6% | [178] |
Zero-tillage | Water saving | 21.8% | [178] |
Direct-seeded rice | Labor saving | 40–45% | [179] |
Direct-seeded rice | Water saving | 30–40% | [179] |
Direct-seeded rice | Energy saving | 60–70% | [179] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojid, M.A.; Mainuddin, M. Water-Saving Agricultural Technologies: Regional Hydrology Outcomes and Knowledge Gaps in the Eastern Gangetic Plains—A Review. Water 2021, 13, 636. https://doi.org/10.3390/w13050636
Mojid MA, Mainuddin M. Water-Saving Agricultural Technologies: Regional Hydrology Outcomes and Knowledge Gaps in the Eastern Gangetic Plains—A Review. Water. 2021; 13(5):636. https://doi.org/10.3390/w13050636
Chicago/Turabian StyleMojid, Mohammad A., and Mohammed Mainuddin. 2021. "Water-Saving Agricultural Technologies: Regional Hydrology Outcomes and Knowledge Gaps in the Eastern Gangetic Plains—A Review" Water 13, no. 5: 636. https://doi.org/10.3390/w13050636
APA StyleMojid, M. A., & Mainuddin, M. (2021). Water-Saving Agricultural Technologies: Regional Hydrology Outcomes and Knowledge Gaps in the Eastern Gangetic Plains—A Review. Water, 13(5), 636. https://doi.org/10.3390/w13050636