Dispersion Plumes in Open Ocean Disposal Sites of Dredged Sediment
Abstract
:1. Introduction
2. Study Area and the Port of Rio Grande
3. Methods
3.1. Numerical Models
3.2. Numerical Grid and Initial and Boundary Conditions
3.3. Model Calibration and Validation
4. Results
4.1. Natural Suspended Sediment Contribution from Patos Lagoon to the Inner Shelf
4.2. Transport Trends of the Dispersion Plumes of Dredged Suspended Sediment
4.3. Bottom Evolution
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilber, D.H.; Clarke, D.G. Biological Effects of Suspended Sediments: A Review of Suspended Sediment Impacts on Fish and Shellfish with Relation to Dredging Activities in Estuaries. N. Am. J. Fish. Manag. 2001, 21, 855–875. [Google Scholar] [CrossRef]
- Marmin, S.; Dauvin, J.-C.; Lesueur, P. Collaborative approach for the management of harbour-dredged sediment in the Bay of Seine (France). Ocean Coast. Manag. 2014, 102, 328–339. [Google Scholar] [CrossRef]
- Cabrita, M.T. Phytoplankton community indicators of changes associated with dredging in the Tagus estuary (Por-tugal). Environ. Pollut. 2014, 191, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Tanner, E.L.; Steinberg, P.D.; Soares-Gomes, A.; Leung, K.M. Introduction to the World Harbour Project Special Issue Part II—Global harbours and ports: Different locations, similar problems? Reg. Stud. Mar. Sci. 2020, 33, 100904. [Google Scholar] [CrossRef]
- Kudale, M.D. Impact of port development on the coastline and the need for protection. Indian J. Geo-Mar. Sci. 2010, 39, 597–604. [Google Scholar]
- Kirby, R. Managing industrialised coastal fine sediment systems. Ocean Coast. Manag. 2013, 79, 2–9. [Google Scholar] [CrossRef]
- Brown, J.M.; Amoudry, L.O.; Souza, A.J.; Rees, J. Fate and pathways of dredged estuarine sediment spoil in response to variable sediment size and baroclinic coastal circulation. J. Environ. Manag. 2015, 149, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.; Knecht, R.W. The New York/New Jersey Harbor dredging Conflict. Section VII: pp. In A Final Report of the Tibor T. Polgar Fellowship Program; Waldman, J.R., Nieder, W.C., Eds.; Hudson River Foundation: New York, NY, USA, 1997. [Google Scholar]
- Kujiper, C.; Christiansen, H.; Cornelisse, J.M.; Winterwerp, J.C. Reducing Harbor Siltation. II: Case study of Parkhafen in Harburg. J. Waterw. Port Coast. Ocean Eng. 2005, 131, 267–276. [Google Scholar] [CrossRef]
- Byrnes, M.R.; Rosati, J.D.; Griffee, S.F.; Berlinghoff, J.L. Historical Sediment Transport Pathways and Quantities for Determining an Operational Sediment Budget: Mississippi Sound Barrier Islands. J. Coast. Res. 2013, 63, 166–183. [Google Scholar] [CrossRef]
- Goswami, S.; Sharma, V.K.; Samantray, J.S.; Pant, H.J. Sediment transport investigation near Sagar Island in Hooghly Estuary, Kolkata Port, Kolkata. J. Radioanal. Nucl. Chem. 2014, 300, 107–113. [Google Scholar] [CrossRef]
- Miskewitz, R.J.; Barone, D.; Guterl, S.J.; Uchrin, C.G. Design of a GIS-based rating protocol to assess the potential for landfill closure using dredge material in post Hurricane Sandy New Jersey. J. Environ. Sci. Health Part A 2017, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Khorram, S.; Khalegh, M.A. A novel hybrid MCDM approach to evaluate ports’ dredging project criteria based on intuitionistic fuzzy DEMATEL and GOWPA. WMU J. Marit. Aff. 2020, 19, 95–124. [Google Scholar] [CrossRef]
- Le Gentil, E.; Mongruel, R. A systematic review of socio-economic assessment in support of coastal zone manage-ment (1992–2011). J. Environ. Manag. 2015, 149, 85–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouillon, S. Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods. Water 2018, 10, 390. [Google Scholar] [CrossRef]
- Finkl, C.W.; Kruempfel, C. Threats, obstacles and barriers to coastal environmental conservation: Societal percep-tions and managerial positionalities that defeat sustainable development. In Proceedings of the 1st International Conference on Coastal Conservation and Management in the Atlantic and Mediterranean Seas; Veloso-Gomez, F., Taveira Pinto, F., Da Neves, L., Sena, A., Ferreira, O., Eds.; University of Porto: Porto, Portugal, 2005; pp. 3–28. [Google Scholar]
- Van Maren, D.; van Kessel, T.; Cronin, K.; Sittoni, L. The impact of channel deepening and dredging on estuarine sediment concentration. Cont. Shelf Res. 2015, 95, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ferrans, L.; Jani, Y.; Gao, L.; Hogland, W. Characterization of dredged sediments: A first guide to define potentially valuable compounds—The case of Malmfjärden Bay, Sweden. Adv. Geosci. 2019, 49, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Mitchel, S.B.; Uncles, R.J. Estuarine sediments in macrotidal estuaries: Future research requirements and manage-ment challenges. Ocean Coast. Manag. 2013, 79, 97–100. [Google Scholar] [CrossRef]
- Alden, R.W.; Young, R.J. Open ocean disposal of materials dredged from a highly industrialized estuary: An evaluation of potential lethal effects. Arch. Environm. Contam. Toxicol. 1982, 11, 567–576. [Google Scholar] [CrossRef] [PubMed]
- McLaren, P.; Teear, G. A Sediment Trend Analysis (STA®) in Support of Dredged Material Management in Lyttelton Harbour, Christchurch, New Zealand. J. Coast. Res. 2013, 30, 438. [Google Scholar] [CrossRef]
- Barbosa, M.C.; Almeida, M.D.S.S.D. Dredging and disposal of fine sediments in the state of Rio de Janeiro, Brazil. J. Hazard. Mater. 2001, 85, 15–38. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Weishar, L.L. Beneficial use of dredged material to enhance the restoration trajectories of formerly diked lands. Ecol. Eng. 2002, 19, 187–201. [Google Scholar] [CrossRef]
- Bahgat, M. Optimum use of dredged materials for sustainable shoreline management in Nile Delta. Water Sci. 2018, 32, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Grigalunas, T.; Opaluch, J.J.; Luo, M. The economic coasts of fisheries from marine sediment disposal: Case study of Providence, RI, USA. Ecol. Econ. 2001, 38, 47–58. [Google Scholar] [CrossRef]
- Chiaretti, G.; Onorati, F.; Borrello, P.; Orasi, A.; Mugnai, C. Coastal microbial quality of surface sediments in different environments along the Italian coast. Environ. Sci. Process. Impacts 2014, 16, 2165–2171. [Google Scholar] [CrossRef]
- Russel, M. Strategic scoping and dredging effects. Mar. Pollut. Bull. 2014, 86, 594. [Google Scholar]
- Monge-Ganuzas, M.; Cearreta, A.; Evans, G. Morphodynamic consequences of dredging and dumping activities along the lower Oka estuary (Urdaibai Biosphere Reserve, southeastern Bay of Biscay, Spain). Ocean Coast. Manag. 2013, 77, 40–49. [Google Scholar] [CrossRef]
- Mattei, P.; Cincinelli, A.; Martellini, T.; Natalini, R.; Pascale, E.; Renella, G. Reclamation of river dredged sediments polluted by PAHs by com-composting with green waste. Sci. Total Environ. 2016, 566, 567–574. [Google Scholar]
- Fries, A.S.; Coimbra, J.P.; Nemazie, D.A.; Summers, R.M.; Azevedo, P.S.; Filoso, S.; Newton, M.; Gelli, G.; Oliveira, R.C.N.; Pessoa, M.A.; et al. Guanabara Bay ecosystem helath report card: Science, management and gov-ernance implications. Reg. Stud. Marice Sci. 2019, 25, 100474. [Google Scholar] [CrossRef]
- Leotsinidis, M.; Sazakli, E. Evaluating contamination of dredges and disposal criteria in Greek coastal areas. Chemosphere 2008, 72, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Couvidat, J.; Chatain, V.; Bouzahzah, H.; Benzaazoua, M. Characterization of how contaminants arise in a dredged marine sediment and analysis of the effect of natural weathering. Sci. Total. Environ. 2018, 624, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pequegnat, W.E.; Smith, D.D.; Darnell, R.M.; Presley, B.J.; Reid, R.O. An Assessment of the Potential Impact of Dredged Material Disposal in the Open Ocean; NTIS AD-A053 183; Technical Report D-78-2; U.S Army Engineer Waterways Experiments Station: Vicksburg, MS, USA, 1978. [Google Scholar]
- Sharaan, M.; Negm, A. Life cycle assessment of dredged mateerials placement strategies: Case study, Damietta Port, Egypt. Procedia Eng. 2017, 181, 102–108. [Google Scholar] [CrossRef]
- Dang, T.A.; Kamali-Bernard, S.; Prince, W.A. Design of new blended cement based on marine dredged sediment. Constr. Build. Mater. 2013, 41, 602–611. [Google Scholar] [CrossRef]
- Buceta, J.L.; Lloret, A.; Antequera, M.; Obispo, R.; Sierra, J.; Martínez-Gil, M. Nuevo marco para la caracterización y clasificación del material dragado em España. Ribagua 2015, 2, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yeung, T.L.; Lau, A.Y.; Tsang, D.C.; Poon, C.-S. Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing. J. Clean. Prod. 2017, 164, 1279–1288. [Google Scholar] [CrossRef]
- Mymrin, V.; Stella, J.C.; Scremim, C.B.; Pan, R.C.; Sanches, F.G.; Alekseev, K.; Pedroso, D.E.; Molinetti, A.; Fortini, O.M. Utilization of sediments dredged from marine ports as a principal component of composite material. J. Clean. Prod. 2017, 142, 4041–4049. [Google Scholar] [CrossRef]
- Kumar, P.K.D.; Vethamony, P.; Babu, M.T.; Srinivas, K.; Thottam, T.J. Oceanographic Studies off Beypore Port, West Coast of India to Locate a Dredge Dumping Site. Environ. Monit. Assess. 2004, 90, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Van Kessel, T.; Vanlede, J.; Kok, J. Development of mud transport model for the Scheldt estuary. Cont. Shelf Res. 2011, 31, 5165–5181. [Google Scholar] [CrossRef] [Green Version]
- Morang, A.; Mohr, M.C.; Forgette, C.M. Longshore Sediment Movement and Supply along the U.S. Shoreline of Lake Erie. J. Coast. Res. 2011, 27, 619. [Google Scholar] [CrossRef]
- Shuttelaars, H.M.; Jonge, V.N.; Chernetsky, A. Improving the predictive power when modelling physical effects of human interventions in estuarine systems. Ocean Coast. Manag. 2013, 79, 70–82. [Google Scholar] [CrossRef]
- García Alba, J.; Gómez, A.G.; López, R.O.T.; Celorio, M.L.S.; Gómez, A.G.; Juanes, J.A. A 3D model to analyze envi-ronmental effects of dredging operations-application to the Port of Marin, Spain. Adv. Geosci. 2014, 39, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Shukla, V.K.; Konkane, V.D.; Nagendra, T.; Agrawal, J.D. Dredged material dumping site selection using mathemat-ical models. Procedia Eng. 2015, 116, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.-H.; Pham, V.S.; Hwang, J.H.; Won, N.I.; Ha, H.K.; Im, J.; Kim, Y. Effects of seasonal variations on sediment-plume streaks from dredging operations. Mar. Pollut. Bull. 2018, 129, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, H.; Chen, X.; Liang, D. Numerical Study of Remote Sensed Dredging Impacts on the Suspended Sediment Transport in China’s Largest Freshwater Lake. Water 2019, 11, 2449. [Google Scholar] [CrossRef] [Green Version]
- Marques, W.C.; Möller, O.O. Variabilidade temporal em longo período da descarga fluvial e níveis de água da Lagoa dos Patos, Rio Grande do Sul, Brasil. Rev. Bras. Rec. Híd. 2009, 13, 155–163. [Google Scholar] [CrossRef]
- Moller, O.O.; Lorenzzentti, J.A.; Stech, J.; Mata, M.M. The Patos Lagoon summertime circulation and dynamics. Cont. Shelf Res. 1996, 16, 335–351. [Google Scholar] [CrossRef]
- Moller, O.O.; Castaing, P.; Salomon, J.-C.; Lazure, P. The Influence of Local and Non-Local Forcing Effects on the Subtidal Circulation of Patos Lagoon. Estuaries 2001, 24, 297–311. [Google Scholar] [CrossRef]
- Fernandes, E.H.L.; Dyer, K.R.; Moller, O.O.; Niencheski, L.F.H. The Patos Lagoon hydrodynamics during El Niño event (1998). Cont. Shelf Res. 2002, 22, 1699–1713. [Google Scholar] [CrossRef]
- Tavora, J.; Fernandes, E.H.L.; Thomas, A.C.; Weatherbee, R.; Schettini, C.A.F. The influence of river discharge and wind on Patos Lagoon, Brazil, Suspended Particulate Matter. Int. J. Remote. Sens. 2019, 40, 4506–4525. [Google Scholar] [CrossRef]
- Távora, J.; Fernandes, E.H.; Bitencourt, L.P.; Orozco, P.M.S. El Niño Southern Oscillation (ENSO) effects on the vari-ability of Patos Lagoon suspended particulate matter. Reg. Stud. Mar. Sci. 2020, 40, 101495. [Google Scholar] [CrossRef]
- Bitencourt, L.P.; Fernandes, E.H.; Silva, P.D.; Möller, O.O. Spatio-temporal variability of suspended sediment con-centrations in a shallow and turbid laggon. J. Mar. Syst. 2020, 212, 103454. [Google Scholar] [CrossRef]
- Möller, O.O.; Castaing, P. Hydrographical Characteristics of the Estuarine Area of Patos Lagoon (30°S, Brazil). In Estuaries of South America; Springer International Publishing: Berlin/Heidelberg, Germany, 1999; pp. 83–100. [Google Scholar]
- Fernandes, E.H.L.; Dyer, K.R.; Moller, O.O. Spatial Gradients in the Flow of Southern Patos Lagoon. J. Coast. Res. 2005, 214, 759–769. [Google Scholar] [CrossRef]
- Calliari, L.; Winterwerp, J.; Fernandes, E.; Cuchiara, D.; Vinzon, S.; Sperle, M.; Holland, K. Fine grain sediment transport and deposition in the Patos Lagoon–Cassino beach sedimentary system. Cont. Shelf Res. 2009, 29, 515–529. [Google Scholar] [CrossRef]
- Garcia, A.; Vieira, J.; Winemiller, K. Effects of 1997–1998 El Niño on the dynamics of the shallow-water fish assemblage of the Patos Lagoon Estuary (Brazil). Estuar. Coast. Shelf Sci. 2003, 57, 489–500. [Google Scholar] [CrossRef]
- Möller, O.O.; Castello, J.P.; Vaz, A.C. The Effect of River Discharge and Winds on the Interannual Variability of the Pink Shrimp Farfantepenaeus paulensis Production in Patos Lagoon. Chesap. Sci. 2009, 32, 787–796. [Google Scholar] [CrossRef]
- Seiler, L.M.N.; Fernandes, E.H.L.; Martins, F.; Abreu, P.C. Evolution of hydrologic influence on water quality variation in a coastal lagoon through numerical modeling. Ecol. Model. 2015, 314, 44–61. [Google Scholar] [CrossRef]
- Bitencourt, L.P.; Fernandes, E.H.; Möller, O.O.; Ross, L. The contribution of ENSO cycles to the salinity spa-tio-temporal variability in a bar-built microtidal estuary. Reg. Stud. Mar. Sci. 2020, 40, 101496. [Google Scholar] [CrossRef]
- Silva, P.D.; Lisboa, P.V.; Fernandes, E.H. Changes on the fine sediment dynamics after the Port of Rio Grande expansion. Adv. Geosci. 2015, 39, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Kalikoski, D.C.; Rocha, R.D.; Vasconcellos, M.C. Importância do Conhecimento Ecológico Tradicional na Gestão da Pesca Artesanal no Estuário da Lagoa dos Patos, Extremo Sul do Brasil. Ambiente Educ. 2006, 11, 87–118. [Google Scholar]
- Lisboa, P.V.; Fernandes, E.H. Anthropogenic influence on the sedimentary dynamics of a sand spit bar, Patos Lagoon Estuary, RS, Brazil. Rev. Gestão Costeira Integr. 2015, 15, 35–46. [Google Scholar] [CrossRef]
- Bicalho, H. Ministério dos Negócios da Agricultura, Comércio e Obras Públicas Província do Rio Grande do Sul Melhoramento da Barra e da Navegação interior da Província Relatório apresentado ao Governo Imperial; Tipografia Nacional: Rio de Janeiro, Brazil, 1883. [Google Scholar]
- Von Ihering, H. Die Lagoa dos Patos. Deutsche Geographische Blätter; Fasc 2: Bremen, Germany, 1885; Volume III. [Google Scholar]
- Alves, F.N. Porto e Barra do Rio Grande: História, Memória e Cultura Portuária; Companhia Rio Grandese de Artes Gráficas (CORAG): Porto Alegre, Brazil, 2008; Volume 1, p. 740. [Google Scholar]
- Malaval, B.B. Travaux du Port et de la Barre de Rio Grande; Editor Leon Eyrolles: Paris, France, 1922. [Google Scholar]
- Seeliger, U.; Odebrecht, C.O. Estuário da Lagoa dos Patos: Um século de transformações; Editora da FURG: Rio Grande, Brazil, 2010; 180p. [Google Scholar]
- António, M.H.P.; Fernandes, E.H.; Muelbert, J.H. Impact of Jetty Configuration Changes on the Hydrodynamics of the Subtropical Patos Lagoon Estuary, Brazil. Water 2020, 12, 3197. [Google Scholar] [CrossRef]
- Calliari, L.J.; Machado, A.A.; Marroig, P.; Vinzon, S.; Gianuca, N. Mud deposits at Cassino beach: Role of dredging. Geo-Mar. Lett. 2020, 40, 1031–1043. [Google Scholar] [CrossRef]
- Hervouet, J.M. Hydrodynamics of Free Surface Flows: Modeling with the Finite Element Method; Wiley: Chichester, UK, 2007. [Google Scholar]
- Villaret, C.; Hervouet, J.-M.; Kopmann, R.; Merkel, U.; Davies, A.G. Morphodynamic modeling using the Telemac finite-element system. Comput. Geosci. 2013, 53, 105–113. [Google Scholar] [CrossRef]
- Bedri, Z.; Bruen, M.; Dowley, A.; Masterson, B. Environmental consequences of a power plan shut-down: A three-dimensional water quality model of Dublin Bay. Mar. Pollut. Bull. 2013, 71, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Van Leussen, W. The variability of settling velocities of suspended fine-grained sediment in the Ems estuary. J. Sea Res. 1999, 41, 109–118. [Google Scholar] [CrossRef]
- Partheniades, E. Erosion and Deposition of Cohesive Soils. J. Hydraul. Div. 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Krone, R.B. Flume Studies of the Transport of Sediment in Estuarial Processes; Final Report Hydraul; University of California: Berkeley, CA, USA, 1962. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, H.A.; Fernandes, E.H.L.; Möller, O.O.; Collares, G.L. Processos Hidrológicos e Hidrodinâmicos da Lagoa Mirim. Rev. Bras. Recur. Hídricos 2015, 20, 34–45. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.L.; Moraes, B.C.; Möller, O.O.; Malcherek, A. Dynamics of the Patos Lagoon coastal plume and its contribution to the deposition pattern of the southern Brazilian inner shelf. J. Geophys. Res. Space Phys. 2010, 115, 1–22. [Google Scholar] [CrossRef]
- Fernandes, E.; Dyer, K.; Niencheski, L. Calibration and Validation of the TELEMAC-2D Model to the Patos Lagoon (Brazil). J. Coast. Res. 2001, 470–488. Available online: www.jstor.org/stable/25736313 (accessed on 3 August 2020).
- Marques, W.C.; Fernandes, E.H.L.; Monteiro, I.O.; Möller, O. Numerical modeling of the Patos Lagoon coastal plume, Brazil. Cont. Shelf Res. 2009, 29, 556–571. [Google Scholar] [CrossRef]
- Collins, M.; Sternberg, R.W. Special Issue: On the dynamics of mud deposits in coastal áreas. Cont. Shelf Res. 2009, 29. [Google Scholar]
- Walstra, L.; Van Rijn, L.; Blogg, H.; Van Ormondt, M. Evaluation of a Hydrodynamic Area Model Based on the Coast3d Data at Teignmouth 1999. In Proceedings of the Coastal Dynamics 2001 Conference, Lund D, Lund, Sweden, 11–15 June 2001; pp. D4.1–D4.4. [Google Scholar]
- Cuchiara, D.; Fernandes, E.; Strauch, J.; Winterwerp, J.; Calliari, L. Determination of the wave climate for the southern Brazilian shelf. Cont. Shelf Res. 2009, 29, 545–555. [Google Scholar] [CrossRef]
- Oliveira, H.; Fernandes, E.; Möller, O.; García-Rodríguez, F. Relationships between wind effect, hydrody-namics and water level in the world’s largest coastal lagoonal system. Water 2019, 11, 2209. [Google Scholar] [CrossRef] [Green Version]
- Marques, W.C.; Fernandes, E.H.L.; Möller, O.O. Straining and advection contributions to the mixing process of the Patos Lagoon coastal plume, Brazil. J. Geophys. Res. Space Phys. 2010, 115, 06019. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, I.O.; Marques, W.C.; Fernandes, E.H.; Gonçalves, R.C.; Möller, O.O. On the Effect of Earth Rotation, River Discharge, Tidal Oscillations, and Wind in the Dynamics of the Patos Lagoon Coastal Plume. J. Coast. Res. 2011, 27, 120. [Google Scholar] [CrossRef]
- Vinzon, S.; Winterwerp, J.; Nogueira, R.; De Boer, G. Mud deposit formation on the open coast of the larger Patos Lagoon–Cassino Beach system. Cont. Shelf Res. 2009, 29, 572–588. [Google Scholar] [CrossRef]
- Bokuniewicz, H.J.; Gordon, R.B. Deposition of dredged sediment at open water sites. Estuar. Coast. Mar. Sci. 1980, 10, 289–IN2. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Coriolis coefficient | −7.70735 × 10−5 |
Horizontal turbulence model | Smagorinski |
Vertical turbulence model | Mixing length |
Tidal flats | Yes |
Time step | 90 s |
Law of bottom friction | Nikuradse |
Friction coefficient for the bottom | 1 × 10−5 |
Mean diameter of the sediment | 1 × 10−5 m |
Critical shear stress for erosion | 1.5 N/m2 |
Critical shear stress for deposition | 0.15 N/m2 |
Gibson consolidation model | Yes |
Maximum concentration of the consolidated mud | 1500.0 kg/m3 |
Flocculation coefficient | 0.3 |
Coefficient of wind influence | 1.8 × 10−6 m |
Parameter | Value |
---|---|
Number of directions | 30 |
Number of frequencies | 15 |
Frequency rate | 1.1 |
Minimal frequency | 0.041 |
Time step | 90 s |
Wind drag coefficient | 2.5 × 10−3 |
Wind generation coefficient | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, E.H.; da Silva, P.D.; Gonçalves, G.A.; Möller, O.O. Dispersion Plumes in Open Ocean Disposal Sites of Dredged Sediment. Water 2021, 13, 808. https://doi.org/10.3390/w13060808
Fernandes EH, da Silva PD, Gonçalves GA, Möller OO. Dispersion Plumes in Open Ocean Disposal Sites of Dredged Sediment. Water. 2021; 13(6):808. https://doi.org/10.3390/w13060808
Chicago/Turabian StyleFernandes, Elisa Helena, Pablo Dias da Silva, Glauber Acunha Gonçalves, and Osmar Olinto Möller. 2021. "Dispersion Plumes in Open Ocean Disposal Sites of Dredged Sediment" Water 13, no. 6: 808. https://doi.org/10.3390/w13060808
APA StyleFernandes, E. H., da Silva, P. D., Gonçalves, G. A., & Möller, O. O. (2021). Dispersion Plumes in Open Ocean Disposal Sites of Dredged Sediment. Water, 13(6), 808. https://doi.org/10.3390/w13060808