SARS-CoV-2 from Urban to Rural Water Environment: Occurrence, Persistence, Fate, and Influence on Agriculture Irrigation. A Review
Abstract
:1. Highlights
- (a)
- Evidence of viable SARS-CoV-2 RNA in wastewater has been used for COVID-19 surveillance.
- (b)
- Standardized methodological protocols are needed for the accurate estimation of SARS-CoV-2 in wastewater.
- (c)
- Data on the infectivity and survival of SARS-CoV-2 in wastewater and freshwater are limited.
- (d)
- The role of WWTP units for SARS-CoV-2 deactivation is still unexplored.
- (e)
- SARS-CoV-2 RNA in water environments might represent a risk of irrigation water contamination.
- (f)
- It is necessary to investigate the eventual persistence of SARS-CoV-2 in crops.
2. Introduction
3. SARS-CoV-2 RNA Detection/Persistence in WW and Fate in WWTPs
4. Potential Presence of SARS-CoV-2 in Irrigation Water
5. Potential Fate of SARS-CoV-2 in Agricultural Crops
6. Conclusions and Future Research Directions
- Development of standardized methodological protocols and implementation of cost-effective methods for SARS-CoV-2 identification and estimation in WW.
- Assessment of viral infectivity and survival rate of SARS-CoV-2 in stool, surface water, WW, and other matrices in distinct environmental contexts under different conditions (i.e., temperature, pH, humidity, etc.).
- Study of the role of WWTP units for SARS-CoV-2 deactivation and detection or application of novel remediation technologies.
- Investigation on the effect that disinfected WWTP effluents can have on the ecosystems of streams, rivers, and groundwaters.
- Establishing whether genetic material is present in receiving water bodies, as intact virus particles or as free nucleic acids, as well as infectivity.
- Establishment of appropriate methods for SARS-CoV-2 material sampling (e.g., soil, plant tissue), concentration, quantification, and survival.
- Evaluation of potential transmission of SARS-CoV-2 from water to agricultural crops after their irrigation, and possible risks related to the consumption of contaminated food.
- Implementation of micro-irrigation technologies, which can safely irrigate agricultural crops without bringing fresh produce into direct contact with WW.
- Investigation on the soil–root internalization processes in the case of the presence of SARS-CoV-2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Pneumonia of Unknown Cause–China; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report-74; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Rolling Updates on Coronavirus Desease (COVID-19); WHO: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 3 March 2021).
- Koyama, T.; Platt, D.; Parida, L. Variant analysis of SARS-CoV-2 genomes. Bull. World Health Organ. 2020, 98, 495–504. [Google Scholar] [CrossRef]
- Poon, L.C.; Yang, H.; Lee, J.C.S.; Copel, J.A.; Leung, T.Y.; Zhang, Y.; Chen, D.; Prefumo, F. ISUOG Interim Guidance on 2019 novel coronavirus infection during pregnancy and puerperium: Information for healthcare professionals. Ultrasound Obstet. Gynecol. 2020, 55, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, Genetic Recombination, and Patho-genesis of Coronaviruses. Trends Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Guidelines for the Global Surveillance of Severe Acute Respiratory Syndrome (SARS): Updated Recommendations; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- World Health Organization. MERS Situation Update; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Acter, T.; Uddin, N.; Das, J.; Akhter, A.; Choudhury, T.R.; Kim, S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci. Total Environ. 2020, 730, 138996. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, Y.L.A.; Gralton, J.; McLaws, M.-L. Face touching: A frequent habit that has implications for hand hygiene. Am. J. Infect. Control. 2015, 43, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.N.; Tong, Z.D.; Wang, H.L.; Dai, Y.X.; Li, K.F.; Liu, J.N.; Wu, W.J.; Yuan, C.; Yu, M.L.; Li, P.; et al. Detection of Novel Coronavirus by RT-PCR in Stool Specimen from Asymptomatic Child, China. Emerg. Infect. Deseases. 2020, 26, 1337. [Google Scholar] [CrossRef]
- Gao, Q.Y.; Chen, Y.X.; Fang, J.Y. 2019 Novel coronavirus infection and gastrointestinal tract. J. Dig. Dis. 2020, 21, 125–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assess-ment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naddeo, V.; Liu, H. Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): What is its fate in urban water cycle and how can the water research community respond? Environ. Sci. Water Res. Technol. 2020, 6, 1213–1216. [Google Scholar] [CrossRef]
- Daughton, C. The international imperative to rapidly and inexpensively monitor community-wide Covid-19 infection status and trends. Sci. Total Environ. 2020, 726, 138149. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the com-munity. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Hart, O.E.; Halden, R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020, 730, 138875. [Google Scholar] [CrossRef] [PubMed]
- Wigginton, K.; Ye, Y.; Ellenberg, R.M. Emerging investigators series: The source and fate of pandemic viruses in the urban water cycle. Environ. Sci. Water Res. Technol. 2015, 1, 735–746. [Google Scholar] [CrossRef]
- Lavrnić, S.; Pereyra, M.Z.; Cristino, S.; Cupido, D.; Lucchese, G.; Pascale, M.R.; Toscano, A.; Mancini, M. The Potential Role of Hybrid Constructed Wetlands Treating University Wastewater—Experience from Northern Italy. Sustainability 2020, 12, 10604. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals (SDGs) in Agenda 2030: Clean Water and Sanitation (SDG 6); UN: New York, NY, USA, 2018.
- Mancuso, G.; Lavrnić, S.; Toscano, A. Reclaimed water to face agricultural water scarcity in the Mediterranean area: An over-view using Sustainable Development Goals preliminary data, in: Wastewater Treat. Reuse—Present Futur. Perspect. Technol. Dev. Manag. 2020, 5, 113–143. [Google Scholar]
- Xing, Y.-H.; Ni, W.; Wu, Q.; Li, W.-J.; Li, G.-J.; Wang, W.-D.; Tong, J.-N.; Song, X.-F.; Wong, G.W.-K.; Xing, Q.-S. Prolonged viral shedding in feces of pediatric patients with coronavirus disease. J. Microbiol. Immunol. Infect. 2020, 53, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, S.; Xue, Y. Fecal specimen diagnosis 2019 novel coronavirus–infected pneumonia. J. Med. Virol. 2020, 92, 680–682. [Google Scholar] [CrossRef] [Green Version]
- Amirian, E.S. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int. J. Infect. Dis. 2020, 95, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020, 5, 434–435. [Google Scholar] [CrossRef]
- Lescure, F.-X.; Bouadma, L.; Nguyen, D.; Parisey, M.; Wicky, P.-H.; Behillil, S.; Gaymard, A.; Bouscambert-Duchamp, M.; Donati, F.; Le Hingrat, Q.; et al. Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect. Dis. 2020, 20, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Chen, D.; Xia, Y.; Wu, X.; Li, T.; Ou, X.; Zhou, L.; Liu, J. Asymptomatic cases in a family cluster with SARS-CoV-2 infec-tion. Lancet Infect. Dis. 2020, 20, 410–411. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Corre-lation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in the Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater antici-pated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Westhaus, S.; Weber, F.A.; Schiwy, S.; Linnemann, V.; Brinkmann, M.; Widera, M.; Greve, C.; Janke, A.; Hollert, H.; Wintgens, T.; et al. Detection of SARS-CoV-2 in raw and treated wastewater in Germany—Suitability for COVID-19 surveillance and potential transmission risks. Sci. Total Environ. 2021, 751, 141750. [Google Scholar] [CrossRef] [PubMed]
- Sherchan, S.P.; Shahin, S.; Ward, L.M.; Tandukar, S.; Aw, T.G.; Schmitz, B.; Ahmed, W.; Kitajima, M. First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Sci. Total Environ. 2020, 743, 140621. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Nag, A.; Sethi, J.; Rajvanshi, J.; Saxena, S.; Shrivastava, S.K.; Gupta, A.B. Sewage surveillance for the presence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Sci. Technol. 2020, 82, 2823–2836. [Google Scholar] [CrossRef]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef]
- Michael-Kordatou, I.; Karaolia, P.; Fatta-Kassinos, D. Sewage analysis as a tool for the COVID-19 pandemic response and management: The urgent need for optimised protocols for SARS-CoV-2 detection and quantification. J. Environ. Chem. Eng. 2020, 8, 104306. [Google Scholar] [CrossRef] [PubMed]
- Hokajärvi, A.M.; Rytkönen, A.; Tiwari, A.; Kauppinen, A.; Oikarinen, S.; Lehto, K.M.; Kankaanpää, A.; Gunnar, T.; Al-Hello, H.; Blomqvist, S.; et al. The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland. Sci. Total Env. 2020, 770, 145274. [Google Scholar]
- Ahmed, W.; Bertsch, P.M.; Bivins, A.; Bibby, K.; Farkas, K.; Gathercole, A.; Haramoto, E.; Gyawali, P.; Korajkic, A.; McMinn, B.R.; et al. Comparison of virus con-centration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020, 739, 139960. [Google Scholar] [CrossRef] [PubMed]
- Nemudryi, A.; Nemudraia, A.; Wiegand, T.; Surya, K.; Buyukyoruk, M.; Cicha, C. Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Rep. Med. 2020, 1, 100098. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- Gundy, P.M.; Gerba, C.P.; Pepper, I.L. Survival of Coronaviruses in Water and Wastewater. Food Environ. Virol. 2009, 1, 10–14. [Google Scholar] [CrossRef] [Green Version]
- La Rosa, G.; Bonadonna, L.; Lucentini, L.; Kenmoe, S.; Suffredini, E. Coronavirus in water environments: Occurrence, persis-tence and concentration methods—A scoping review. Water Res. 2020, 179, 115899. [Google Scholar] [CrossRef]
- World Health Organization. Water, Sanitation, Hygiene, and Waste Management for the COVID-19 Virus; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Rosario, K.; Morrison, C.M.; Mettel, K.A.; Betancourt, W.Q. Novel Circular Rep-Encoding Single-Stranded DNA Viruses De-tected in Treated Wastewater. Microbiol. Resour. Announc. 2019, 8, 9–10. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.Y.; Xie, X.; Huang, J.J.; Zhang, T.; Wu, Q.Y.; Chen, J.N.; Hu, H.Y. Monitoring and evaluation of removal of pathogens at municipal wastewater treatment plants. Water Sci. Technol. 2010, 61, 1589–1599. [Google Scholar] [CrossRef] [Green Version]
- Somani, S.B.; Ingole, N.W.; Kulkarni, N.S.; Principal, I.B.S.S.; Ghatkhed, A. Disinfection of water by using sodium chloride (NaCl) and sodium hypchlorite (NaOCl). J. Eng. Res. Stud. 2011, 2, 40–43. [Google Scholar]
- Sun, Y.X.; Wu, Q.Y.; Hu, H.Y.; Tian, J. Effects of operating conditions on THMs and HAAs formation during wastewater chlo-rination. J. Hazard. Mater. 2009, 168, 1290–1295. [Google Scholar] [CrossRef]
- Mezzanotte, V.; Antonelli, M.; Citterio, S.; Nurizzo, C. Wastewater disinfection alternatives: Chlorine, ozone, peracetic acid, and UV light. Water Environ. Res. 2007, 79, 2373–2379. [Google Scholar] [CrossRef] [PubMed]
- Tak, S.; Kumar, A. Chlorination disinfection by-products and comparative cost analysis of chlorination and UV disinfection in sewage treatment plants: Indian scenario. Environ. Sci. Pollut. Res. 2017, 24, 26269–26278. [Google Scholar] [CrossRef]
- Mancuso, G.; Langone, M.; Andreottola, G. A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: Principles and applications. J. Environ. Health Sci. Eng. 2020, 18, 311–333. [Google Scholar] [CrossRef]
- Bhatt, A.; Arora, P.; Prajapati, S.K. Occurrence, fates and potential treatment approaches for removal of viruses from wastewater: A review with emphasis on SARS-CoV-2. J. Environ. Chem. Eng. 2020, 8, 104429. [Google Scholar] [CrossRef] [PubMed]
- Passerat, J.; Ouattara, N.K.; Mouchel, J.-M.; Rocher, V.; Servais, P. Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res. 2011, 45, 893–903. [Google Scholar] [CrossRef]
- Signor, R.S.; Roser, D.J.; Ashbolt, N.J.; Ball, J.E. Quantifying the impact of runoff events on microbiological contaminant con-centrations entering surface drinking source waters. J. Water Health 2005, 3, 453–468. [Google Scholar] [CrossRef] [Green Version]
- Grøndahl-Rosado, R.C.; Tryland, I.; Myrmel, M.; Aanes, K.J.; Robertson, L.J. Detection of Microbial Pathogens and Indicators in Sewage Effluent and River Water during the Temporary Interruption of a Wastewater Treatment Plant. Water Qual. Expo. Heal. 2014, 6, 155–159. [Google Scholar] [CrossRef]
- Shutler, J.; Zaraska, K.; Holding, T.M.; Machnik, M.; Uppuluri, K.; Ashton, I.; Migdal, L.; Dahiya, R. Risk of SARS-CoV-2 infection from contaminated water systems. MedRxiv 2020. [Google Scholar]
- Nan, X.; Lavrnić, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef] [PubMed]
- Bibby, K.; Casson, L.W.; Stachler, E.; Haas, C.N. Ebola virus persistence in the environment: State of the knowledge and re-search needs. Environ. Sci. Technol. Lett. 2015, 2, 2–6. [Google Scholar] [CrossRef]
- Petrinca, A.; Donia, D.; Pierangeli, A.; Gabrieli, R.; Degener, A.; Bonanni, E.; Diaco, L.; Cecchini, G.; Anastasi, P.; Divizia, M. Presence and environmental circulation of enteric viruses in three different wastewater treatment plants. J. Appl. Microbiol. 2009, 106, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.W.M.; Cutts, T.A.; Nikiforuk, A.M.; Poliquin, P.G.; Court, D.A.; Strong, J.E.; Theriault, S.S. Evaluating Environmental Persistence and Disinfection of the Ebola Virus Makona Variant. Viruses 2015, 7, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Khamis, M.; Ibrahim, T.; Khan, N.A. Irrigation System and COVID-19 Recurrence: A Potential Risk Factor in the Transmission of SARS-CoV-2. ACS Chem. Neurosci. 2020, 11, 2903–2905. [Google Scholar] [CrossRef] [PubMed]
- Lahrich, S.; Laghrib, F.; Farahi, A.; Bakasse, M.; Saqrane, S.; El Mhammedi, M. Review on the contamination of wastewater by COVID-19 virus: Impact and treatment. Sci. Total. Environ. 2021, 751, 142325. [Google Scholar] [CrossRef]
- Al Huraimel, K.; Alhosani, M.; Kunhabdulla, S.; Stietiya, M.H. SARS-CoV-2 in the environment: Modes of transmission, ear-ly detection and potential role of pollutions. Sci. Total Environ. 2020, 744, 140946. [Google Scholar] [CrossRef] [PubMed]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Lavrnić, S.; Nan, X.; Blasioli, S.; Braschi, I.; Anconelli, S.; Toscano, A. Performance of a full scale constructed wetland as ecologi-cal practice for agricultural drainage water treatment in Northern Italy. Ecol. Eng. 2020, 154, 105927. [Google Scholar] [CrossRef]
- Li, D.; De Keuckelaere, A.; Uyttendaele, M. Fate of Foodborne Viruses in the “Farm to Fork” Chain of Fresh Produce. Compr. Rev. Food Sci. Food Saf. 2015, 14, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Conde-Cid, M.; Arias-Estévez, M.; Núñez-Delgado, A. How to study SARS-CoV-2 in soils? Environ. Res. 2020, 110464. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.S.; Rose, J.B.; Gerba, C.P. Comparative survival of enteric viruses and coliphage on sewage irrigated grass. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1990, 25, 937–952. [Google Scholar] [CrossRef]
- Tierney, J.T.; Sullivan, R.; Larkin, E.P. Persistence of poliovirus 1 in soil and on vegetables grown in soil previously flooded with inoculated sewage sludge or effluent. Appl. Environ. Microbiol. 1977, 33, 109–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croci, L.; Fiore, A.; De Medici, D.; Toti, L. Persistence of Escherichia coli and poliovirus 1 in contaminated vegetables. Microbiol. Aliment. Nutr. 1991, 9, 257–262. [Google Scholar]
- Jablasone, J.; Warriner, K.; Griffiths, M. Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria mon-ocytogenes plants cultivated in a gnotobiotic system. Int. J. Food Microbiol. 2005, 99, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N.; Sela, S.; Pinto, R.; Ioffe, M. Evidence for Internalization of Escherichia coli into the Aerial Parts of Maize via the Root System. J. Food Prot. 2007, 70, 471–475. [Google Scholar] [CrossRef]
- Hirneisen, K.A.; Sharma, M.; Kniel, K.E. Human Enteric Pathogen Internalization by Root Uptake into Food Crops. Foodborne Pathog. Dis. 2012, 9, 396–405. [Google Scholar] [CrossRef] [PubMed]
- DiCaprio, E.; Culbertson, D.; Li, J. Evidence of the Internalization of Animal Caliciviruses via the Roots of Growing Strawberry Plants and Dissemination to the Fruit. Appl. Environ. Microbiol. 2015, 81, 2727–2734. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Jin, Y.; Sims, T.; Kniel, K.E. Internalization of murine norovirus 1 by Lactuca sativa during irrigation. Appl. Environ. Microbiol. 2011, 77, 2508–2512. [Google Scholar] [CrossRef]
- Carducci, A.; Caponi, E.; Ciurli, A.; Verani, M. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce. Int. J. Environ. Res. Public Health 2015, 12, 8214–8227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiCaprio, E.; Ma, Y.; Purgianto, A.; Hughes, J.; Li, J. Internalization and dissemination of human norovirus and animal calici-viruses in hydroponically grown romaine lettuce. Appl. Environ. Microbiol. 2012, 78, 6143–6152. [Google Scholar] [CrossRef] [Green Version]
- DiCaprio, E.; Purgianto, A.; Li, J. Effects of abiotic and biotic stresses on the internalization and dissemination of human no-rovirus surrogates in growing romaine lettuce. Appl. Environ. Microbiol. 2015, 81, 4791–4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirneisen, K.A.; Kniel, K.E. Comparative Uptake of Enteric Viruses into Spinach and Green Onions. Food Environ. Virol. 2013, 5, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Hirneisen, K.A.; Kniel, K.E. Hydroponic internalization of enteric viruses into green onions and spinach. In Proceedings of the 2010 Annual Meeting, Anaheim, CA, USA, 1–4 August 2010; Volume 5, pp. 24–34. [Google Scholar]
- Hurst, C.J.; Gerba, C.P.; Cech, I. Effects of environmental variables and soil characteristics on virus survival in soil. Appl. Environ. Microbiol. 1980, 40, 1067–1079. [Google Scholar] [CrossRef] [Green Version]
- Vasickova, P.; Pavlik, I.; Verani, M.; Carducci, A. Issues Concerning Survival of Viruses on Surfaces. Food Environ. Virol. 2010, 2, 24–34. [Google Scholar] [CrossRef]
- Núñez-Delgado, A. What do we know about the SARS-CoV-2 coronavirus in the environment? Sci. Total Environ. 2020, 727, 138647. [Google Scholar] [CrossRef]
- Steffan, J.J.; Derby, J.A.; Brevik, E.C. Soil pathogens that may potentially cause pandemics, including severe acute respiratory syndrome (SARS) coronaviruses. Curr. Opin. Environ. Sci. Health 2020, 17, 35–40. [Google Scholar] [CrossRef]
- Yang, C.-L.; Qiu, X.; Zeng, Y.-K.; Jiang, M.; Fan, H.-R.; Zhang, Z.-M. Coronavirus disease 2019: A clinical review. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4585–4596. [Google Scholar] [PubMed]
- Núñez-Delgado, A. SARS-CoV-2 in soils. Environ. Res. 2020, 190, 110045. [Google Scholar] [CrossRef]
- Seitz, S.R.; Leon, J.S.; Schwab, K.J.; Lyon, G.M.; Dowd, M.; McDaniels, M.; Abdulhafid, G.; Fernandez, M.L.; Lindesmith, L.C.; Baric, R.S.; et al. Norovirus Infectivity in Humans and Persistence in Water. Appl. Environ. Microbiol. 2011, 77, 6884–6888. [Google Scholar] [CrossRef] [Green Version]
- Robilotti, E.; Deresinski, S.; Pinsky, B.A. Norovirus. Clin. Microbiol. Rev. 2015, 28, 134–164. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.K.; Le Saux, J.-C.; Parnaudeau, S.; Pommepuy, M.; Elimelech, M.; Le Guyader, F.S. Evaluation of Removal of Noroviruses during Wastewater Treatment, Using Real-Time Reverse Transcription-PCR: Different Behaviors of Genogroups I and II. Appl. Environ. Microbiol. 2007, 73, 7891–7897. [Google Scholar] [CrossRef] [Green Version]
- Flannery, J.; Keaveney, S.; Rajko-Nenow, P.; O’Flaherty, V.; Doré, W. Concentration of norovirus during wastewater treat-ment and its impact on oyster contamination. Appl. Environ. Microbiol. 2012, 78, 3400–3406. [Google Scholar] [CrossRef] [Green Version]
- Rzeżutka, A.; Cook, N. Survival of human enteric viruses in the environment and food. FEMS Microbiol. Rev. 2004, 28, 441–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alum, A.; Enriquez, C.; Gerba, C.P. Impact of drip irrigation method, soil, and virus type on tomato and cucumber contami-nation. Food Environ. Virol. 2011, 3, 78–85. [Google Scholar] [CrossRef]
- Dražeta, L.; Lang, A.; Hall, A.J.; Volz, R.K.; Jameson, P.E. Causes and Effects of Changes in Xylem Functionality in Apple Fruit. Ann. Bot. 2004, 93, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Chambers, H.; DiCaprio, E.; Gao, G.; Li, J. Internalization and dissemination of human norovirus and Tulane virus in fresh produce is plant dependent. Food Microbiol. 2018, 69, 25–32. [Google Scholar] [CrossRef] [PubMed]
Country | Period | Wastewater | Detection Method | Treatment Process | N1/N2 (%) | C (Copies L−1) | Removal (%) | Reference |
---|---|---|---|---|---|---|---|---|
Spain | March–April 2020 | WWTP influent | RT-qPCR | - | 35/42 (83%) | 2.5 × 105 | - | [31] |
Secondary effluent | RT-qPCR | Activated sludge | 2/18 (11%) | 2.5 × 105 | 0% | |||
Tertiary effluent | RT-qPCR | Coagulation ↓ Flocculation ↓ Sand filtration ↓ Disinfection | 0/12 (0%) | 0 | 100% | |||
USA | January–April 2020 | WWTP influent | RT-qPCR | - | 2/7 (28%) | 4.9 × 103 | - | [33] |
Secondary effluent | RT-qPCR | Activated sludge | 0/4 (0%) | 0 | 100% | |||
Tertiary effluent | RT-qPCR | Disinfection | 0/4 (0%) | 0 | 100% | |||
Japan | March–May 2020 | WWTP influent | RT-qPCR | - | 0/5 (0%) | 0 | - | [35] |
Secondary effluent | RT-qPCR | Activated sludge | 1/5 (20%) | 2.4 × 103 | N/A | |||
India | May–June 2020 | WWTP influent | RT-PCR | - | 6/16 (37%) | - | - | [34] |
Secondary effluent | RT-PCR | Moving bed biofilm reactor (MBBR) or sequencing batch reactor (SBR) | 0/1 (0%) | - | 100% | |||
Tertiary effluent | RT-PCR | Disinfection | 0/6 (0%) | - | 100% | |||
Germany | April 2020 | WWTP influent | RT-qPCR | - | 9/9 (100%) | 11 × 101 | - | [32] |
Tertiary effluent | RT-qPCR | Ozonation | 4/9 (44%) | 19 × 101 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancuso, G.; Perulli, G.D.; Lavrnić, S.; Morandi, B.; Toscano, A. SARS-CoV-2 from Urban to Rural Water Environment: Occurrence, Persistence, Fate, and Influence on Agriculture Irrigation. A Review. Water 2021, 13, 764. https://doi.org/10.3390/w13060764
Mancuso G, Perulli GD, Lavrnić S, Morandi B, Toscano A. SARS-CoV-2 from Urban to Rural Water Environment: Occurrence, Persistence, Fate, and Influence on Agriculture Irrigation. A Review. Water. 2021; 13(6):764. https://doi.org/10.3390/w13060764
Chicago/Turabian StyleMancuso, Giuseppe, Giulio Demetrio Perulli, Stevo Lavrnić, Brunella Morandi, and Attilio Toscano. 2021. "SARS-CoV-2 from Urban to Rural Water Environment: Occurrence, Persistence, Fate, and Influence on Agriculture Irrigation. A Review" Water 13, no. 6: 764. https://doi.org/10.3390/w13060764
APA StyleMancuso, G., Perulli, G. D., Lavrnić, S., Morandi, B., & Toscano, A. (2021). SARS-CoV-2 from Urban to Rural Water Environment: Occurrence, Persistence, Fate, and Influence on Agriculture Irrigation. A Review. Water, 13(6), 764. https://doi.org/10.3390/w13060764