Effects of Different Fish Diets on the Water Quality in Semi-Intensive Common Carp (Cyprinus carpio) Farming
Abstract
:1. Introduction
2. Materials and Methods
- Survival (Survival %) = 100 × (number of fish at harvest) × (number of fish at stocking)−1
- Specific growth rate (SGR % day−1) = 100 × ln (average body weight at harvest × (average body weight at stocking)−1) × (days)−1
- Feed conversion ratio (FCR) = (feed distributed) × (biomass weight gain)−1
- Weight gain (WG g fish−1) = average body weight at harvest (g)−average body weight at stocking (g)
- Net yield (NY kg/ha) = (weight of biomass at harvest (kg)−weight of biomass at stocking (kg)) × pond area−1 (ha)
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tacon, A.G.J.; Phillips, M.J.; Barg, U.C. Aquaculture feeds and the environment: The Asian experience. Water Sci. Technol. 1995, 31, 41–59. [Google Scholar] [CrossRef]
- Cho, C.Y.; Bureau, D.P. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquac. Res. 2001, 32, 349–360. [Google Scholar] [CrossRef]
- Alvarado, J.L.; Tacon, A.G.J.; Basurco, B. Aquafeeds and the environment. In Feeding Tomorrow’s Fish; Cahiers Options Mediterraneennes; Institut Agronomique Mediterraneen de Zaragoza (CIHEAM): Zaragoza, Spain, 1997; Volume 22, pp. 275–289. [Google Scholar]
- Cho, C.Y.; Hynes, J.D.; Wood, K.R.; Yoshida, H.K. Development of high-nutrient-dense, low-pollution diets and prediction of aquaculture wastes using biological approaches. Aquaculture 1994, 124, 293–305. [Google Scholar] [CrossRef]
- White, P. Environmental consequences of poor feed quality and feed management. In On-Farm Feeding and Feed Management in Aquaculture; Technical Paper No. 583; FAO: Rome, Italy, 2013; pp. 553–564. [Google Scholar]
- Dauda, A.B.; Ajadi, A.; Tola-Fabunmi, A.S.; Akinwole, A.O. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquac. Fish. 2019, 4, 81–88. [Google Scholar] [CrossRef]
- Goddard, S. Feeding, temperature, and water quality. In Feed Management in Intensive Aquaculture; Springer: Berlin/Heidelberg, Germany, 1996; pp. 51–74. [Google Scholar] [CrossRef]
- Mozanzadeh, M.T.; Marammazi, J.G.; Yaghoubi, M.; Agh, N.; Pagheh, E.; Gisbert, E. Macronutrient requirements of silvery-black porgy (Sparidentex hasta): A comparison with other farmed sparid species. Fishes 2017, 2, 5. [Google Scholar] [CrossRef]
- EUMOFA. European Market Observatory for Fisheries and Aquaculture Products. 2016. Available online: http://www.eumofa.eu/the-eu-fish-market (accessed on 11 February 2021).
- Kestemont, P. Different systems of carp production and their impacts on the environment. Aquaculture 1995, 129, 347–372. [Google Scholar] [CrossRef]
- Woynarovich, A.; Moth-Poulsen, T.; Péteri, A. Carp polyculture in Central and Eastern Europe, the Caucasus and Central Asia: A manual; Technical Paper 554; FAO: Rome, Italy, 2010; p. 554. [Google Scholar]
- Lukowicz, M.V. Intensive carp Cyprinus carpio (L.) rearing in a farm pond in southern Germany and its effects on water quality. Aquacult. Eng. 1982, 1, 121–137. [Google Scholar] [CrossRef]
- Nandeesha, M.C.; Gangadhar, B.; Varghese, T.J.; Keshavanath, P. Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio L. Aquac. Res. 1998, 29, 305–312. [Google Scholar] [CrossRef]
- Ćirić, M.; Subakov-Simić, G.; Dulić, Z.; Bjelanović, K.; Čičovački, S.; Marković, Z. Effect of supplemental feed type on water quality, plankton and benthos availability and carp (Cyprinus carpio L.) growth in semi-intensive monoculture ponds. Aquac. Res. 2015, 46, 777–788. [Google Scholar] [CrossRef]
- Oliva-Teles, A. Apparent digestibility coefficients of feedstuffs in seabass (Dicentrarchuslabrax) juveniles. Aquat. Living Resour. 1998, 11, 187–191. [Google Scholar]
- Dabrowski, K.; Poczyczynski, P.; Köck, G.; Berger, B. Effect of partially or totally replacing fish meal protein by soybean meal protein on growth, food utilization and proteolytic enzyme activities in rainbow trout (Salmo gairdneri). New in vivo test for exocrine pancreatic secretion. Aquaculture 1989, 77, 29–49. [Google Scholar] [CrossRef]
- Kokou, F.; Fountoulaki, E. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 2018, 495, 295–310. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; de Boeck, G.; Becker, K. Phytate and phytase in fish nutrition. J. Anim. Physiol. An. N. 2012, 96, 335–364. [Google Scholar] [CrossRef]
- Anton-Pardo, M.; Adámek, Z. The role of zooplankton as food in carp pond farming: A review. J. Appl. Ichthyol. 2015, 31, 7–14. [Google Scholar] [CrossRef]
- Hosomi, M.; Sudo, R. Simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulfate digestion. Int. J. Environ. Stud. 1986, 27, 267–275. [Google Scholar] [CrossRef]
- Shandilya, K.K. Loss on ignition: Estimation method for organic matter in particulate matter. Adv. Environ. Res. 2012, 1, 339–340. [Google Scholar]
- Hungarian Standard. Wastewaters Analysis. Determination of Dissolved and Floating Matters; MSZ 260-3:1973; Hungarian Standard: Budapest, Hungary, 1973. [Google Scholar]
- International Organization for Standardization. Water Quality. Determination of Nitrogen. Part. 1: Method Using Oxidative Digestion with Peroxodisulfate; ISO 11905-1:1997; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- Hungarian Standard. Water quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method; MSZ EN 1189:1998; Hungarian Standard: Budapest, Hungary, 1998. [Google Scholar]
- IBM. IBM SPSS Statistics for Windows, Version 22.0; IBM: Armonk, NY, USA, 2013. [Google Scholar]
- Yavuzcan Yildiz, H.; Robaina, L.; Pirhonen, J.; Mente, E.; Domínguez, D.; Parisi, G. Fish welfare in aquaponic systems: Its relation to water quality with an emphasis on feed and faeces—A review. Water 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Mocanu, M.C.; Vanghelie, T.; Sandu, P.G.; Dediu, L.; Oprea, L. The effect of supplementary feeds quality on growth performance and production of common carp (Cyprinus carpio L.) at one summer of age, in ponds aquaculture systems. Aquac. Aquar. Conserv. Legis. 2015, 8, 602–610. [Google Scholar]
- Stanković, M.B.; Dulić, Z.P.; Marković, Z.Z. Protein sources and their significance in carp (Cyprinus carpio L.) nutrition. J. Agric. Sci. 2011, 56, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Céréghino, R.; Boix, D.; Cauchie, H.M.; Martens, K.; Oertli, B. The ecological role of ponds in a changing world. Hydrobiologia 2014, 723, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hlaváč, D.; Másílko, J.; Hartman, P.; Bláha, M.; Pechar, L.; Anton-Pardo, M.; Adámek, Z. Effects of common carp (Cyprinus carpio Linnaeus, 1758) supplementary feeding with modified cereals on pond water quality and nutrient budget. J. Appl. Ichthyol. 2015, 31, 30–37. [Google Scholar] [CrossRef]
- Dulic, Z.; Subakov-Simic, G.; Ciric, M.; Relic, R.; Lakic, N.; Stankovic, M.; Markovic, Z. Water quality in semi-intensive carp production system using three different feeds. Bulg. J. Agric. Sci. 2010, 16, 266–274. [Google Scholar]
- Hlaváč, D.; Anton-Pardo, M.; Másílko, J.; Hartman, P.; Regenda, J.; Vejsada, P.; Baxa, M.; Pechar, L.; Valentová, O.; Všetičková, L.; et al. Supplementary feeding with thermally treated cereals in common carp (Cyprinus carpio L.) pond farming and its effects on water quality, nutrient budget and zooplankton and zoobenthos assemblages. Aquacult. Int. 2016, 24, 1681–1697. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, C.L.; Capps, K.A.; Rugenski, A.T.; Vanni, M.J. Consumer-driven nutrient dynamics in freshwater ecosystems: From individuals to ecosystems. Biol. Rew. 2017, 92, 2003–2023. [Google Scholar] [CrossRef]
- Vanni, M.J. Nutrient transport and recycling by consumers in lake food webs: Implications for algal communities. In Food Webs; Springer: Boston, MA, USA, 1996; pp. 81–95. [Google Scholar]
- Torres, L.E.; Vanni, M.J. Stoichiometry of nutrient excretion by fish: Interspecific variation in a hypereutrophic lake. Oikos 2007, 116, 259–270. [Google Scholar] [CrossRef]
- Nieoczym, M.; Kloskowski, J. The role of body size in the impact of common carp Cyprinus carpio on water quality, zooplankton, and macrobenthos in ponds. Int. Rev. Hydrobiol. 2014, 99, 212–221. [Google Scholar] [CrossRef]
- Scheffer, M. Ecology of Shallow Lakes; Chapman & Hall: London, UK, 1998; p. 306. [Google Scholar]
- Huang, Y.; Mei, X.; Rudstam, L.G.; Taylor, W.D.; Urabe, J.; Jeppesen, E.; Liu, Z.; Zhang, X. Effects of crucian carp (Carassius auratus) on water quality in aquatic ecosystems: An experimental mesocosm study. Water 2020, 12, 1444. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hossain, M.Y.; Jo, Q.; Kim, S.-K.; Ohtomi, J.; Meyer, C. Ontogenetic shift in dietary preference and low dietary overlap in rohu (Labeorohita) and common carp (Cyprinus carpio) in semi-intensive polyculture ponds. Ichthyol. Res. 2009, 56, 28. [Google Scholar] [CrossRef]
- Driver, P.D.; Closs, G.P.; Koen, T. The effects of size and density of carp (Cyprinus carpio L.) on water quality in an experimental pond. Arch. Hydrobiol. 2005, 163, 117–131. [Google Scholar] [CrossRef]
- Adámek, Z.; Maršálek, B. Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: A review. Aquacult. Int. 2013, 21, 1–17. [Google Scholar] [CrossRef]
- Vanni, M.J.; Boros, G.; McIntyre, P.B. When are fish sources vs. sinks of nutrients in lake ecosystems? Ecology 2013, 94, 2195–2206. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G. Limnology: Lake and River Ecosystems; Academic Press: Cambridge, MA, USA, 2001; p. 985. [Google Scholar]
- Vanni, M.J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 2002, 33, 341–370. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.; Shoaib, M. Influence of feed ingredients on water quality parameters in an intensive polyculture of carps. FUUAST J. Biol. 2018, 8, 117–122. [Google Scholar]
- Kolasa-Jamińska, B. The intensification of pond fish production and the magnitude of the waste load discharged during autumn harvesting. Fish. Aquat. Life 2002, 10, 187–205. [Google Scholar]
- Marković, Z.; Stanković, M.; Rašković, B.; Dulić, Z.; Živić, I.; Poleksić, V. Comparative analysis of using cereal grains and compound feed in semi-intensive common carp pond production. Aquacult. Int. 2016, 24, 1699–1723. [Google Scholar] [CrossRef]
- Rahman, M.M.; Verdegem, M.; Nagelkerke, L.; Wahab, M.A.; Milstein, A.; Verreth, J. Effects of common carp Cyprinus carpio (L.) and feed addition in rohu Labeo rohita (Hamilton) ponds on nutrient partitioning among fish, plankton and benthos. Aquac. Res. 2008, 39, 85–95. [Google Scholar] [CrossRef]
- Verdegem, M.C. Nutrient discharge from aquaculture operations in function of system design and production environment. Rev. Aquacult. 2013, 5, 158–171. [Google Scholar] [CrossRef]
- EUMOFA. Price Structure in the Supply Chain for Fresh Carp in Central Europe. 2015. Available online: https://www.eumofa.eu/documents/20178/257415/Price+structure+in+the+supply+chain+for+fresh+carp+in+Central+Europe.pdf (accessed on 22 April 2021).
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fishmeal alternative protein sources for aquaculture feeds. In Feeds for the Aquaculture Sector; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–28. [Google Scholar]
- National Fisheries Strategic Plan of Hungary for the Period of 2007–2013. 2007. Available online: https://halaszat.kormany.hu/download/4/5d/10000/National%20Fisheries%20Strategic%20Plan%20of%20Hungary%202007-2013.pdf (accessed on 22 April 2021).
% | FF | PF | ||||
---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2013 | 2014 | 2015 | |
Fishmeal 60 | 16.00 | 16.00 | 14.00 | 0 | 0 | 0 |
Winter wheat | 8.88 | 10.08 | 20.50 | 5.60 | 8.90 | 16.50 |
Maize | 30.00 | 30.73 | 27.50 | 29.00 | 27.00 | 27.50 |
Full-fat soy | 6.00 | 4.03 | 6.50 | 7.80 | 9.00 | 9.50 |
Extracted soy | 25.47 | 25.36 | 17.50 | 40.75 | 38.30 | 29.50 |
Blood meal | 5.00 | 5.00 | 5.00 | 8.00 | 8.00 | 8.00 |
Yeast, f.g. | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Vit-Min mix | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Fish oil | 1.65 | 1.80 | 2.00 | 0 | 0 | 0 |
Linseed oil | 0 | 0 | 0 | 1.85 | 1.80 | 2.00 |
% | FF | PF | CF | ||||||
---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2013 | 2014 | 2015 | 2013 | 2014 | 2015 | |
dry material | 90.95 | 91.84 | 91.86 | 90.65 | 91.71 | 92.5 | 89.32 | 96.36 | 89.8 |
crude protein | 33.97 | 32.7 | 30.18 | 34.31 | 31.72 | 29.57 | 11.48 | 10.05 | 7.12 |
crude fat | 6.21 | 6.27 | 7.38 | 5.86 | 5.92 | 7.43 | 1.18 | 1.2 | 0.24 |
crude ash | 6.92 | 6.13 | 5.96 | 5.67 | 4.23 | 4.21 | 1.68 | 8.24 | 2.11 |
nitrogen | 5.44 | 5.23 | 4.83 | 5.49 | 5.08 | 4.73 | 1.84 | 1.61 | 1.58 |
phosphorus | 1.02 | 1.01 | 0.01 | 0.79 | 0.73 | 0.01 | 0.40 | 0.40 | 0.00 |
organic matter | 0.84 | 0.86 | 0.86 | 0.85 | 0.87 | 0.88 | 0.88 | 0.88 | 0.88 |
2013 | 2014 | 2015 | ||
---|---|---|---|---|
FF | Survival (%) | 78.6 ± 3 | 72.7 ± 11.2 | 89.5 ± 1.5 |
SGR (% day−1) | 3.37 ± 0.05 | 1.06 ± 0.08 | 0.66 ± 0.03 | |
FCR | 1.63 ± 0.11 | 2.51 ± 0.23 | 2.5 ± 0.1 | |
WG (g fish−1) | 76.6 ± 4.9 | 641.5 ± 81.8 | 1686.1 ± 137.5 | |
NY (kg ha−1) | 1219 ± 39.1 | 2034.8 ± 129.4 | 1669.5 ± 88.9 | |
PF | Survival (%) | 75 ± 2 | 49.2 ± 6.5 | 92.3 ± 0.2 |
SGR (% day−1) | 3.33 ± 0.12 | 1.23 ± 0.1 | 0.6 ± 0.01 | |
FCR | 1.91 ± 0.08 | 3.54 ± 0.01 | 2.59 ± 0.01 | |
WG (g fish−1) | 60.9 ± 10.1 | 863 ± 199.4 | 1735.2 ± 48.6 | |
NY (kg ha−1) | 916.2 ± 202.2 | 1614.5 ± 107.5 | 1778.5 ± 63 | |
CF | Survival (%) | 68.3 ± 2.4 | 57.8 ± 9 | 91.9 ± 0.9 |
SGR (% day−1) | 3.23 ± 0.08 | 1.12 ± 0.12 | 0.57 ± 0.01 | |
FCR | 2.12 ± 0.22 | 3.31 ± 0.22 | 3.04 ± 0.09 | |
WG (g fish−1) | 52.7 ± 5.6 | 609.3 ± 177.1 | 1282.9 ± 65.3 | |
NY (kg ha−1) | 732.1 ± 24 | 1418.5 ± 122.6 | 1321.4 ± 66.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berzi-Nagy, L.; Mozsár, A.; Tóth, F.; Gál, D.; Nagy, Z.; Nagy, S.A.; Kerepeczki, É.; Antal, L.; Sándor, Z.J. Effects of Different Fish Diets on the Water Quality in Semi-Intensive Common Carp (Cyprinus carpio) Farming. Water 2021, 13, 1215. https://doi.org/10.3390/w13091215
Berzi-Nagy L, Mozsár A, Tóth F, Gál D, Nagy Z, Nagy SA, Kerepeczki É, Antal L, Sándor ZJ. Effects of Different Fish Diets on the Water Quality in Semi-Intensive Common Carp (Cyprinus carpio) Farming. Water. 2021; 13(9):1215. https://doi.org/10.3390/w13091215
Chicago/Turabian StyleBerzi-Nagy, László, Attila Mozsár, Flórián Tóth, Dénes Gál, Zoltán Nagy, Sándor Alex Nagy, Éva Kerepeczki, László Antal, and Zsuzsanna J. Sándor. 2021. "Effects of Different Fish Diets on the Water Quality in Semi-Intensive Common Carp (Cyprinus carpio) Farming" Water 13, no. 9: 1215. https://doi.org/10.3390/w13091215
APA StyleBerzi-Nagy, L., Mozsár, A., Tóth, F., Gál, D., Nagy, Z., Nagy, S. A., Kerepeczki, É., Antal, L., & Sándor, Z. J. (2021). Effects of Different Fish Diets on the Water Quality in Semi-Intensive Common Carp (Cyprinus carpio) Farming. Water, 13(9), 1215. https://doi.org/10.3390/w13091215