Ecological Risk Assessment and Contamination History of Heavy Metals in the Sediments of Chagan Lake, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Contamination and Risk Assessment Methods
2.3.1. Potential Ecological Risk Index
2.3.2. Geo-Accumulation Index
2.4. Data Processing and Analysis
3. Results and Discussion
3.1. Heavy Metal Concentration of Surface Sediments
3.2. Chronology and Heavy Metals in Sediment Cores
3.2.1. Geological and Chronological Characteristic
3.2.2. Concentrations and Distribution of Heavy Metals
3.3. Ecological Risk Assessment
3.4. Source Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Han, Y.; Yang, J.; Zhu, L.; Zhong, W. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J. Environ. Sci. 2017, 62, 31–38. [Google Scholar] [CrossRef]
- Talbot, M.R.; Lærdal, T. The Late pleistocene–holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J. Paleolimnol. 2000, 23, 141–164. [Google Scholar] [CrossRef]
- Wang, J.J.; Bao, J.G.; Li, L.Q. Sources of heavy metal pollutions in sediments of Lake Donghu and their relationship with an-thropogenic activities. Environ. Sci. Technol. 2010, 33, 84–90. [Google Scholar]
- Ji, B.; Hang, X.S.; Liang, B.; Tang, X.Y.; Wang, W.L. Advances in heavy metals contamination of lake sediment. Pollut. Control. Technol. 2013, 26, 33–40. [Google Scholar]
- Satapathy, S.; Panda, C.R. Source identification, environmental risk assessment and human health risks associated with toxic elements present in a coastal industrial environment, India. Environ. Geochem. Health 2018, 40, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Raju, N.J.; Reddy, B.C.S.R.; Suresh, U.; Sankar, D.B.; Reddy, T.V.K. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: Risk assessment and environmental implications. Environ. Geochem. Health 2018, 40, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Li, R.R.; Zhang, G.X.; Wei, X.H.; Liu, Y.; Zhang, L.; Sun, S. The evolutional characteristics of water environment of Chagan Lake Wetland. Sci. Geogr. Sin. 2014, 34, 762–768. [Google Scholar] [CrossRef]
- Rothwell, J.J.; Evans, M.G.; Allott, T.E.H. Sediment–Water Interactions in an eroded and heavy metal contaminated peatland catchment, Southern Pennines, UK. Water Air Soil Pollut. Focus 2006, 6, 669–676. [Google Scholar] [CrossRef]
- Ting, D.S.; Appan, A. General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs. Water Sci. Technol. 1996, 34, 53–59. [Google Scholar]
- Ramamoorthy, S.; Rust, B.R. Heavy metal exchange processes in sediment-water systems. Environ. Earth Sci. 1978, 2, 165–172. [Google Scholar] [CrossRef]
- Li, Z.Q.; Fang, P.; Huang, B.; Lu, S.Y.; Wan, Q.; Xiong, J.; Zhang, G.G. Distribution and ecological risk assessment of nitrogen phosphorus and heavy metals in surface sediments of typical internal lakes in Dongting Lake area. Res. Environ. Sci. 2020, 33, 1409–1420. [Google Scholar]
- Liu, Z.Y. Problems and suggestions of ecological environment in Jilin province. Rural Econ. Sci. Technol. 2020, 31, 53–54. [Google Scholar]
- Ran, Y.; Li, L. The brief analysis of ecological environment problems and ecological province construction in Jilin Province. Environ. Manag. China 2008, 6, 1–2. [Google Scholar]
- Bu, X.J.; Chai, S.L.; Zhang, Q.W.; Xu, X.C. The spatial distributions of elements in sediments of lake Chagan in west Jilin Province. J. Arid Land Resour. Environ. 2009, 23, 179–184. [Google Scholar]
- Yang, Z.; Zang, S.Y.; Qu, G.; Sun, L. Comparative analysis of grain size characteristics and environmental significance of sediments from Bosten Lake and Chagan Lake. Environ. Sci. Technol. 2020, 43, 198–208. [Google Scholar]
- Liu, X.M.; Zhang, G.X.; Sun, G.Z.; Wu, Y.; Chen, Y.Q. Assessment of lake water quality and eutrophication risk in an ag-ricultural irrigation area: A Case Study of the Chagan Lake in Northeast China. Water Sui 2019, 11, 2380. [Google Scholar]
- Liu, X.; Zhang, G.; Zhang, J.; Xu, Y.J.; Wu, Y.; Wu, Y.; Sun, G.; Chen, Y.; Ma, H. Effects of irrigation discharge on salinity of a large freshwater lake: A case study in Chagan Lake, Northeast China. Water 2020, 12, 2112. [Google Scholar] [CrossRef]
- Wang, F.; Ding, Q.; Zhang, L.; Wang, M.; Wang, Q. Analysis of land surface deformation in Chagan Lake Region Using TCPInSAR. Sustain. J. Rec. 2019, 11, 5090. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Y.; Shi, J.; Zhao, X.; Xie, Y. Sediment information on natural and anthropogenic-induced change of connected water systems in Chagan Lake, North China. Environ. Geochem. Health 2019, 42, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, D.; Song, K.; Du, J.; Wang, Z.; Zhang, B.; Tang, X.; Lei, X.; Wu, Y. Characterization of water constituents spectra absorption in Chagan Lake of Jilin Province, Northeast China. Chin. Geogr. Sci. 2011, 21, 334–345. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, J.; Gao, L.; Liang, Z.; Li, S.; Li, R.; Jin, G.; Shimizu, Y.; Onodera, S.-I.; Saito, M.; et al. 210Pb dating to investigate the historical variations and identification of different sources of heavy metal pollution in sediments of the Pearl River Estuary, Southern China. Mar. Pollut. Bull. 2020, 150, 110670. [Google Scholar] [CrossRef]
- San Miguel, E.G.; Bolı, X.; Var, J.P.; Garcı, X.; Tenorio, R.A. Vertical distribution of Thisotope ratios, 210Pb, 226Ra and 137Cs in sediment cores from an estuary affected by anthropogenic releases. Sci. Total Environ. 2004, 318, 143–157. [Google Scholar] [CrossRef]
- Wu, Z.; He, M.; Lin, C.; Fan, Y. Distribution and speciation of four heavy metals (Cd, Cr, Mn and Ni) in the surficial sediments from estuary in daliao river and yingkou bay. Environ. Earth Sci. 2010, 63, 163–175. [Google Scholar] [CrossRef]
- Xiao, Q.; Zong, Y.T.; Lu, S.G. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar]
- Wang, X.; Liu, B.; Zhang, W. Distribution and risk analysis of heavy metals in sediments from the Yangtze River Estuary, China. Environ. Sci. Pollut. Res. 2020, 27, 10802–10810. [Google Scholar] [CrossRef]
- Shen, F.; Mao, L.; Sun, R.; Du, J.; Tan, Z.; Ding, M. Contamination Evaluation and Source Identification of Heavy Metals in the Sediments from the Lishui River Watershed, Southern China. Int. J. Environ. Res. Public Health 2019, 16, 336. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G.; Zhang, C.J. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Tech. 2008, 31, 112–115. [Google Scholar]
- Teng, Y.G.; Tuo, X.G.; Ni, S.J.; Zhang, C.J. Applying geoaccumulation index to assess heavy metal pollution in sediment: In-fluence of different geochemical background. Environ. Sci. Technol. 2002, 25, 7–9. [Google Scholar]
- Hui, Y.; Yuan, S.Y.; Li, M.Y.; Xiao, J. Evaluation of heavy metal contamination in agricultural topsoils in suburban Xuchang City, China. Environ. Earth Sci. 2015, 74, 2475–2480. [Google Scholar]
- Hussain, R.; Khattak, S.A.; Shah, M.T.; Ali, L. Multistatistical approaches for environmental geochemical assessment of pol-lutants in soils of Gadoon Amazai Industrial Estate, Pakistan. J. Soil. Sediment. 2015, 15, 1119–1129. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, W.; Yan, X.; Shu, T.; Xiong, Q.; Chen, F. Pollution characteristics and health risk assessment of airborne heavy metals collected from beijing bus stations. Int. J. Environ. Res. Public Health 2015, 12, 9658–9671. [Google Scholar] [CrossRef]
- Müller, G.; Putz, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Pawlowsky-Glahn, V.; Egozcue, J.J. Compositional data and their analysis: An introduction. Geol. Soc. Lond. Spéc. Publ. 2006, 264, 1–10. [Google Scholar] [CrossRef]
- Campbell, G.P.; Curran, J.M.; Miskelly, G.M.; Coulson, S.; Yaxley, G.M.; Grunsky, E.C.; Cox, S.C. Compositional data analysis for elemental data in forensic science. Forensic Sci. Int. 2009, 188, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; Filzmoser, P.; Fabian, K.; Hron, K.; Birke, M.; Demetriades, A.; Dinelli, E.; Ladenberger, A. The concept of compositional data analysis in practice—Total major element concentrations in agricultural and grazing land soils of Europe. Sci. Total. Environ. 2012, 426, 196–210. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C. Univariate statistical analysis of environmental (compositional) data: Problems and pos-sibilities. Sci. Total. Environ. 2009, 407, 6100–6108. [Google Scholar] [CrossRef] [PubMed]
- Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Templ, M. Applied Compositional Data Analysis; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; p. 288. [Google Scholar]
- Zuo, R.; Carranza, E.J.M.; Wang, J. Spatial analysis and visualization of exploration geochemical data. Earth Sci. Rev. 2016, 158, 9–18. [Google Scholar] [CrossRef]
- Huber, P.J. Robust Statistics. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1248–1251. [Google Scholar]
- Wang, B.H. Robust principal component analysis method and its application. Stat. Res. 2007, 24, 72–76. [Google Scholar]
- Pison, G.; Rousseeuw, P.J.; Filzmoser, P.; Croux, C. Robust factor analysis. J. Multivar. Anal. 2003, 84, 145–172. [Google Scholar] [CrossRef]
- Hubert, M.; Rousseeuw, P.J.; Verboven, S. A fast method for robust principal components with applications to chemometrics. Chemom. Intell. Lab. Syst. 2002, 60, 101–111. [Google Scholar] [CrossRef]
- Zhu, L.X.; Ma, S.M.; Wang, Z.F. Soil Eco-geochemical baseline in alluvial plains of eastern China. Geol. China 2006, 33, 1400–1405. [Google Scholar]
- Liu, X.J.; Zhao, Y.L. A preliminary study on the background values of eight heavy metallic elements and relevant factors on the Songnen Plain. J. Northeast. Agric. Univ. 1987, 18, 113–118. [Google Scholar]
- Yu, W.H.; Wang, J.J.; Zang, S.Y. The spatial variability characteristics and potential ecological risk assessment of heavy metals of lake sediments in the Songnen Plain. Sci. Geogr. Sin. 2012, 32, 1000–1005. [Google Scholar]
- Ding, Z.Y.; Pu, J.; Jilili, A. Heavy metal contamination characteristics and its assessment in surface sediments of major Lakes in China. Environ. Eng. 2017, 35, 136–142. [Google Scholar]
- Song, G.L.; Liu, Z. Study on the background value of some elemants in deposit sediment of the Nenjiang drainage. Nat. Sci. J. Harbin Normal Univ. 1988, 4, 100–105. [Google Scholar]
- Gao, L.N. Environmental Geochemistry of Heavy Metals in Yueliang Lake in West Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2013. [Google Scholar]
- Liu, B.L.; Diao, G.L.; Han, X.; Zhao, B.; Xue, M.Y.; Cui, X.T.; Niu, X. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from Songhua River. Sci. Technol. Eng. 2015, 15, 140–145. [Google Scholar]
- Wang, X.J.; Liu, Y.Q.; She, Z.S. Heavy metals in the sediments of Jingpo Lake. Chinese J. Environ. Eng. 1990, 11, 46–51. [Google Scholar]
- Bianchini, G.; Natali, C.; Di Giuseppe, D.; Beccaluva, L. Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy): Characterisation and biomonitoring. J. Soils Sediments 2012, 12, 1145–1153. [Google Scholar] [CrossRef]
- Bianchini, G.; Di Giuseppe, D.; Natali, C.; Beccaluva, L. Ophiolite inheritance in the Po plain sediments: Insights on heavy metals distribution and risk assessment. Ofioliti 2013, 38, 1–14. [Google Scholar]
- Lv, J.; Liu, Y.; Zhang, Z.; Dai, J.; Dai, B.; Zhu, Y. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. J. Soils Sediments 2015, 15, 163–178. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Y.; Guo, H. Application of Multivariate statistical methods to water quality assessment of the watercourses in northwestern new territories, Hong Kong. Environ. Monit. Assess. 2006, 132, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Araa, J.; Muhammada, S.; Khan, S. Health Risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohmand Agency, Northern Pakistan. J. Geochem. Explor. 2012, 118, 60–67. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, L.; Zhou, X.; Duan, J.; Li, Y.; Hu, J.; He, K. Chemical characteristics and source apportionment of PM 2.5 in Lanzhou, China. Sci. Total. Environ. 2017, 601, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, D.; Liu, K.; Meng, H.; Zheng, Y.; Yuan, F.; Zhu, G. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena 2019, 175, 101–109. [Google Scholar] [CrossRef]
- Shao, D.; Zhan, Y.; Zhou, W.; Zhu, L. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. Environ. Pollut. 2016, 219, 329–336. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Z.; Qin, J.; Xiao, Z. Effects of long-term cattle manure application on soil properties and soil heavy metals in corn seed production in Northwest China. Environ. Sci. Pollut. Res. 2014, 21, 7586–7595. [Google Scholar] [CrossRef]
- Mamut, A.; Eziz, M.; Mohammad, A.; Anayit, M. The spatial distribution, contamination, and ecological risk assessment of heavy metals of farmland soils in Karashahar–Baghrash oasis, northwest China. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 1300–1314. [Google Scholar] [CrossRef]
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, C.; Zhang, F.; Zhang, Y.; Scott, C.A.; Yan, X. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation. Sci. Total. Environ. 2017, 581, 811–821. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Y.; Ding, M.; Yili, Z. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Sci. Total. Environ. 2015, 521, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, H.; Cui, S.; Xu, Q.; Tang, Z.; Gao, F. Assessment of the distribution and risks of organochlorine pesticides in core sediments from areas of different human activity on Lake Baiyangdian, China. Stoch. Environ. Res. Risk Assess. 2014, 28, 1035–1044. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y.; Zhao, N.; Yu, R.; Xu, G.; Yu, Y. Spatial Distribution and Risk Assessment of Heavy Metals in Paddy Soils of Yongshuyu Irrigation Area from Songhua River Basin, Northeast China. Chin. Geogr. Sci. 2018, 28, 797–809. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef] [PubMed]
RI | Potential Ecological Risk | |
---|---|---|
≤ 40 | RI ≤ 150 | low risk |
40 < ≤ 80 | 150 < RI ≤ 300 | moderate risk |
80 < ≤ 160 | 300 < RI ≤ 600 | relatively high risk |
160 < ≤ 320 | — | high risk |
> 320 | RI > 600 | extremely high risk |
Name of the Lake | Heavy Metal Concentrations (mg/kg) | References | |||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Hg | Cr | Ni | Cu | Pb | Zn | ||
Chagan Lake | 10.01 | 0.2 | 0.07 | 57.6 | 29.68 | 20.73 | 26.56 | 66.83 | This Study |
Yueliang Lake | 7.64 | 0.16 | 0.07 | 53.66 | 26.82 | 19.3 | 56.13 | 72.17 | [50] |
Songhua River | 18.9 | 0.9 | 0.1 | 41.2 | 99 | 44.5 | 13.3 | 107 | [51] |
Nen River | 5.2 | 0.24 | 0.027 | 26 | 24 | 21 | 5.4 | 54 | [49] |
Jingpo Lake | 7.28 | 0.48 | 0.113 | 82.8 | 39.3 | 22.4 | 12.1 | 84.6 | [52] |
Major Lakes in Songnen Plain | - | - | - | - | 35.07 | 29.09 | 25.57 | 189.78 | [47] |
Major Lakes in China | 16.39 | 0.497 | 0.076 | 6.29 | 31.81 | 36.89 | 35.37 | 99.52 | [48] |
Background Value | 9 | 0.099 | 0.015 | 50 | 24 | 18 | 22 | 54 | [45,46] |
Items | Ei | RI | |||||||
---|---|---|---|---|---|---|---|---|---|
As | Hg | Cd | Cr | Ni | Cu | Pb | Zn | ||
Minimum * | 3.22 | 21.94 | 13.89 | 1.00 | 2.86 | 1.33 | 1.11 | 0.47 | 57.50 |
Maximum * | 15.96 | 167.36 | 103.04 | 2.90 | 8.27 | 8.25 | 15.89 | 1.47 | 283.23 |
Mean * | 11.13 | 88.56 | 59.81 | 2.30 | 6.18 | 5.76 | 6.04 | 1.24 | 181.02 |
Minimum + | 4.14 | 13.93 | 15.36 | 2.15 | 2.26 | 2.26 | 2.90 | 0.58 | 45.82 |
Maximum + | 45.23 | 103.90 | 43.88 | 3.79 | 7.52 | 8.92 | 7.19 | 1.73 | 160.17 |
Mean + | 15.49 | 45.53 | 26.76 | 2.78 | 5.11 | 6.11 | 5.04 | 1.15 | 107.97 |
Name | Cr | Ni | As | Cu | Zn | References |
---|---|---|---|---|---|---|
Surface sediment of Chagan Lake | 57.60 | 29.68 | 10.01 | 20.73 | 66.83 | This study |
Basalt | 183.18 | 119.09 | 0.22 | 32.75 | 158.12 | [49] |
Andesite | 46.90 | 28.34 | 0.79 | 18.41 | 134.98 | |
Granite | 2.64 | 3.73 | 0.40 | 6.89 | 54.37 | |
Loess-like clayey soil | 13.83 | 25.63 | 10.30 | 16.13 | 45.87 | |
Mean content of the rock | 61.64 | 44.20 | 2.93 | 18.55 | 98.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Zheng, C.; Wen, M.; Luo, X.; Wu, Z.; Liu, Y.; Chai, S.; Huang, L. Ecological Risk Assessment and Contamination History of Heavy Metals in the Sediments of Chagan Lake, Northeast China. Water 2021, 13, 894. https://doi.org/10.3390/w13070894
Liu P, Zheng C, Wen M, Luo X, Wu Z, Liu Y, Chai S, Huang L. Ecological Risk Assessment and Contamination History of Heavy Metals in the Sediments of Chagan Lake, Northeast China. Water. 2021; 13(7):894. https://doi.org/10.3390/w13070894
Chicago/Turabian StyleLiu, Panfeng, Chaojie Zheng, Meilan Wen, Xianrong Luo, Zhiqiang Wu, Yinghong Liu, Sheli Chai, and Liangliang Huang. 2021. "Ecological Risk Assessment and Contamination History of Heavy Metals in the Sediments of Chagan Lake, Northeast China" Water 13, no. 7: 894. https://doi.org/10.3390/w13070894
APA StyleLiu, P., Zheng, C., Wen, M., Luo, X., Wu, Z., Liu, Y., Chai, S., & Huang, L. (2021). Ecological Risk Assessment and Contamination History of Heavy Metals in the Sediments of Chagan Lake, Northeast China. Water, 13(7), 894. https://doi.org/10.3390/w13070894