Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. NARX Model Architectures
2.3. Evaluation Metrics
3. Results and Discussion
3.1. Training and Testing
3.2. Venice Lagoon Analysis
3.3. High Tide Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Umgiesser, G. The impact of operating the mobile barriers in Venice (MOSE) under climate change. J. Nat. Conserv. 2020, 54. [Google Scholar] [CrossRef]
- Bras, R.L.; Harleman, D.R.F.; Rinaldo, A.; Rizzoli, P. Rescuing Venice from a watery grave. Science 2001, 291, 2315–2316. [Google Scholar] [CrossRef]
- Tosi, L.; Teatini, P.; Strozzi, T. Natural versus anthropogenic subsidence of Venice. Sci. Rep. 2013, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Trincardi, F.; Barbanti, A.; Bastianini, M.; Benetazzo, A.; Cavaleri, L.; Chiggiato, J.; Papa, A.; Pomaro, A.; Sclavo, M.; Tosi, L.; et al. The 1966 Flooding of Venice: What Time Taught Us for the Future. Oceanography 2016, 29, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Comune di Venezia. Centro Previsioni e Segnalazioni Maree—Dati e statistiche—Archivio storico: Livello di marea a Venezia. 2020. Available online: https://www.comune.venezia.it/node/6214 (accessed on 23 April 2021).
- Reimann, L.; Vafeidis, A.; Brown, S.; Hinkel, J.; Tol, R. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Tosoni, A.; Canestrelli, P. Il modello stocastico per la previsione di marea a Venezia. Atti Ist. Veneto Sci. Lett. Arti 2011, 169, 2010–2011. [Google Scholar]
- Massalin, A.; Zampato, L.; Papa, A.; Canestrelli, P. Data monitoring and sea level forecasting in the Venice Lagoon: The ICPSM’s activity. Boll. Geofis. Teor. Appl. 2007, 48, 241–257. [Google Scholar]
- Lovato, T.; Androsov, A.; Romanenkov, D.; Rubino, A. The tidal and wind induced hydrodynamics of the composite system Adriatic Sea/Lagoon of Venice. Cont. Shelf Res. 2010, 30, 692–706. [Google Scholar] [CrossRef]
- Umgiesser, G.; Canu, D.M.; Cucco, A. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J. Mar. Syst. 2004, 51, 123–145. [Google Scholar] [CrossRef]
- Lionello, P.; Sanna, A.; Elvini, E.; Mufato, R. A data assimilation procedure for operational prediction of storm surge in the northern Adriatic Sea. Cont. Shelf Res. 2006, 26, 539–553. [Google Scholar] [CrossRef]
- Mel, R.; Viero, D.P.; Carniello, L.; Defina, A.; D’Alpaos, L. Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Adv. Water Resour. 2014, 71, 177–185. [Google Scholar] [CrossRef]
- Canestrelli, E.; Canestrelli, P.; Corazza, M.; Filippone, M.; Giove, S.; Masulli, F. Local Learning of Tide Level Time Series using a Fuzzy Approach. In Proceedings of the IEEE International Joint Conference on Neural Networks, Orlando, FL, USA, 12–17 August 2007; pp. 1813–1818. [Google Scholar]
- Parise, F.; Picci, G. Identification of High Tide Models in the Venetian Lagoon: Variable Selection and G-LASSO. Int. Fed. Autom. Control 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.L.; Billings, S.A. An efficient nonlinear cardinal B-spline model for high tide forecasts at the Venice Lagoon. Nonlinear Process. Geophys. 2006, 13, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Chau, K.W.; Wu, C.; Li, Y.S. Comparison of Several Flood Forecasting Models in Yangtze River. J. Hydrol. Eng. 2005, 10, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Kişi, Ö. Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 2007, 12, 532–539. [Google Scholar] [CrossRef]
- Tapoglou, E.; Karatzas, G.P.; Trichakis, I.C.; Varouchakis, E.A. A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation. J. Hydrol. 2014, 519, 3193–3203. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Etemad Shahidi, A.; Lim, S.Y. Scour Prediction in Long Contractions Using ANFIS and SVM. Ocean Eng. 2016, 111, 128–135. [Google Scholar] [CrossRef]
- Khan, N.; Sachindra, D.A.; Shahid, S.; Ahmed, K.; Shiru, M.S.; Nawaz, N. Prediction of droughts over Pakistan using machine learning algorithms. Adv. Water Resour. 2020, 139, 103562. [Google Scholar] [CrossRef]
- Phan, T.T.H.; Nguyen, X.H. Combining statistical machine learning models with ARIMA for water level forecasting: The case of the Red river. Adv. Water Resour. 2020, 142, 103656. [Google Scholar] [CrossRef]
- Granata, F.; Gargano, R.; de Marinis, G. Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. Sci. Total Environ. 2020, 703, 135653. [Google Scholar] [CrossRef]
- Zaldivar, J.M.; Gutiérrez, E.; Galván, I.M.; Strozzi, F.; Tomasin, A. Forecasting high waters at Venice Lagoon using chaotic time series analysis and nonlinear neural networks. J. Hydroinform. 2000, 2, 61–84. [Google Scholar] [CrossRef] [Green Version]
- Rakshith, S.; Dwarakish, G.S.; Natesan, U. Tidal-Level forecasting using Artificial Neural Networks along the West Cost of India. J. Jpn. Soc. Civ. Eng. 2014, 2, 176–187. [Google Scholar]
- Riazi, A. Accurate tide level estimation: A deep learning approach. Ocean Eng. 2020, 198. [Google Scholar] [CrossRef]
- Todini, E. Hydrological catchment modelling: Past, present and future. Hydrol. Earth Syst. Sci. 2007, 11, 468–482. [Google Scholar] [CrossRef] [Green Version]
- Abe, S. Support Vector Machines for Pattern Classification; Springer: Dordrecht, The Netherlands, 2010; p. 473. [Google Scholar]
- Solomatine, D.P.; Ostfeld, A. Data-driven modelling: Some past experiences and new approaches. J. Hydroinform. 2008, 10, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Varouchakis, E.A.; Spanoudaki, K.; Hristopulos, D.T.; Karatzas, G.P.; Corzo, G. Stochastic Modeling of Aquifer Level Temporal Fluctuations Based on the Conceptual Basis of the Soil-Water Balance Equation. Soil Sci. 2016, 181, 224–231. [Google Scholar] [CrossRef]
- Varouchakis, E.A. Modeling of temporal groundwater level variations based on a kalman filter adaptation algorithm with exogenous inputs. J. Hydroinform. 2017, 19, 191–206. [Google Scholar] [CrossRef]
- Alsumaiei, A.A. A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers. Water 2020, 12, 820. [Google Scholar] [CrossRef] [Green Version]
- Berbić, J.; Ocvirk, E.; Carevic, D.; Loncar, G. Application of neural networks and support vector machine for significant wave height prediction. Oceanologia 2017, 59, 331–349. [Google Scholar] [CrossRef]
- Di Nunno, F.; Granata, F. Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environ. Res. 2020, 190, 110062. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Kamrava, S.; Bai, T.; Sahimi, M. Machine learning in geo- and environmental sciences: From small to large scale. Adv. Water Resour. 2020, 142. [Google Scholar] [CrossRef]
- Semprucci, F.; Balsamo, M.; Sandulli, R. Assessment of the ecological quality (EcoQ) of the Venice lagoon using the structure and biodiversity of the meiofaunal assemblages. Ecol. Indic. 2016, 67, 451–457. [Google Scholar] [CrossRef]
- Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface. Adv. Water Resour. 2018, 113, 126–140. [Google Scholar] [CrossRef]
- Comune di Venezia. Centro Previsioni e Segnalazioni Maree-La Marea-La Marea Astronomica. 2020. Available online: https://www.comune.venezia.it/it/content/la-marea-astronomica (accessed on 23 April 2021).
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Guzman, S.M.; Paz, J.O.; Tagert, M.L.M. The Use of NARX Neural Networks to Forecast Daily Groundwater Levels. Water Resour. Manag. 2017, 31, 1591–1603. [Google Scholar] [CrossRef]
- Desouky, M.M.A.; Abdelkhalik, O. Wave prediction using wave rider position measurements and NARX network in wave energy conversion. Appl. Ocean Res. 2019, 82, 10–21. [Google Scholar] [CrossRef]
- MathWorks. MATLAB Deep Learning Toolbox Release 2020a; MathWorks: Natick, MA, USA, 2020. [Google Scholar]
- Di Nunno, F.; Granata, F.; Gargano, R.; de Marinis, G. Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmosphere 2021, 12, 512. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Bayesian Interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to Bayesian learning. In Proceedings of the International Conference on Neural Networks (ICNN’97), Houston, TX, USA, 12 June 1997; pp. 1930–1935. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: New York, NY, USA, 1995; p. 198. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Comune di Venezia. Centro Previsioni e Segnalazioni Maree-La Marea-Le Percentuali di Allagamento. 2020. Available online: https://www.comune.venezia.it/it/content/le-percentuali-allagamento (accessed on 23 April 2021).
- Iannello, J.P. Time Delay Estimation Via Cross-Correlation in the Presence of Large Estimation Errors. IEEE Trans. Signal Process. 1982, 30, 998–1003. [Google Scholar] [CrossRef] [Green Version]
- Ferla, M.; Cordella, M.; Michielli, L.; Rusconi, A. Long term variations on sea level and tidal regime in the lagoon of Venice. Estuar. Coast. Shelf Sci. 2007, 75, 214–222. [Google Scholar] [CrossRef]
- Moore, D.S.; Notz, W.I.; Flinger, M.A. The Basic Practice of Statistics, 8th ed.; W.H. Freeman and Company, 41; Madison Avenue: New York, NY, USA, 2018; p. 654. [Google Scholar]
Tide Gauge Station | Year |
---|---|
Lido Diga Nord, Meda Bocca Lido, San Giorgio in Alga, Sant’Erasmo | 2012 |
Canal Ancora, Chioggia Vigo, Faro Rocchetta, Grassabò, Le Saline, Malamocco Diga Nord, Marghera, Punta della Salute | 2013 |
Chioggia Diga Sud, Cavallino Centro, Lido Diga Sud, Murano, San Nicolò, Treporti, Valle Averto | 2014 |
Model I | Model II | Model III | Model IV | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ta | R2 | MAE (cm) | RMSE (cm) | RAE | R2 | MAE (cm) | RMSE (cm) | RAE | R2 | MAE (cm) | RMSE (cm) | RAE | R2 | MAE (cm) | RMSE (cm) | RAE |
(Hours) | ||||||||||||||||
1 | 0.9980 | 0.9668 | 1.2400 | 0.0426 | 0.9980 | 0.9773 | 1.2523 | 0.0431 | 0.9980 | 0.9797 | 1.2550 | 0.0432 | 0.9980 | 0.9831 | 1.2592 | 0.0433 |
2 | 0.9980 | 0.9929 | 1.2694 | 0.0437 | 0.9979 | 1.0160 | 1.2986 | 0.0448 | 0.9979 | 1.0136 | 1.2924 | 0.0447 | 0.9979 | 1.0058 | 1.2881 | 0.0443 |
3 | 0.9949 | 1.5830 | 1.9961 | 0.0697 | 0.9946 | 1.6305 | 2.0520 | 0.0718 | 0.9949 | 1.6015 | 2.0110 | 0.0705 | 0.9947 | 1.6272 | 2.0423 | 0.0717 |
6 | 0.9737 | 3.7215 | 4.5463 | 0.1639 | 0.9724 | 3.8238 | 4.6570 | 0.1684 | 0.9737 | 3.7246 | 4.5441 | 0.1640 | 0.9729 | 3.7752 | 4.6171 | 0.1662 |
12 | 0.9810 | 3.1069 | 3.8658 | 0.1368 | 0.9800 | 3.2172 | 3.9617 | 0.1417 | 0.9809 | 3.1123 | 3.8717 | 0.1371 | 0.9806 | 3.1506 | 3.9103 | 0.1388 |
18 | 0.9776 | 3.4265 | 4.2017 | 0.1509 | 0.9766 | 3.5183 | 4.2865 | 0.1549 | 0.9778 | 3.4101 | 4.1783 | 0.1502 | 0.9763 | 3.5566 | 4.3146 | 0.1566 |
24 | 0.9849 | 2.7610 | 3.4449 | 0.1216 | 0.9824 | 2.9933 | 3.7229 | 0.1318 | 0.9848 | 2.7622 | 3.4543 | 0.1216 | 0.9826 | 2.9653 | 3.6934 | 0.1306 |
30 | 0.9853 | 2.7086 | 3.4026 | 0.1193 | 0.9844 | 2.8079 | 3.4981 | 0.1236 | 0.9852 | 2.7156 | 3.4127 | 0.1196 | 0.9850 | 2.7444 | 3.4390 | 0.1208 |
36 | 0.9755 | 3.5943 | 4.3926 | 0.1582 | 0.9746 | 3.6599 | 4.4663 | 0.1611 | 0.9754 | 3.5982 | 4.3994 | 0.1584 | 0.9746 | 3.6486 | 4.4711 | 0.1606 |
42 | 0.9756 | 3.6013 | 4.3779 | 0.1585 | 0.9749 | 3.6765 | 4.4452 | 0.1618 | 0.9755 | 3.6065 | 4.3864 | 0.1587 | 0.9749 | 3.6762 | 4.4461 | 0.1618 |
48 | 0.9856 | 2.7151 | 3.3660 | 0.1195 | 0.9845 | 2.8283 | 3.4969 | 0.1245 | 0.9855 | 2.7229 | 3.3732 | 0.1199 | 0.9843 | 2.8414 | 3.5123 | 0.1251 |
54 | 0.9871 | 2.5676 | 3.1914 | 0.1130 | 0.9868 | 2.5922 | 3.2171 | 0.1141 | 0.9870 | 2.5700 | 3.1945 | 0.1131 | 0.9868 | 2.5953 | 3.2208 | 0.1142 |
60 | 0.9756 | 3.5952 | 4.3836 | 0.1582 | 0.9756 | 3.6023 | 4.3819 | 0.1585 | 0.9758 | 3.5764 | 4.3601 | 0.1574 | 0.9754 | 3.6060 | 4.3988 | 0.1587 |
66 | 0.9727 | 3.8478 | 4.6376 | 0.1693 | 0.9724 | 3.8686 | 4.6605 | 0.1702 | 0.9726 | 3.8555 | 4.6480 | 0.1696 | 0.9723 | 3.8764 | 4.6651 | 0.1705 |
72 | 0.9823 | 3.0501 | 3.7369 | 0.1342 | 0.9821 | 3.0594 | 3.7549 | 0.1346 | 0.9824 | 3.0324 | 3.7240 | 0.1334 | 0.9820 | 3.0729 | 3.7609 | 0.1352 |
Tide Gauge | Lag Times (Hours) | Cross-Correlation Peaks |
---|---|---|
Canal Ancora | 2.0 | 0.9814 |
Cavallino Centro | 4.0 | 0.9548 |
Chioggia Diga Sud | 0.5 | 0.9977 |
Chioggia Vigo | 1.5 | 0.9913 |
Faro Rocchetta | 1.5 | 0.9933 |
Grassabò | 3.5 | 0.9546 |
Le Saline | 1.5 | 0.9933 |
Lido Diga Nord | 0.5 | 0.9969 |
Lido Diga Sud | 0.5 | 0.9965 |
Malamocco Diga Nord | 0.5 | 0.9946 |
Marghera | 2.0 | 0.9883 |
Meda Bocca Lido | 1.0 | 0.9914 |
Murano | 2.0 | 0.9881 |
Punta della Salute | 1.5 | 0.9915 |
San Giorgio in Alga | 1.5 | 0.9882 |
San Nicolò | 1.5 | 0.9912 |
Sant’Erasmo | 1.5 | 0.9899 |
Treporti | 2.0 | 0.9826 |
Valle Averto | 2.0 | 0.9797 |
Model I | Model II | Model III | Model IV | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | MAE (cm) | RMSE (cm) | RAE | R2 | MAE (cm) | RMSE (cm) | RAE | R2 | MAE (cm) | RMSE (cm) | RAE | R2 | MAE (cm) | RMSE (cm) | RAE | |
Min | 0.7618 | 1.0035 | 1.3026 | 0.0483 | 0.7688 | 1.0067 | 1.3062 | 0.0485 | 0.7760 | 1.0129 | 1.3130 | 0.0488 | 0.7421 | 1.0079 | 1.3075 | 0.0486 |
Max | 0.9974 | 11.087 | 13.7120 | 0.4895 | 0.9974 | 10.791 | 13.5100 | 0.4764 | 0.9973 | 10.679 | 13.481 | 0.4714 | 0.9974 | 11.389 | 14.255 | 0.5036 |
Mean | 0.9286 | 5.2353 | 6.4746 | 0.2472 | 0.9298 | 5.1817 | 6.4370 | 0.2446 | 0.9263 | 5.2832 | 6.5582 | 0.2494 | 0.9257 | 5.2467 | 6.5586 | 0.2476 |
Std Dev | 0.0499 | 2.2295 | 2.7109 | 0.1041 | 0.0492 | 2.1582 | 2.6578 | 0.1005 | 0.0525 | 2.2812 | 2.8037 | 0.1063 | 0.0576 | 2.3025 | 2.8918 | 0.1071 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Nunno, F.; de Marinis, G.; Gargano, R.; Granata, F. Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network. Water 2021, 13, 1173. https://doi.org/10.3390/w13091173
Di Nunno F, de Marinis G, Gargano R, Granata F. Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network. Water. 2021; 13(9):1173. https://doi.org/10.3390/w13091173
Chicago/Turabian StyleDi Nunno, Fabio, Giovanni de Marinis, Rudy Gargano, and Francesco Granata. 2021. "Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network" Water 13, no. 9: 1173. https://doi.org/10.3390/w13091173
APA StyleDi Nunno, F., de Marinis, G., Gargano, R., & Granata, F. (2021). Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network. Water, 13(9), 1173. https://doi.org/10.3390/w13091173