Prioritizing Design Parameters for Stepped Chutes and Shear Stress Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Model
2.2. Design of Experiment
3. Results and Discussion
3.1. Model Development
3.2. Statistical Validation of Regression Models
3.3. Main Impact of Factors and Their Interaction Effects
3.4. Shear Stress
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.Y.; Lee, J.H.; Melching, C.S. River Dynamics and Integrated River Management; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Valero, D.; Bung, D.B.; Crookston, B.M. Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways. J. Hydraul. Eng. 2018, 144, 04018036. [Google Scholar] [CrossRef]
- Morovati, K.; Homer, C.; Tian, F.; Hu, H. Opening configuration design effects on pooled stepped chutes. J. Hydraul. Eng. 2021, in press. [Google Scholar] [CrossRef]
- Felder, S.; Chanson, H. Energy dissipation down a stepped spillway with nonuniform step heights. J. Hydraul. Eng. 2011, 137, 1543–1548. [Google Scholar] [CrossRef] [Green Version]
- Felder, S.; Chanson, H. Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams. J. Irrig. Drain. Eng. 2013, 139, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Felder, S.; Fromm, C.; Chanson, H. Air Entrainment and Energy Dissipation on A 8.9 Slope Stepped Spillway with Flat and Pooled Steps; The University of Queensland: Brisbane, Australia, 2012. [Google Scholar]
- Thorwarth, J. Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen Selbstinduzierte Abflussinstationaritäten und Energiedissipation (Hydraulics of Poole Stepped Spillways—Self-induced Unsteady Flow and Energy Dissipation). Ph.D. Thesis, University of Aachen, Aachen, Germany, 2008. [Google Scholar]
- Kökpinar, M.A. Flow over a stepped chute with and without macro-roughness elements. Can. J. Civ. Eng. 2004, 31, 880–891. [Google Scholar] [CrossRef]
- Andre, S. High Velocity Aerated Flows on Stepped Chutes with Macro-Roughness Elements. Ph.D. Thesis, Laboratoire de Constructions Hydraulics, Lausanne, Switzerland, 2004. [Google Scholar]
- Gonzalez, C.A. An Experimental Study of Free-Surface Aeration on Embankment Stepped Chutes. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2005. [Google Scholar]
- Meireles, I.; Matos, J. Skimming flow in the nonaerated region of stepped spillways over embankment dams. J. Hydraul. Eng. 2009, 135, 685–689. [Google Scholar] [CrossRef]
- Bung, D.B. Developing flow in skimming flow regime on embankment stepped spillways. J. Hydraul. Res. 2011, 49, 639–648. [Google Scholar] [CrossRef]
- Zhang, G.; Chanson, H. Hydraulics of the developing flow region of stepped spillways. I: Physical modeling and boundary layer development. J. Hydraul. Eng. 2016, 142, 04016015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Chanson, H. Hydraulics of the developing flow region of stepped spillways. II: Pressure and velocity fields. J. Hydraul. Eng. 2016, 142, 04016016. [Google Scholar] [CrossRef] [Green Version]
- Felder, S.; Guenther, P.; Chanson, H. Air-Water Flow Properties and Energy Dissipation on Stepped Spillways: A Physical Study of Several Pooled Stepped Configurations; The University of Queensland: Brisbane, Australia, 2012. [Google Scholar]
- Felder, S.; Chanson, H. Energy dissipation, flow resistance and gas-liquid interfacial area in skimming flows on moderate-slope stepped spillways. Environ. Fluid Mech. 2009, 9, 427–441. [Google Scholar] [CrossRef]
- Dey, S.; Lambert, M.F. Reynolds stress and bed shear in nonuniform unsteady open-channel flow. J. Hydraul. Eng. 2005, 131, 610–614. [Google Scholar] [CrossRef]
- Chanson, H. Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. J. Hydraul. Res. 1994, 32, 213–218. [Google Scholar] [CrossRef]
- Jiang, L.; Diao, M.; Xue, H.; Sun, H. Energy dissipation prediction for stepped spillway based on genetic algorithm–support vector regression. J. Irrig. Drain. Eng. 2018, 144, 04018003. [Google Scholar] [CrossRef]
- Khatibi, R.; Salmasi, F.; Ghorbani, M.A.; Asadi, H. Modelling energy dissipation over stepped-gabion weirs by artificial intelligence. Water Resour. Manag. 2014, 28, 1807–1821. [Google Scholar] [CrossRef]
- Baylar, A.; Hanbay, D.; Ozpolat, E. Modeling aeration efficiency of stepped cascades by using ANFIS. CLEAN–Soil Air Water 2007, 35, 186–192. [Google Scholar] [CrossRef]
- Laucelli, D.; Giustolisi, O. Scour depth modeling by a multi-objective evolutionary paradigm. Environ. Model. Softw. 2011, 26, 498–509. [Google Scholar] [CrossRef]
- Emiroglu, M.E.; Bilhan, O.; Kisi, O. Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel. Expert Syst. Appl. 2011, 38, 867–874. [Google Scholar] [CrossRef]
- Azamathulla, H.M. Gene expression programming for prediction of scour depth downstream of sills. J. Hydrol. 2012, 460, 156–159. [Google Scholar] [CrossRef]
- Dursun, O.F.; Kaya, N.; Firat, M. Estimating discharge coefficient of semi-elliptical side weir using ANFIS. J. Hydrol. 2012, 426, 55–62. [Google Scholar] [CrossRef]
- Bagatur, T.; Onen, F. A predictive model on air entrainment by plunging water jets using GEP and ANN. KSCE J. Civ. Eng. 2014, 18, 304–314. [Google Scholar] [CrossRef]
- Roushangar, K.; Akhgar, S.; Salmasi, F.; Shiri, J. Neural networks-and neuro-fuzzy-based determination of influential parameters on energy dissipation over stepped spillways under nappe flow regime. ISH J. Hydraul. Eng. 2017, 23, 57–62. [Google Scholar] [CrossRef]
- Morovati, K.; Eghbalzadeh, A.; Javan, M. Numerical investigation of the configuration of the pools on the flow pattern passing over pooled stepped spillway in skimming flow regime. Acta Mech. 2016, 227, 353–366. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J. Numerical investigation on the hydraulic properties of the skimming flow over pooled stepped spillway. Water 2018, 10, 1478. [Google Scholar] [CrossRef] [Green Version]
- Attarian, A.; Hosseini, K.; Abdi, H.; Hosseini, M. The effect of the step height on energy dissipation in stepped spillways using numerical simulation. Arab. J. Sci. Eng. 2014, 39, 2587–2594. [Google Scholar] [CrossRef]
- Morovati, K.; Eghbalzadeh, A. Stepped spillway performance: Study of the pressure and turbulent kinetic energy versus discharge and slope. J. Water Sci. Res. 2015, 8, 63–77. [Google Scholar]
- Li, S.; Yang, J. Effects of Inclination Angles on Stepped Chute Flows. Appl. Sci. 2020, 10, 6202. [Google Scholar] [CrossRef]
- Munta, S.; Otuna, J.A.; Abubakar, I. Prediction of inception length of flow over different stepped chute geometry. Nigerion J. Technol. 2015, 34, 631–635. [Google Scholar] [CrossRef] [Green Version]
- Bombardelli, F.A.; Meireles, I.; Matos, J. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11, 263–288. [Google Scholar] [CrossRef] [Green Version]
- Morovati, K.; Eghbalzadeh, A. Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 982–998. [Google Scholar] [CrossRef]
- Flow Science. FLOW-3D User’s Manual. Version 10.1; Flow Science: Los Alamos, NM, USA, 2013. [Google Scholar]
- Mathews, P.G. Design of Experiments with MINITAB; ASQ Quality Press: Milwaukee, WI, USA, 2005. [Google Scholar]
- Akbari, S.; Mahmood, M.S.; Ghaedi, H.; Al-Hajri, S. New empirical model for viscosity of sulfonated polyacrylamide polymers. Polymers 2019, 11, 1046. [Google Scholar] [CrossRef] [Green Version]
- Rangkooy, H.A.; Ghaedi, H.; Jahani, F. Removal of xylene vapor pollutant from the air using new hybrid substrates of TiO2-WO3 nanoparticles immobilized on the ZSM-5 zeolite under UV radiation at ambient temperature. 2019, Experimental towards modeling. J. Environ. Chem. Eng. 2019, 7, 103247. [Google Scholar] [CrossRef]
- Murshid, G.; Ghaedi, H.; Ayoub, M.; Garg, S.; Ahmad, W. Experimental and correlation of viscosity and refractive index of non-aqueous system of diethanolamine (DEA) and dimethylformamide (DMF) for CO2 capture. J. Mol. Liq. 2018, 250, 162–170. [Google Scholar] [CrossRef]
- Ghaedi, H.; Ayoub, M.; Sufian, S.; Murshid, G.; Farrukh, S.; Shariff, A.M. Investigation of various process parameters on the solubility of carbon dioxide in phosphonium-based deep eutectic solvents and their aqueous mixtures: Experimental and modeling. Int. J. Greenh. Gas Control. 2017, 66, 147–158. [Google Scholar] [CrossRef]
- Guenther, P.; Felder, S.; Chanson, H. Flow aeration, cavity processes and energy dissipation on flat and pooled stepped spillways for embankments. Environ. Fluid Mech. 2013, 13, 503–525. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C. Design and Analysis of Experiments, 7th ed.; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Chanson, H. Self-aerated flows on chutes and spillways. J. Hydraul. Eng. 1993, 119, 220–243. [Google Scholar] [CrossRef] [Green Version]
- Chanson, H. Hydraulics of Stepped Chutes and Spillways; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
References | S | l (m) | h (m) | H (m) | W (m) | NS |
---|---|---|---|---|---|---|
Felder et al. [6] | 0.319 | 0.05 | 1.05 | 0.5 | 21 | |
Thorwarth [7] | 0.192 | 0.05 | 1.3 | 0.5 | 26 | |
Gonzalez [10] | 0.25 | 0.1 | 1 | 1 | 10 | |
Felder et al. [15] | 0.2 | 0.1 | 1 | 0.52 | 10 | |
Morovati and Eghbalzadeh [32] | 0.173 | 0.1 | 1 | 0.52 | 10 |
Input Parameters | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|
Chute slope (S = tan) | |||||
Discharge Q (m3/s) | 0.049 | 0.075 | 0.113 | 0.1641 | 0.2195 |
Pool height hp (m) | 0 | 0.03 | 0.06 | 0.1 | - |
Chute height H (m) | 1 | 1.5 | 2 | - | - |
Chute width W (m) | 0.5 | 1 | - | - | - |
Source | Sum of Squares | df | Mean of Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 428.18 | 9 | 47.13 | 1157.31 | <0.0001 | Significant |
74.68 | 1 | 76.68 | 1833.81 | <0.0001 | Significant | |
Q | 179.87 | 1 | 179.87 | 4416.80 | <0.0001 | Significant |
hp | 11.62 | 1 | 11.62 | 285.40 | <0.0001 | Significant |
H | 18.51 | 1 | 18.51 | 454.53 | <0.0001 | Significant |
W | 91.71 | 1 | 91.71 | 2251.86 | <0.0001 | Significant |
Q | 7.72 | 1 | 7.72 | 189.46 | <0.0001 | Significant |
hp | 46.70 | 1 | 46.70 | 1146.69 | <0.0001 | Significant |
Qhp | 0.4818 | 1 | 0.4818 | 11.83 | 0.0006 | Significant |
QH | 0.3284 | 1 | 0.3284 | 8.06 | 0.0047 | Significant |
Residual | 24.03 | 590 | 0.0407 | |||
Corrected Total | 448.21 | 599 | ||||
R2 | 0.9464 | |||||
Adjusted R2 | 0.9456 | |||||
Predicted R2 | 0.94444 | |||||
Adeq Precision | 178.6339 | |||||
PRESS | 24.91 | |||||
C.V.% | 6.18 |
Source | Sum of Squares | df | Mean of Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 440,500 | 11 | 40,045.94 | 1012.23 | <0.0001 | Significant |
13,118.66 | 1 | 13,118.66 | 331.60 | <0.0001 | Significant | |
Q | 220,800 | 1 | 220,800 | 5579.91 | <0.0001 | Significant |
hp | 1337.61 | 1 | 1337.61 | 33.81 | <0.0001 | Significant |
H | 107.91 | 1 | 107.91 | 2.73 | 0.0992 | Insignificant |
W | 180,000 | 1 | 180,000 | 4549.63 | <0.0001 | Significant |
Q | 2737.68 | 1 | 2737.68 | 69.20 | <0.0001 | Significant |
hp | 363.98 | 1 | 363.98 | 9.20 | 0.0025 | Significant |
H | 12,140.08 | 1 | 12,140.18 | 306.86 | <0.0001 | Significant |
W | 499.18 | 1 | 499.18 | 12.62 | 0.0004 | Significant |
Qhp | 2361.69 | 1 | 2361.69 | 59.70 | <0.0001 | Significant |
QW | 20,153.37 | 1 | 20,153.37 | 509.41 | <0.0001 | Significant |
Residual | 23,262.61 | 588 | 39.56 | |||
Corrected Total | 463,800 | 599 | ||||
R2 | 9498 | |||||
Adjusted R2 | 9489 | |||||
Predicted R2 | 9480 | |||||
Adeq Precision | 143.2464 | |||||
PRESS | 24,126.92 | |||||
C.V.% | 10.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morovati, K.; Ghaedi, H.; Tian, F.; Akbari, S.; Homer, C. Prioritizing Design Parameters for Stepped Chutes and Shear Stress Distribution. Water 2021, 13, 1155. https://doi.org/10.3390/w13091155
Morovati K, Ghaedi H, Tian F, Akbari S, Homer C. Prioritizing Design Parameters for Stepped Chutes and Shear Stress Distribution. Water. 2021; 13(9):1155. https://doi.org/10.3390/w13091155
Chicago/Turabian StyleMorovati, Khosro, Hosein Ghaedi, Fuqiang Tian, Saeed Akbari, and Christopher Homer. 2021. "Prioritizing Design Parameters for Stepped Chutes and Shear Stress Distribution" Water 13, no. 9: 1155. https://doi.org/10.3390/w13091155
APA StyleMorovati, K., Ghaedi, H., Tian, F., Akbari, S., & Homer, C. (2021). Prioritizing Design Parameters for Stepped Chutes and Shear Stress Distribution. Water, 13(9), 1155. https://doi.org/10.3390/w13091155