A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment
Abstract
:1. Introduction
2. Photocatalysis
3. Photoelectrocatalysis
4. Photoelectrodes
5. Photoelectrocatalytic Reactor Design
5.1. Experimental Reactors for Photoelectrode Testing
5.2. Annular Cylinder Reactor
5.3. Compound Parabolic Collector
5.4. Flatplate or Sandwich Reactor
5.5. Channel/Microchannel Reactor
5.6. Rotating Electrode Reactor
5.7. Optical Fibre Reactor
5.8. Membrane Filter Reactor
5.9. Two-Compartment Reactor
5.10. Hybrid System
5.11. Three-Dimensional Electrode Reactor
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Reactor Type | Photoanode | Counter Electrode | Irradiation Type | Electrolyte | Volume or Flow Rate | Electrical Mode of Operation | Target Contaminant(s) | Selected Results/Findings | Year of Pub. | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Experimental | N2-doped anodised titanium nanotubes | Pt paddle | 450 W Xe | 1/4 strength Ringer’s solution | 0.035 L | +1.0 V (SCE) | E. coli 106 CFU mL−1 | NT 120 min—DL Nitrogen NT 60 min—DL | 2017 | [54] | |
Experimental | TiO2 film on ITO | Stainless steel propeller | 2 × 9 W UVA 370 nm 2 × 9 W UVB 310 nm | No additional supporting electrolyte | 0.2 L | 0 V to +3.0 V (SCE) | Formic acid 5.3 mM | Optimal results +10 V (SCE) | 2005 | [56] | |
Experimental | ALD of Fe2O3 onto Bi2WO6 on FTO | Pt wire | 150 W Xe AM 1.5 filter 100 mWcm−2 | 0.5 M Na2SO4 | 0.03 L | +0.6 V (Ag/AgCl) | Tetracycline 20 mg L−1 | The electrode was used for both degradation and detection 95% degradation after 90 min | 2019 | [52] | |
Cylindrical | TiO2 immobilised on ITO glass | Nickle mesh 55% open area | 6 W black light lamp 362 nm Peck 0.047 mWcm−2 | 0.1 M Na2SO4 pH = 6.4 | 1 L | Cell bias 0 to +1.4 V | E. coli 103 CFU mL−1 | PC—300 min DL 0.4 V—280 min DL 1 V—~220 min DL 1.4 V—140 min DL | 2017 | [46] | |
Cylindrical | Anodised titanium nanotube cylinder sheet | DSA De Nora | 36 W UVB Lamp | 0.01 M Na2SO4 | 1 L | Cell Bias +1.0, +1.5, +2.0 V | Benzophenone-3 10 mg L−1 Candida parapsilosis 106 CFU mL−1 | TOC removal (20 min) O3 + EAP 2 V > EAP 2 V > O3 60 min for 6-log reduction | 2019 | [47] | |
Cylindrical | Anodised titanium nanotube cylinder mesh | Activated titanium electrode De Nora | 15 W 254 nm Lamp | KCl 635 ± 15 μScm−1 | 1.8 L | 0, +1.0, +1.5 V (Ag/AgCl) | Reactive Red 243 25 mg L−1 | 90% decolourisation in 45 min 99% decolourisation in 60 min | 2018 | [111] | |
Cylindrical | Anodised TiO2 nanotubes | Titanium | 14 W UV lamp 275 nm | 0.02 M Na2SO4 | 1 L total 180 mL min−1 | Cell bias +8 V | Acetaminophen 10 mg L−1 | EAP 95% at 8 V EE 3% at 8 V PC 72% | 2019 | [63] | |
Flat reactor | Anodised titanium nanotubes | Pt sheet | UV lamp 254 nm peak 5/10 mWcm−2 | 0.1 M Na2SO4 | 0.05 L | Cell Bias +1.0 V | Tetracycline 100–400 mg L−1 | 90% reduction 100 mg—5 mWcm−2—47 min 100 mg—10 mWcm−2—16 min 400 mg—10 mWcm−2—52 min | 2010 | [71] | |
Flat reactor | TiO2 immobilised on FTO glass | Carbon cloth | 6 W 365 nm Lamp | K2SO4 0.05 M pH = 3 | 0.2 L 0.1 L min−1 flow rate | 0.62–2.5 mAcm−2 | 1.4 mM phenol | Improved degradation rates when air pumped into reactor 0.0127 min−1 vs. 0.0051 min−1 | 2017 | [68] | |
Flat reactor | Anodised TiO2 nanotubes | Carbon paper/platinum mesh | Two 9 W UVA Lamp 5 mWcm−2 | Surface water 697 μScm−1 | 0.19 L | Cell bias +1.0 V | E. coli 106 CFU mL−1 | Carbon paper—2.7-log reduction Platinum—2.0-log reduction | 2021 | [112] | |
Channel reactor | BiVO4 on ITO | ITO glass | Blue LED at 10 V 402 nm 80 mWcm−2 | 0.1 M NaCl | 75 uL min−1 | Cell bias −2.2 V to +2.2 V | Methylene blue 0.03 mM | Optimal results with positive +1.5 V k = 0.064 s−1 Optimal results with negative −2.2 V k = 0.102 s−1 | 2012 | [49] | |
Channel reactor | Anodised titanium nanotubes | Pt | UV LED 365 nm 8 mWcm−2 | 0.1 M NaNO3 | 19.25 uL min−1 | +0.7 V (Ag/AgCl) | E. coli 107 CFU mL−1 | NT better than particulate film, >6-log reduction 97 s | 2013 | [48] | |
Channel reactor | H2 annealed titanium anodised nanotubes | Stainless steel | Real solar average total 100 mWcm−2 | Natural lake water 50 mg L−1 NaCl added | 20/50 mL min−1 | +6.0 V | E. coli 165 CFU 100 mL−1 | >7 V NT delaminate E. coli CFU/100 mL +6.0 V 20 mL min−1 = 38 (light) +6.0 V 20 mL min−1 = 50 (dark) +6.0 V 50 mL min−1 = 0 (light) +6.0 V 50 mL min−1 = 0 (dark) | 2016 | [70] | |
Rotational | Anodised titanium nanotubes on sheet | Ti sheet | 1 kW Xe lamp 400–300 nm 5.4 mWcm−2 | NaCl 1.03 mScm−1 | 0.2 L | Ag/AgCl +0.5 to +3.5 V | Methylene blue 2–5 ppm | 180 min +1.5 V 86% +2.5 V 90.4% | 2017 | [78] | |
Rotational | Dip coating TiO2 on Ti | Cu sheet | 11 W lamp 254 nm 15 mWcm−2 | 3.5 mM Na2SO4 | 0.055 L | Cell bias +0.4 V | Rhodamine B 20 mg L−1 | 1 h 82% 20 mg L−1 | 2008 | [26] | |
Fibre optic | Modified SiO2 fibre with SnO2:Sb and TiO2 film | Carbon cloth | UV mercury lamp 254 nm 2.1 mWcm−2 | 0.05 M Na2SO4 pH = 3 using H2SO4 | 0.64 L 80 L h−1 | +1.0 mAcm−2 | Orange II 15 mg L−1 | Electro k = 0.0122 min−1 EAP k = 0.0126 min−1 Electro-Fenton k = 0.1956 min−1 Electro-Fenton EAP k = 0.2303 min−1 | 2009 | [85] | |
Membrane | g-C3N4/CNTs/Al2O3 membrane | Titanium mesh | 300 W Xe lamp 100 mWcm−2 | 0.01 M Na2SO4 | 1.25 mL min−1 | Cell bias 0.0 to +1.5 V | Phenol 5 mg L−1 | PC 26% EE +1.0 V 36% EAP +1.0 V 71% EE +1.5 V 81% EAP +1.5 V 94% | 2017 | [89] | |
Membrane | Nylon/stainless steel-WO3 | Platinum network | Xe 300 W | 0.1 M Na2SO4 pH = 6 | 50 mL/100 mL min−1 | +1.0 V (Ag/AgCl) | RR-120 0.01 μM | After 90 min Photolysis 0% PC~35% EAP~50% | 2020 | [92] | |
Membrane | Polyvinylidene fluoride on carbon felt and ZnIn2S4 microparticles | Titanium plate | Xe 300 W | 0.05 M Na2SO4 pH = 6.5 | 2 L | Cell bias −0.9 to +0.9 V | Tetracycline 4 mg L−1 | Optimal bias occurred at −0.3 V pH = 6.5 87% after 180 min | 2020 | [94] | |
Two-compartment | TiO2 on Ti by dip coating | Silver sheet | 4 × 6 W UV lamp 365 nm | 0.5 M Na2SO4 | 0.1 L | 0.0, +0.5, +1.0, +1.5, +2.0 (SCE) | Aniline 10 mg L−1 | The single-compartment reactor had higher degradation than the two-compartment reactor | 2003 | [96] | |
Two-compartment | Sol–gel TiO2 on Ti | Platinum spiral | 300 W UV lamp 365 nm | 0.5 M Na2SO4 | 0.1 L | 0.0, +0.5 V (SCE) | Aniline 10 mg L−1 Salicylate 0.5 mM | Dual degradation and H2O2 production in the cathodic compartment | 2006 | [98] | |
Two-compartment | 1D α-Fe2O3 nanorods on FTO | Gas diffusion electrode | AM 1.5 100 mWcm−2 | Anolyte NaOH pH = 13.65 Catholyte 0.1 M Na2SO4 in H2SO4 pH = 3 | 0.04 L | +0.5 V (Ag/AgCl) | H2O2 production rate 58.8 μmol L−1h−1cm−2. The addition of SO2 increased the photocurrent | 2020 | [101] | ||
Hybrid | Fuel cell | TiO2 nanotubes on Ti foil | Pt-black/Pt | UV 2.0 mWcm−2 | 0.05 M acetic acid and 0.1 M Na2SO4 | 0.01 L | Self-biased by fuel cell +0.550 V, current 0.086 mA | - | The EAP 0.555 h−1, PC 0.318 h-1 (no fuel cell) Photolysis 0.057 h−1 Electrochemical 0.003 h−1 | 2012 | [103] |
PEC | TiO2 nanotubes on Ti foil | Pt | 0.1 M Na2SO4 | 0.025 L | Tetracycline 0.045 mM | ||||||
Hybrid | Fuel cell | ZnO on carbon cloth | Carbon plate | UVA 36 W | Not stated | 0.5 L | Self-biased by fuel cell 82.3 mV | Amaranth dye 10 mgL−1 | 93.8% in the fuel cell 86.9% removal in the EE | 2019 | [104] |
EE | Carbon plate | Iron plate | - | H2SO4 to adjusted pH to 3 | 0.5 L | ||||||
CPC/Two-compartment | Dip coating TiO2 on Ti | Pt/SnO2 glass substrate | Real solar | Working 0.02 M H2SO4 Inner 0.2 M H2SO4 | 4.5 L | +1.4 V (RHE) | 4Cl-phenol and pyrimethanil 20–30 mg L−1 | TiO2 slurry: 0.106 mg min−1 m−2 4Cl-phenol: 7.3 mg min−1 m−2 Pyrimethanil: 6.21 mg min−1 m−2 | 1999 | [65] | |
CPC | Anodised titanium nanotubes | Carbon felt | Real Solar | Harvested rainwater 70 μScm−1 | 0.3 L | +1.0 V cell | E. coli P. aeruginosa Both >7 Log | 5.5-log reduction E. coli 5.8-log reduction P. aeruginosa EMA-qPCR used for molecular viability analysis | 2021 | [67] | |
Three-dimensional electrode | GAC-TiO2 bipolar photoelectrode (DSA RuOx/Ti anode) | Stainless steel sheet | 6 W 365 nm lamp | Synthetic seawater salt concentration of 35 g L−1 pH = 6.2 | 0.55 L | 0.03, 0.06 & 0.1 mAcm−2 | E. coli 103 CFU mL−1 | Disinfection results are similar to the non-electrochemical process. The high energy usage of the lamp decreases the efficiency of the 3D electrode | 2020 | [107] | |
Three-dimensional electrode | GAC and TiO2 slurry (stainless steel anode) | Stainless steel | Hg 500 W 365 nm 6.64 mWcm−2 | No supporting electrolyte stated | 0.2 L | 0 to +30.0 V | Brilliant red X-3B 1.0 mM | Removal in 30 min, the slurry performs better than the electric-only with lower potentials | 2001 | [105] | |
Three-dimensional electrode | Fe2O3/graphite and TiO2-coated glass beads (titanium anode) | Stainless steel | 40 W UV 0.078 mWcm−2 | 0.1 M Na2SO4 pH = 3 optimal | 0.6 L | 9.0 mAcm−2 | Berberine chloride form 200 mg L−1 | 93% removal after 60 min Enhanced performance with a 3D electrode and lower energy cost | 2018 | [106] |
References
- Veldkamp, T.I.E.; Wada, Y.; de Moel, H.; Kummu, M.; Eisner, S.; Aerts, J.C.J.H.; Ward, P.J. Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Glob. Environ. Chang. 2015, 32, 18–29. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report 2020; UN: New York, NY, USA, 2020. [Google Scholar]
- Wada, Y.; Fl orke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M.T.H.; Yillia, P.; Ringler, C.; et al. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
- Braslavsky, S.E.; Braun, A.M.; Cassano, A.E.; Emeline, A.V.; Litter, M.I.; Palmisano, L.; Parmon, V.N.; Serpone, N. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 931–1014. [Google Scholar] [CrossRef] [Green Version]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar]
- Sunada, K.; Watanabe, T.; Hashimoto, K. Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol. A 2003, 156, 227–233. [Google Scholar] [CrossRef]
- Aarthi, T.; Madras, G. Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2. Catal. Commun. 2008, 9, 630–634. [Google Scholar] [CrossRef]
- Muneer, M.; Theurich, J.; Bahnemann, D. Titanium dioxide mediated photocatalytic degradation of 1,2-diethyl phthalate. J. Photochem. Photobiol. A 2001, 143, 213–219. [Google Scholar] [CrossRef]
- Varma, K.S.; Tayade, R.J.; Shah, K.J.; Joshi, P.A.; Shukla, A.D.; Gandhi, V.G. Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review. Water Energy Nexus 2020, 3, 46–61. [Google Scholar] [CrossRef]
- Byrne, J.A.; Dunlop, P.S.M.; Hamilton, J.W.J.; Fernández-Ibáñez, P.; Polo-López, I.; Sharma, P.K.; Vennard, A.S.M. A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 2015, 20, 5574–5615. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Nosaka, Y. Generation of OH radicals and oxidation mechanism in photocatalysis of WO3 and BiVO4 powders. J. Photochem. Photobiol. A 2015, 303–304, 53–58. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef] [PubMed]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- da Silva, G.T.S.T.; Carvalho, K.T.G.; Lopes, O.F.; Ribeiro, C. g-C3N4/Nb2O5 heterostructures tailored by sonochemical synthesis: Enhanced photocatalytic performance in oxidation of emerging pollutants driven by visible radiation. Appl. Catal. B 2017, 216, 70–79. [Google Scholar] [CrossRef]
- Bao, N.; Hu, X.; Zhang, Q.; Miao, X.; Jie, X.; Zhou, S. Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2017, 403, 682–690. [Google Scholar] [CrossRef]
- Jeghan, S.M.N.; Do, J.Y.; Kang, M. Fabrication of flower-like copper cobaltite/graphitic-carbon nitride (CuCo2O4/g-C3N4) composite with superior photocatalytic activity. J. Ind. Eng. Chem. 2018, 57, 405–415. [Google Scholar] [CrossRef]
- Zhou, C.; Cheng, J.; Hou, K.; Zhu, Z.; Zheng, Y. Preparation of CuWO4@Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation. Chem. Eng. J. 2017, 307, 803–811. [Google Scholar] [CrossRef]
- Smith, Y.R.; Ray, R.S.; Carlson, K.; Sarma, B.; Misra, M. Self-Ordered titanium dioxide nanotube arrays: Anodic synthesis and their photo/electro-catalytic applications. Materials 2013, 6, 2892–2957. [Google Scholar] [CrossRef]
- Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A. Chem. 1997, 108, 1–35. [Google Scholar] [CrossRef]
- Mitoraj, D.; Lamdab, U.; Kangwansupamonkon, W.; Pacia, M.; Macyk, W.; Wetchakun, N.; Beranek, R. Revisiting the problem of using methylene blue as a model pollutant in photocatalysis: The case of InVO4/BiVO4 composites. J. Photochem. Photobiol. A. Chem. 2018, 366, 103–110. [Google Scholar] [CrossRef]
- Abdel-Maksoud, Y.; Imam, E.; Ramadan, A. TiO2 solar photocatalytic reactor systems: Selection of reactor design for scale-up and commercialization—analytical review. Catalysts 2016, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, M.F.J.; Michorius, A.; Buwalda, H.; Panneman, H.J.; Winkelman, J.G.M.; Beenackers, A.A.C.M. Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation. Catal. Today 2001, 66, 487–494. [Google Scholar] [CrossRef]
- Osterloh, F.E. Nanoscale effects in water splitting photocatalysis. Curr. Top. Med. Chem. 2015, 371. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; He, Y.; Cao, X.; Zhong, D.; Jia, J. TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: A combination of highly effective thin-film PEC and conventional PEC processes on a single electrode. Environ. Sci. Technol. 2008, 42, 2612–2617. [Google Scholar] [CrossRef]
- Xia, W.; Qian, H.; Zeng, X.; Sun, J.; Wang, P.; Luo, M.; Dong, J. TiO2@Sn3O4 nanorods vertically aligned on carbon fiber papers for enhanced photoelectrochemical performance. RSC Adv. 2019, 9, 23334–23342. [Google Scholar] [CrossRef] [Green Version]
- Sima, C.; Grigoriu, C.; Antohe, S. Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films 2010, 519, 595–597. [Google Scholar] [CrossRef]
- Sato, N. Electrochemistry at Metal and Semiconductor Electrodes; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Jang, Y.J.; Lee, J.S. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes. ChemSusChem 2019, 12, 1835–1845. [Google Scholar] [CrossRef]
- Toe, C.Y.; Zheng, Z.; Wu, H.; Scott, J.; Amal, R.; Ng, Y.H. Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction. Angew. Chem. Int. Ed. 2018, 57, 13613–13617. [Google Scholar] [CrossRef]
- Beranek, R. Erratum: (Photo) electrochemical methods for the determination of the band edge positions of TiO2-Based Nanomaterials. Adv. Phys. Chem. 2016. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Segura, S.; Brillas, E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C 2017, 31, 1–35. [Google Scholar] [CrossRef]
- Bott, A. Electrochemistry of Semiconductors. Curr. Sep. 1998, 17, 87–92. [Google Scholar]
- Jiang, C.; Moniz, S.J.A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yates, J.T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef]
- Kumar, S.; Karthikeyan, S.; Lee, A. g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Takanabe, K. Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catal. 2017, 7, 8006–8022. [Google Scholar] [CrossRef]
- Tu, W.; Guo, W.; Hu, J.; He, H.; Li, H.; Li, Z.; Luo, W.; Zhou, Y.; Zou, Z. State-of-the-art advancements of crystal facet-exposed photocatalysts beyond TiO2: Design and dependent performance for solar energy conversion and environment applications. Mater. Today 2020, 33, 75–86. [Google Scholar] [CrossRef]
- Jiang, J.; Song, Y.; Wang, X.; Li, T.; Li, M.; Lin, Y.; Xie, T.; Dong, S. Enhancing aqueous pollutant photodegradation via a Fermi level matched Z-scheme BiOI/Pt/g-C3N4 photocatalyst: Unobstructed photogenerated charge behavior and degradation pathway exploration. Catal. Sci. Technol. 2020, 10, 3324–3333. [Google Scholar] [CrossRef]
- Huang, D.; Chen, S.; Zeng, G.; Gong, X.; Zhou, C.; Cheng, M.; Xue, W.; Yan, X.; Li, J. Artificial Z-scheme photocatalytic system: What have been done and where to go? Coord. Chem. Rev. 2019, 385, 44–80. [Google Scholar] [CrossRef]
- Li, Q.; Guan, Z.; Wu, D.; Zhao, X.; Bao, S.; Tian, B.; Zhang, J. Z-Scheme BiOCl-Au-CdS Heterostructure with Enhanced Sunlight-Driven Photocatalytic Activity in Degrading Water Dyes and Antibiotics. ACS Sustain. Chem. Eng. 2017, 5, 6958–6968. [Google Scholar] [CrossRef]
- Xie, K.; Wu, Q.; Wang, Y.; Guo, W.; Wang, M.; Sun, L.; Lin, C. Electrochemical construction of Z-scheme type CdS–Ag–TiO2 nanotube arrays with enhanced photocatalytic activity. Electrochem. Commun. 2011, 13, 1469–1472. [Google Scholar] [CrossRef]
- Lu, N.; Wang, P.; Su, Y.; Yu, H.; Liu, N.; Quan, X. Construction of Z-Scheme g-C3N4/RGO/WO3 with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin. Chemosphere 2019, 215, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.; Putri, L.K.; Tan, L.; Pasbakhsh, P.; Chai, S. All-solid-state Z-scheme photocatalyst with carbon nanotubes as an electron mediator for hydrogen evolution under simulated solar light. Chem. Eng. J. 2017, 316, 41–49. [Google Scholar] [CrossRef]
- Pablos, C.; Marugán, J.; Adán, C.; Osuna, M.; van Grieken, R. Performance of TiO2 photoanodes toward oxidation of methanol and E. coli inactivation in water in a scaled-up photoelectrocatalytic reactor. Electrochim. Acta 2017, 258, 599–606. [Google Scholar] [CrossRef]
- Kim, J.Y.U.; Bessegato, G.G.; de Souza, B.C.; da Silva, J.J.; Zanoni, M.V.B. Efficient treatment of swimming pool water by photoelectrocatalytic ozonation: Inactivation of Candida parapsilosis and mineralization of Benzophenone-3 and urea. Chem. Eng. J. 2019, 378, 122094. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Li, G.; Zhang, H.; Zhao, H. Instant inactivation and rapid decomposition of Escherichia coli using a high efficiency TiO2 nanotube array photoelectrode. RSC Adv. 2013. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhang, X.; Chen, B.; Song, W.; Chan, N.Y.; Chan, H.L.W. Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source. Lab Chip 2012, 12, 3983–3990. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Wu, G.; Guo, R.; Li, L.; Zhao, C.; Liu, F.; Wang, Y. Photoelectrocatalytic degradation of partially hydrolyzed polyacrylamide using a novel particle electrode. RSC Adv. 2017, 7, 55496–55553. [Google Scholar] [CrossRef] [Green Version]
- Tekin, D.; Saygi, B. Photoelectrocatalytic decomposition of Acid Black 1 dye using TiO2 nanotubes. J. Environ. Chem. Eng. 2013, 1, 1057–1061. [Google Scholar] [CrossRef]
- Adhikari, S.; Selvaraj, S.; Kim, D. Construction of heterojunction photoelectrode via atomic layer deposition of Fe2O3 on Bi2WO6 for highly efficient photoelectrochemical sensing and degradation of tetracycline. Appl. Catal. B 2019, 244, 11–24. [Google Scholar] [CrossRef]
- Zainal, Z.; Lee, C.Y.; Hussein, M.Z.; Kassim, A.; Yusof, N.A. Electrochemical-assisted photodegradation of dye on TiO2 thin films: Investigation on the effect of operational parameters. J. Hazard. Mater. 2005, 118, 197–203. [Google Scholar] [CrossRef]
- Pablos, C.; Marugán, J.; Van Grieken, R.; Dunlop, P.S.M.; Hamilton, J.W.J.; Dionysiou, D.D.; Byrne, J.A. Electrochemical enhancement of photocatalytic disinfection on aligned TiO2 and nitrogen doped TiO2 nanotubes. Molecules 2017, 22, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, J.W.J.; Byrne, J.A.; Dunlop, P.S.M.; Dionysiou, D.D.; Pelaez, M.; O’Shea, K.; Synnott, D.; Pillai, S.C. Evaluating the Mechanism of Visible Light Activity for N,F-TiO2 Using Photoelectrochemistry. J. Phys. Chem. C 2014, 118, 12206–12215. [Google Scholar] [CrossRef]
- McMurray, T.A.; Byrne, J.A.; Dunlop, P.S.M.; McAdams, E.T. Photocatalytic and electrochemically assisted photocatalytic oxidation of formic acid on TiO2 films under UVA and UVB irradiation. J. Appl. Electrochem. 2005, 35, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Hankin, A.; Bedoya-Lora, F.E.; Alexander, J.C.; Regoutz, A.; Kelsall, G.H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem. A Mater. Renew. Sustain. Energy 2019, 7, 26162–26176. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.M.; Chen, C.K.; Liu, R.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Nano-Architecture and Material Designs for Water Splitting Photoelectrodes. ChemInform 2012, 43. [Google Scholar] [CrossRef]
- Pablos, C.; Marugán, J.; van Grieken, R.; Adán, C.; Riquelme, A.; Palma, J. Correlation between photoelectrochemical behaviour and photoelectrocatalytic activity and scaling-up of P25-TiO2 electrodes. Electrochim. Acta 2014, 130, 261–270. [Google Scholar] [CrossRef]
- Christensen, P.A.; Curtis, T.P.; Egerton, T.A.; Kosa, S.A.M.; Tinlin, J.R. Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Appl. Catal. B 2003, 41, 371–386. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, F.; Hu, Y.; Feng, C.; Wu, H. Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2017, 33, 49–89. [Google Scholar] [CrossRef]
- Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure Appl. Chem. 2001, 73, 627–637. [Google Scholar] [CrossRef]
- Montenegro-Ayo, R.; Morales-Gomero, J.C.; Alarcon, H.; Cotillas, S.; Westerhoff, P.; Garcia-Segura, S. Scaling up Photoelectrocatalytic Reactors: A TiO2 Nanotube-Coated Disc Compound Reactor Effectively Degrades Acetaminophen. Water 2019, 11, 2522. [Google Scholar] [CrossRef] [Green Version]
- Fernández, P.; Blanco, J.; Sichel, C.; Malato, S. Water disinfection by solar photocatalysis using compound parabolic collectors. Catal. Today 2005, 101, 345–352. [Google Scholar] [CrossRef]
- Fernandez-Ibañez, P.; Malato, S.; Enea, O. Photoelectrochemical reactors for the solar decontamination of water. Catal. Today 1999, 54, 329–339. [Google Scholar] [CrossRef]
- Cho, M.; Cates, E.L.; Kim, J. Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Res. 2011, 45, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- McMichael, S.; Waso, M.; Reyneke, B.; Khan, W.; Byrne, J.A.; Fernandez-Ibanez, P. Electrochemically assisted photocatalysis for the disinfection of rainwater under solar irradiation. Appl. Catal. B 2021, 281, 119485. [Google Scholar] [CrossRef]
- Mousset, E.; Huang Weiqi, V.; Foong Yang Kai, B.; Koh, J.S.; Tng, J.W.; Wang, Z.; Lefebvre, O. A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and the Fenton reaction for advanced wastewater treatment. J. Mater. Chem. A 2017, 5, 24951–24964. [Google Scholar] [CrossRef]
- Abdellah, M.H.; Nosier, S.A.; El-Shazly, A.H.; Mubarak, A.A. Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alex. Eng. J. 2018, 57, 3727–3735. [Google Scholar] [CrossRef]
- Carlson, K.; Elliott, C.; Walker, S.; Misra, M.; Mohanty, S. An effective, point-of-usewater disinfection device using immobilized black TiO2 nanotubes as an electrocatalyst. J. Electrochem. Soc. 2016, 163, H395–H401. [Google Scholar] [CrossRef]
- Bai, J.; Liu, Y.; Li, J.; Zhou, B.; Zheng, Q.; Cai, W. A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl. Catal. B 2010, 98, 154–160. [Google Scholar] [CrossRef]
- Byrne, J.A.; Davidson, A.; Dunlop, P.S.M.; Eggins, B.R. Water treatment using nano-crystalline TiO2 electrodes. J. Photochem. Photobiol. A 2002, 148, 365–374. [Google Scholar] [CrossRef]
- Koo, M.S.; Chen, X.; Cho, K.; An, T.; Choi, W. In Situ Photoelectrochemical Chloride Activation Using a WO3 Electrode for Oxidative Treatment with Simultaneous H2 Evolution under Visible Light. Environ. Sci. Technol. 2019, 53, 9926–9936. [Google Scholar] [CrossRef]
- Low, W.S.; Kadri, N.A.; Wan Abas, W.A.B.b. Computational Fluid Dynamics Modelling of Microfluidic Channel for Dielectrophoretic BioMEMS Application. Sci. World 2014, 961301–961311. [Google Scholar] [CrossRef]
- Solehati, N.; Bae, J.; Sasmito, A. Optimization of Wavy-Channel Micromixer Geometry Using Taguchi Method. Micromachines 2018, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Liu, X.; Zhang, H.; An, T.; Zhang, S.; Carroll, A.R.; Zhao, H. In situ photoelectrocatalytic generation of bactericide for instant inactivation and rapid decomposition of Gram-negative bacteria. J. Catal. 2011, 277, 88–94. [Google Scholar] [CrossRef]
- Dionysiou, D.D.; Balasubramanian, G.; Suidan, M.T.; Khodadoust, A.P.; Baudin, I.; Laîné, J. Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water. Water Res. 2000, 34, 2927–2940. [Google Scholar] [CrossRef]
- Cho, H.; Seo, H.S.; Joo, H.; Kim, J.; Yoon, J. Performance evaluation of rotating photoelectrocatalytic reactor for enhanced degradation of methylene blue. Korean J. Chem. Eng. 2017, 34, 2780–2786. [Google Scholar] [CrossRef]
- Li, K.; Yang, C.; Wang, Y.; Jia, J.; Xu, Y.; He, Y. A high-efficient rotating disk photoelectrocatalytic (PEC) reactor with macro light harvesting pyramid-surface electrode. AIChE J. 2012, 58, 2448–2455. [Google Scholar] [CrossRef]
- Li, K.; He, Y.; Xu, Y.; Wang, Y.; Jia, J. Degradation of Rhodamine B Using an Unconventional graded Photoelectrode with Wedge Structure. Environ. Sci. Technol. 2011, 45, 7401–7407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Zhou, M.; Liu, L.; Wang, W.; Jiao, Y.; Zhou, Q. A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode. Electrochim. Acta 2010, 55, 5091–5099. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.; Lim, S.K.; Park, Y. Titania-coated plastic optical fiber fabrics for remote photocatalytic degradation of aqueous pollutants. J. Environ. Chem. Eng. 2017, 5, 1899–1905. [Google Scholar] [CrossRef]
- Zhong, N.; Chen, M.; Luo, Y.; Wang, Z.; Xin, X.; Rittmann, B.E. A novel photocatalytic optical hollow-fiber with high photocatalytic activity for enhancement of 4-chlorophenol degradation. Chem. Eng. J. 2019, 355, 731–739. [Google Scholar] [CrossRef]
- O’Neal Tugaoen, H.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci. Total Environ. 2018, 613–614, 1331–1338. [Google Scholar] [CrossRef]
- Esquivel, K.; Arriaga, L.G.; Rodríguez, F.J.; Martínez, L.; Godínez, L.A. Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. Water Res. 2009, 43, 3593–3603. [Google Scholar] [CrossRef]
- Weintraub, B.; Wei, Y.; Wang, Z. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells. Angew. Chem. Int. 2009, 121, 9143–9147. [Google Scholar] [CrossRef]
- Soleymani, A.R.; Saien, J.; Chin, S.; Le, H.A.; Park, E.; Jurng, J. Modeling and optimization of a sono-assisted photocatalytic water treatment process via central composite design methodology. Process. Saf. Environ. Prot. 2015, 94, 307–314. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, L.; Luo, J.; Jaffrin, M.Y.; Tang, B. Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review. Chem. Eng. J. 2016, 302, 446–458. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Chen, S.; Fan, X.; Quan, X.; Yu, H. Integration of membrane filtration and photoelectrocatalysis on g-C3N4/CNTs/Al2O3 membrane with visible-light response for enhanced water treatment. J. Membr. Sci. 2017, 541, 153–161. [Google Scholar] [CrossRef]
- Wang, G.; Chen, S.; Yu, H.; Quan, X. Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment. J. Hazard. Mater. 2015, 299, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Liu, J.; Wang, Y.; Gao, B.; Sillanpää, M. Organic photoelectrocatalytic filtration membrane originated from PEDOT modified PVDF. Chem. Eng. J. 2021, 405, 126954. [Google Scholar] [CrossRef]
- Martins, A.S.; Lachgar, A.; Boldrin Zanoni, M.V. Sandwich Nylon/stainless-steel/WO3 membrane for the photoelectrocatalytic removal of Reactive Red 120 dye applied in a flow reactor. Sep. Purif. Technol. 2020, 237, 116338. [Google Scholar] [CrossRef]
- Lorenc-Grabowska, E. Effect of micropore size distribution on phenol adsorption on steam activated carbons. Adsorption 2016, 22, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; An, J.; Wang, Y.; Liu, J.; Wang, L.; Sillanpää, M. Functional photoelectrocatalytic membrane fabricated from ZnIn2S4, PVDF and carbon fibre for continuous removal of tetracycline. J. Solid State Chem. 2020, 290, 121525. [Google Scholar] [CrossRef]
- Yang, Y.; Ajmal, S.; Zheng, X.; Zhang, L. Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction. Sustain. Energy Fuels 2018, 2, 51–537. [Google Scholar] [CrossRef]
- Leng, W.H.; Zhang, Z.; Zhang, J.Q. Photoelectrocatalytic degradation of aniline over rutile TiO2/Ti electrode thermally formed at 600 °C. J. Mol. Catal. A Chem. 2003, 206, 239–252. [Google Scholar] [CrossRef]
- Andrade, T.S.; Papagiannis, I.; Dracopoulos, V.; Pereira, M.C.; Lianos, P. Visible-light activated titania and its application to photoelectrocatalytic hydrogen peroxide production. Materials 2019, 12, 4238. [Google Scholar] [CrossRef] [Green Version]
- Leng, W.H.; Zhu, W.C.; Ni, J.; Zhang, Z.; Zhang, J.Q.; Cao, C.N. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl. Catal. A-Gen. 2006, 300, 24–35. [Google Scholar] [CrossRef]
- Byrne, J.A.; Eggins, B.R.; Byers, W.; Brown, N.M.D. Photoelectrochemical cell for the combined photocatalytic oxidation of organic pollutants and the recovery of metals from waste waters. Appl. Catal. B 1999, 20, 85–89. [Google Scholar] [CrossRef]
- Georgieva, J.; Valova, E.; Armyanov, S.; Philippidis, N.; Poulios, I.; Sotiropoulos, S. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: A short review with emphasis to TiO2–WO3 photoanodes. J. Hazard. Mater. 2012, 211–212, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Bai, J.; Chen, S.; Zhou, M.; Jiang, P.; Zhou, C.; Fang, F.; Zhang, Y.; Li, J.; Long, M.; et al. Efficient SO2 Removal and Highly Synergistic H2O2 Production Based on a Novel Dual-Function Photoelectrocatalytic System. Environ. Sci. Technol. 2020, 54, 11515–11525. [Google Scholar] [CrossRef] [PubMed]
- Kment, S.; Riboni, F.; Pausova, S.; Wang, L.; Wang, L.; Han, H.; Hubicka, Z.; Krysa, J.; Schmuki, P.; Zboril, R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Zhou, B.; Lv, S.; Li, X.; Chen, H.; Chen, Q.; Cai, W. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell. Appl. Catal. B 2012, 111–112, 485–491. [Google Scholar] [CrossRef]
- Nordin, N.; Ho, L.; Ong, S.; Ibrahim, A.H.; Lee, S.; Ong, Y. Elucidating the effects of different photoanode materials on electricity generation and dye degradation in a sustainable hybrid system of photocatalytic fuel cell and peroxi-coagulation process. Chemosphere 2019, 214, 614–622. [Google Scholar] [CrossRef]
- An, T.; Zhu, X.; Xiong, Y. Synergic degradation of reactive brilliant red x-3b using three dimension electrode-photocatalytic reactor. J. Environ. Sci. Health A 2001, 36, 2069–2082. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y. Highly efficient degradation of berberine chloride form wastewater by a novel three-dimensional electrode photoelectrocatalytic system. Environ. Sci. Pollut. Res. 2018, 25, 9873–9886. [Google Scholar] [CrossRef] [PubMed]
- Mesones, S.; Mena, E.; López-Muñoz, M.J.; Adán, C.; Marugán, J. Synergistic and antagonistic effects in the photoelectrocatalytic disinfection of water with TiO2 supported on activated carbon as a bipolar electrode in a novel 3D photoelectrochemical reactor. Sep. Purif. Technol. 2020, 247, 117002. [Google Scholar] [CrossRef]
- Waso, M.; Khan, S.; Singh, A.; McMichael, S.; Ahmed, W.; Fernández-Ibáñez, P.; Byrne, J.A.; Khan, W. Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. Water Res. 2020, 169, 115281. [Google Scholar] [CrossRef]
- Ruiz, E.J.; Hernández-Ramírez, A.; Peralta-Hernández, J.M.; Arias, C.; Brillas, E. Application of solar photoelectro-Fenton technology to azo dyes mineralization: Effect of current density, Fe2+ and dye concentrations. Chem. Eng. J. 2011, 171, 385–392. [Google Scholar] [CrossRef]
- Malpass, G.R.P.; Miwa, D.W.; Miwa, A.C.P.; Machado, S.A.S.; Motheo, A.J. Study of photo-assisted electrochemical degradation of carbaryl at dimensionally stable anodes (DSA®). J. Hazard. Mater. 2009, 167, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Turolla, A.; Bestetti, M.; Antonelli, M. Optimization of heterogeneous photoelectrocatalysis on nanotubular TiO2 electrodes: Reactor configuration and kinetic modelling. Chem. Eng. Sci. 2018, 182, 171–179. [Google Scholar] [CrossRef]
- Salmerón, I.; Sharma, P.K.; Polo-López, M.I.; Tolosana, A.; McMichael, S.; Oller, I.; Byrne, J.A.; Fernández-Ibáñez, P. Electrochemically assisted photocatalysis for the simultaneous degradation of organic micro-contaminants and inactivation of microorganisms in water. Process. Saf. Environ. Prot. 2021, 147, 488–496. [Google Scholar] [CrossRef]
Reaction | Potential/V vs. NHE at pH 7 | Application |
---|---|---|
OH− + h+ → •OH | +2.29 | ROS generation |
H2O + 4h+ → O2 + 2H+ | +0.82 | Water splitting |
O2 + 2e− + 2H+ → H2O2 | +0.281 | ROS generation |
O2 + e− + H+ → | −0.05 | ROS generation |
O2 + e− → | −0.33 | ROS generation |
2H+ + 2e− → H2 | −0.41 | Water splitting |
CO2 + 2e− + 2H+ → CO + H2O | −0.53 | CO2 reduction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McMichael, S.; Fernández-Ibáñez, P.; Byrne, J.A. A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment. Water 2021, 13, 1198. https://doi.org/10.3390/w13091198
McMichael S, Fernández-Ibáñez P, Byrne JA. A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment. Water. 2021; 13(9):1198. https://doi.org/10.3390/w13091198
Chicago/Turabian StyleMcMichael, Stuart, Pilar Fernández-Ibáñez, and John Anthony Byrne. 2021. "A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment" Water 13, no. 9: 1198. https://doi.org/10.3390/w13091198
APA StyleMcMichael, S., Fernández-Ibáñez, P., & Byrne, J. A. (2021). A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment. Water, 13(9), 1198. https://doi.org/10.3390/w13091198