Runoff Projection from an Alpine Watershed in Western Canada: Application of a Snowmelt Runoff Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Historical Climate, Snow, and Streamflow Data
2.3. The Snowmelt Runoff Model (SRM)
2.4. SRM Model Calibration
2.5. Future Climate Data
2.6. Climate Change Impacts on Future Runoff
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Parameter Sensitivity and Model Uncertainty
3.3. Projected Changes in Precipitation and Temperature
3.4. Projected Snow Cover Area and Glacier Extents
3.5. Projected Changes in Runoff
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferguson, R.I. Snowmelt runoff models. Prog. Phys. Geogr. 1999, 23, 205–227. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Rood, S.B.; Pan, J.; Gill, K.M.; Franks, C.G.; Samuelson, G.M.; Shepherd, A. Declining summer flows of Rocky Mountain rivers: Changing seasonal hydrology and probable impacts on floodplain forests. J. Hydrol. 2008, 349, 397–410. [Google Scholar] [CrossRef]
- Bonsal, B.; Shrestha, R.R.; Dibike, Y.; Peters, D.L.; Spence, C.; Mudryk, L.; Yang, D. Western Canadian freshwater availability: Current and future vulnerabilities. Environ. Rev. 2020, 28, 528–545. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.J.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. 2013: Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, F.T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 1029–1136. [Google Scholar]
- O’Neil, H.C.L.; Prowse, T.D.; Bonsal, B.R.; Dibike, Y.B. Spatial and temporal characteristics in streamflow-related hydroclimatic variables over western Canada. Part 2: Future projections. Hydrol. Res. 2016, 48, 932–944. [Google Scholar] [CrossRef]
- Faurès, J.M.; Goodrich, D.C.; Woolhiser, D.A.; Sorooshian, S. Impact of small-scale spatial rainfall variability on runoff modeling. J. Hydrol. 1995, 173, 309–326. [Google Scholar] [CrossRef]
- Stahl, K.; Moore, R.; Floyer, J.; Asplin, M.; McKendry, I. Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. For. Meteorol. 2006, 139, 224–236. [Google Scholar] [CrossRef]
- Feiccabrino, J.; Graff, W.; Lundberg, A.; Sandström, N.; Gustafsson, D. Meteorological knowledge useful for the improvement of snow rain separation in surface based models. Hydrology 2015, 2, 266–288. [Google Scholar] [CrossRef] [Green Version]
- Mott, R.; Vionnet, V.; Grünewald, T. The seasonal snow cover dynamics: Review on wind-driven coupling processes. Front. Earth Sci. 2018, 6, 197. [Google Scholar] [CrossRef]
- Lehning, M.; Fierz, C. Assessment of snow transport in avalanche terrain. Cold Reg. Sci. Technol. 2008, 51, 240–252. [Google Scholar] [CrossRef]
- Hock, R. Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr. Earth Environ. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A.; Roberts, R. Snowmelt Runoff Model (SRM) User’s Manual; New Mexico State University: Las Cruces, NM, USA, 2008. [Google Scholar]
- Rango, A.; Martinec, J. Revisiting the degree-day method for snowmelt computations. JAWRA J. Am. Water Resour. Assoc. 1995, 31, 657–669. [Google Scholar] [CrossRef]
- Debele, B.; Srinivasan, R.; Gosain, A.K. Comparison of process-based and temperature-index snowmelt modeling in SWAT. Water Resour. Manag. 2009, 24, 1065–1088. [Google Scholar] [CrossRef]
- Day, C.A. Modelling impacts of climate change on snowmelt runoff generation and streamflow across western US mountain basins: A review of techniques and applications for water resource management. Prog. Phys. Geogr. Earth Environ. 2009, 33, 614–633. [Google Scholar] [CrossRef]
- Mountain Research Initiative EDW Working Group; Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.J.; Greenwood, G.; Hashmi, M.Z.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, Y.; Chen, X.; Li, Y.; Bao, A. Modelling snowmelt runoff under climate change scenarios in an ungauged mountainous watershed, Northwest China. Math. Probl. Eng. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, M.F.; McKenney, D.W.; Lawrence, K.; Pedlar, J.H.; Hopkinson, R.F.; Milewska, E.; Papadopol, P. Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003. J. Appl. Meteorol. Clim. 2009, 48, 725–741. [Google Scholar] [CrossRef]
- Hall, D.K.; A Riggs, G.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote. Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Fitzharris, B.; Sirguey, P. Building a Platform for Snowmelt Runoff Modelling in the Athabasca River Basin; Climate Management Ltd.: Lusaka, Zambia, 2014; Unpublished Report. [Google Scholar]
- Raup, B.; Racoviteanu, A.; Khalsa, S.J.S.; Helm, C.; Armstrong, R.; Arnaud, Y. The GLIMS geospatial glacier database: A new tool for studying glacier change. Glob. Planet. Chang. 2007, 56, 101–110. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Martinec, J. The Degree-Day Factor for Snowmelt Runoff Forecasting; IAHS Commission of Surface Waters, IUGG General Assembly of Helsinki: Potsdam, Germany, 1960; Volume 51, pp. 468–477. [Google Scholar]
- Anderson, E.A. Snow Accumulation and Ablation Model—SNOW-17; US National Weather Service: Silver Spring, MD, USA, 2006. [Google Scholar]
- Panday, P.K.; Williams, C.A.; Frey, K.E.; Brown, M.E. Application and evaluation of a snowmelt runoff model in the Tamor River Basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol. Process. 2013, 28, 5337–5353. [Google Scholar] [CrossRef] [Green Version]
- Braun, L.N.; Grabs, W.; Rana, B. Application of a conceptual precipitation-runoff model in the Langtang Khola Basin, Nepal Himalaya. IAHS Publ. 1993, 218, 221–238. [Google Scholar]
- Smith, T.J.; Marshall, L.A. Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environ. Model. Softw. 2010, 25, 691–701. [Google Scholar] [CrossRef]
- Braswell, B.H.; Sacks, W.J.; Linder, E.; Schimel, D.S. Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob. Chang. Biol. 2005, 11, 335–355. [Google Scholar] [CrossRef]
- Zobitz, J.M.; Desai, A.R.; Moore, D.J.P.; Chadwick, M.A. A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC). Oecologia 2011, 167, 599–611. [Google Scholar] [CrossRef]
- Dibike, Y.; Eum, H.-I.; Prowse, T. Modelling the Athabasca watershed snow response to a changing climate. J. Hydrol. Reg. Stud. 2018, 15, 134–148. [Google Scholar] [CrossRef]
- Werner, A.T.; Cannon, A.J. Hydrologic extremes—An intercomparison of multiple gridded statistical downscaling meth-ods. Hydrol. Earth Syst. Sci. 2016, 20, 1483. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Hidalgo, H.G. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 2008, 12, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.D.; Meentemeyer, R.K. Climatologically aided mapping of daily precipitation and temperature. J. Appl. Meteorol. 2005, 44, 1501–1510. [Google Scholar] [CrossRef]
- Clarke, G.K.C.; Jarosch, A.H.; Anslow, F.S.; Radić, V.; Menounos, B. Projected deglaciation of western Canada in the twenty-first century. Nat. Geosci. 2015, 8, 372–377. [Google Scholar] [CrossRef]
- Kult, J.; Choi, W.; Choi, J. Sensitivity of the snowmelt runoff model to snow covered area and temperature inputs. Appl. Geogr. 2014, 55, 30–38. [Google Scholar] [CrossRef]
- Déry, S.J.; Salomonson, V.V.; Stieglitz, M.; Hall, D.K.; Appel, I. An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska. Hydrol. Process. 2005, 19, 2755–2774. [Google Scholar] [CrossRef]
- Troin, M.; Poulin, A.; Baraer, M.; Brissette, F. Comparing snow models under current and future climates: Uncertainties and implications for hydrological impact studies. J. Hydrol. 2016, 540, 588–602. [Google Scholar] [CrossRef]
- Cherkauer, K.A.; Lettenmaier, D.P. Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res. Space Phys. 1999, 104, 19599–19610. [Google Scholar] [CrossRef]
- Bawden, A.J.; Linton, H.C.; Burn, D.H.; Prowse, T.D. A spatiotemporal analysis of hydrological trends and variability in the Athabasca River Region, Canada. J. Hydrol. 2014, 509, 333–342. [Google Scholar] [CrossRef]
- Eum, H.-I.; Dibike, Y.; Prowse, T. Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada. J. Hydrol. 2017, 544, 327–342. [Google Scholar] [CrossRef]
- Toth, B.; Pietroniro, A.; Conly, F.M.; Kouwen, N. Modelling climate change impacts in the Peace and Athabasca catchment and delta: I—Hydrological model application. Hydrol. Process. 2006, 20, 4197–4214. [Google Scholar] [CrossRef]
Parameter | Symbol | Allowable Range [10,14,15] |
---|---|---|
Critical Temperature (°C) | −1 to 4 | |
Runoff Coefficient (Snow) | 0.4 to 0.9 | |
Runoff Coefficient (Rain) | 0.4 to 0.9 | |
(Recession Coefficient) | 0.9 to 1.3 | |
(Recession Coefficient) | 0.01 to 0.1 | |
Snowpack Ripeness Date | 90 to 180 | |
DDF (cm °C−1 day−1) | 0.01 to 2 |
Lumped DDF | Glacier DDF | Zonal DDF | ||||
---|---|---|---|---|---|---|
Sinusoidal | Monthly | Sinusoidal | Monthly | Sinusoidal | Monthly | |
Calibration | 0.893 | 0.887 | 0.916 | 0.910 | 0.915 | 0.923 |
Validation | 0.826 | 0.822 | 0.873 | 0.877 | 0.845 | 0.830 |
GCM/Downscaling | Temperature Change (°C) | Precipitation Change (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Fall | Winter | Spring | Summer | Fall | ||
CNRM-CM5 | BCCI | 3.78 | 1.89 | 2.39 | 2.75 | 4.8 | 16.6 | 8.0 | 6.1 |
BCSD | 4.07 | 2.02 | 2.60 | 2.77 | 4.1 | 13.2 | 4.8 | 7.6 | |
CanESM2 | BCCI | 6.36 | 2.59 | 2.02 | 3.30 | 33.2 | 55.4 | 2.6 | 32.6 |
BCSD | 5.00 | 3.57 | 5.16 | 3.84 | 32.8 | 40.2 | 4.7 | 27.8 | |
ACCESS1-0 | BCCI | 4.89 | 3.15 | 4.01 | 3.61 | 7.7 | 20.8 | 1.0 | 16.6 |
BCSD | 4.96 | 3.13 | 4.05 | 3.66 | 7.1 | 16.0 | −1.4 | 17.4 | |
inmcm4 | BCCI | 4.72 | 1.66 | −1.26 | 1.86 | 6.2 | 37.9 | 15.4 | 9.9 |
BCSD | 3.54 | 2.67 | 1.24 | 2.21 | 6.0 | 28.3 | 16.5 | 11.0 | |
CSIRO-Mk3-6-0 | BCCI | 4.70 | 1.59 | 3.36 | 4.16 | 16.9 | 10.6 | −1.7 | 6.0 |
BCSD | 5.06 | 1.74 | 3.25 | 4.00 | 17.5 | 7.7 | −4.1 | 4.9 | |
CCSM4 | BCCI | 3.47 | 2.49 | 3.41 | 3.52 | 14.6 | 9.2 | −12.5 | 7.3 |
BCSD | 3.90 | 2.51 | 3.46 | 3.40 | 17.7 | 17.6 | −12.4 | 6.8 | |
Ensemble Mean | 4.54 | 2.42 | 2.81 | 3.26 | 14.1 | 22.8 | 1.8 | 12.8 |
Elevation Band (m) | Glacier Area (km2) | Change in Glacier Area (%) |
---|---|---|
960–1500 | 0 | N/A |
1500–2000 | 1 | −81 |
2000–2500 | 31 | −67 |
2500–3000 | 116 | −58 |
3000–3740 | 33 | −20 |
Months | Baseline (m3/s) | CNRM BCCI | CNRM BCSD | CanESM2 BCCI | CanESM2 BCSD | ACESS BCCI | ACESS BCSD | inmcm4 BCCI | inmcm4 BCSD | CSIRO BCCI | CSIRO BCSD | CCSM4 BCCI | CCSM4 BCSD | Ensemble Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | 40 | +18% | +19% | +38% | +31% | +27% | +28% | +18% | +15% | +27% | +27% | +20% | +21% | +24% |
Feb | 30 | +29% | +32% | +75% | +54% | +47% | +47% | +37% | +26% | +45% | +49% | +30% | +34% | +42% |
Mar | 24 | +48% | +53% | +127% | +105% | +85% | +86% | +62% | +53% | +66% | +73% | +53% | +60% | +73% |
Apr | 34 | +70% | +77% | +185% | +246% | +164% | +160% | +76% | +120% | +66% | +75% | +99% | +109% | +121% |
May | 155 | +68% | +70% | +145% | +164% | +115% | +110% | +81% | +110% | +54% | +57% | +85% | +95% | +96% |
Jun | 460 | −5% | −7% | +1% | −1% | −11% | −12% | −13% | −10% | −3% | −6% | −11% | −9% | −7% |
Jul | 411 | −18% | −19% | −19% | −12% | −18% | −19% | −21% | −20% | −17% | −19% | −23% | −22% | −19% |
Aug | 317 | −13% | −13% | −16% | −1% | −8% | −9% | −23% | −15% | −12% | −13% | −15% | −15% | −13% |
Sep | 204 | −0% | +0% | +7% | +16% | +8% | +8% | −9% | −2% | +4% | +3% | +1% | +0% | +3% |
Oct | 113 | +6% | +7% | +21% | +23% | +16% | +16% | +2% | +5% | +13% | +12% | +10% | +9% | +12% |
Nov | 72 | +11% | +12% | +25% | +28% | +22% | +22% | +8% | +10% | +21% | +19% | +17% | +16% | +18% |
Dec | 53 | +13% | +13% | +25% | +24% | +20% | +21% | +11% | +11% | +20% | +20% | +16% | +16% | +18% |
Annual | 160 | +2% | +2% | +16% | +22% | +10% | +9% | −2% | +4% | +4% | +3% | +2% | +4% | +6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemens, K.; Dibike, Y.; Shrestha, R.R.; Prowse, T. Runoff Projection from an Alpine Watershed in Western Canada: Application of a Snowmelt Runoff Model. Water 2021, 13, 1199. https://doi.org/10.3390/w13091199
Siemens K, Dibike Y, Shrestha RR, Prowse T. Runoff Projection from an Alpine Watershed in Western Canada: Application of a Snowmelt Runoff Model. Water. 2021; 13(9):1199. https://doi.org/10.3390/w13091199
Chicago/Turabian StyleSiemens, Kyle, Yonas Dibike, Rajesh R Shrestha, and Terry Prowse. 2021. "Runoff Projection from an Alpine Watershed in Western Canada: Application of a Snowmelt Runoff Model" Water 13, no. 9: 1199. https://doi.org/10.3390/w13091199
APA StyleSiemens, K., Dibike, Y., Shrestha, R. R., & Prowse, T. (2021). Runoff Projection from an Alpine Watershed in Western Canada: Application of a Snowmelt Runoff Model. Water, 13(9), 1199. https://doi.org/10.3390/w13091199