Changes in the Soil–Plant–Water System Due to Biochar Amendment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Information and Experimental Setup
2.2. Plant Measurements
2.3. Physical and Chemical Characteristics of the Soil
2.4. CO2 Measurements and Gas Chromatography—Flame Ionization Detector (GC-FID) Analyses
2.5. N2O Measurements and GC-ECD Analyses
2.6. Statistical Analyses
3. Results
3.1. Crop Growth and Crop Yield
3.2. Soil Physical and Chemical Properties
3.3. Greenhouse Gas (GHG) Emissions
4. Discussion
4.1. Changes in Plant Growth and Soil Chemical and Physical Parameters
4.2. Environmental Factors Affecting Soil GHG Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kammann, C.; Ratering, S.; Eckhard, C.; Müller, C. Biochar and Hydrochar Effects on Greenhouse Gas (Carbon Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Wu, Y.; Wang, H.; Chen, Y.; Wu, W. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J. Soils Sediments 2011, 11, 930–939. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Spokas, K.A.; Verheijen, F.G.A. Biochar Effects on Crop Yield. In Biochar for Environmental Management: Science and Technology, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2015; pp. 301–326. [Google Scholar]
- Pokovai, K.; Tóth, E.; Horel, Á. Growth and Photosynthetic Response of Capsicum annuum L. in Biochar Amended Soil. Appl. Sci. 2020, 10, 4111. [Google Scholar] [CrossRef]
- Rékási, M.; Szili-Kovács, T.; Takács, T.; Bernhardt, B.; Puspán, I.; Kovács, R.; Kutasi, J.; Draskovits, E.; Molnár, S.; Molnár, M.; et al. Improving the fertility of sandy soils in the temperate region by combined biochar and microbial inoculant treatments. Arch. Agron. Soil Sci. 2018, 65, 44–57. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R. Valorizing biomass to engineered biochar and its impact on soil, plant, water, and microbial dynamics: A review. Biomass Convers. Biorefinery 2020, 1–17. [Google Scholar] [CrossRef]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, K.; Chen, B. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar] [CrossRef]
- Yu, O.-Y.; Raichle, B.; Sink, S. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 2013, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, C.J. How good is the evidence that soil-applied biochar improves water-holding capacity? Soil Use Manag. 2018, 34, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of biochar amendment on soil aggregates and hydraulic properties. J. Soil Sci. Plant Nutr. 2013, 13, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Makó, A.; Barna, G.; Horel, Á. Soil physical properties affected by biochar addition at different plant phaenological phases. Part II. Int. Agrophysics 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Barna, G.; Makó, A.; Takács, T.; Skic, K.; Füzy, A.; Horel, Á. Biochar alters soil physical characteristics, arbuscular mycorrhizal fungi colonization, and glomalin production. Agronomy 2020, 10, 1933. [Google Scholar] [CrossRef]
- Haider, G.; Koyro, H.-W.; Azam, F.; Steffens, D.; Müller, C.; Kammann, C. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 2015, 395, 141–157. [Google Scholar] [CrossRef]
- Tanure, M.M.C.; da Costa, L.M.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Junior, J.D.P.; da Luz, J.M.R. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res. 2019, 192, 164–173. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res. 2014, 144, 184–194. [Google Scholar] [CrossRef]
- Thenot, F.; Méthy, M.; Winkel, T. The Photochemical Reflectance Index (PRI) as a water-stress index. Int. J. Remote Sens. 2002, 23, 5135–5139. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Z.; Zhao, L.; Zhao, H.; Ren, S. Diurnal Response of Sun-Induced Fluorescence and PRI to Water Stress in Maize Using a Near-Surface Remote Sensing Platform. Remote Sens. 2018, 10, 1510. [Google Scholar] [CrossRef] [Green Version]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Bogunovic, I.; Andabaka, Z.; Stupic, D.; Pereira, P.; Galic, M.; Novak, K.; Telak, L.J. Continuous grass coverage as a management practice in humid environment vineyards increases compaction and CO2 emissions but does not modify must quality. Land Degrad. Dev. 2019, 30, 2347–2359. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S.G. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Shao, J.; Wang, X.; Xu, Z.; Bai, S.H.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Troy, S.M.; Lawlor, P.G.; Flynn, C.J.O.; Healy, M.G. Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol. Biochem. 2013, 60, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Spokas, K.A.; Reicosky, D.C. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Yang, S.; Jiang, Z.; Sun, X.; Ding, J.; Xu, J. Effects of Biochar Amendment on CO2 Emissions from Paddy Fields under Water-Saving Irrigation. Int. J. Environ. Res. Public Health 2018, 15, 2580. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhu, L.; Cheng, H.; Yue, S.; Li, S. Effects of Biochar Application on CO2 Emissions from a Cultivated Soil under Semiarid Climate Conditions in Northwest China. Sustainability 2017, 9, 1482. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Lu, T.; Wang, Y.; Huang, H.; Chen, Y. Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb (radix isatidis) residue and its effect on soil CO2 emission. J. Anal. Appl. Pyrolysis 2014, 110, 277–284. [Google Scholar] [CrossRef]
- Ameloot, N.; De Neve, S.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y.N.; Prins, W.; Bouckaert, L.; Sleutel, S. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 2013, 57, 401–410. [Google Scholar] [CrossRef]
- Cayuela, M.; van Zwieten, L.; Singh, B.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Cox, J.; Davy, M.; Van Zwieten, L.; Morris, S.; Kimber, S. Biochar and compost soil amendments affect soil carbon and greenhouse gas emissions. Acta Hortic. 2017, 225–232. [Google Scholar] [CrossRef]
- Horel, Á.; Tóth, E.; Gelybó, G.; Dencső, M.; Potyó, I. Soil CO2 and N2O Emission Drivers in a Vineyard (Vitis vinifera) under Different Soil Management Systems and Amendments. Sustainability 2018, 10, 1811. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Mattana, S.; Llurba, R.; Debouk, H.; Sebastià, M.; Domene, X. Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites. Sci. Total Environ. 2019, 685, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Macdonald, L.M.; Rust, J.; Petty, S.; Joseph, S.; Rose, T. Biochar improves diary pasture yields by alleviating P and K constraints with no influence on soil respiration or N2O emissions. Biochar 2019, 1, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Dövényi, Z. Magyarország Kistájainak Katasztere; MTA Földrajztudományi Kutatóintézet: Budapest, Hungary, 2010; p. 876. (In Hungarian) [Google Scholar]
- FAO; IUSS. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps—Update 2015; FAO: Rome, Italy, 2015; p. 203. [Google Scholar]
- Alburquerque, J.A.; Calero, J.M.; Barrón, V.; Torrent, J.; Del Campillo, M.C.; Gallardo, A.; Villar, R. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 2014, 177, 16–25. [Google Scholar] [CrossRef]
- Shackley, S. The Economic Viability and Propspects for Biochar in Europe: Shifting Paradigms in Uncertain Times. In Biochar in European Soils and Agriculture. Science and Practice; Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., Eds.; Routledge: London, UK, 2016; pp. 205–226. [Google Scholar]
- Monteith, J.L. Climatic variation and the growth of crops. Q. J. R. Meteorol. Soc. 2007, 107, 749–774. [Google Scholar] [CrossRef]
- Gamon, J.A.; Kovalchuck, O.; Wong, C.Y.S.; Harris, A.; Garrity, S.R. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences 2015, 12, 4149–4159. [Google Scholar] [CrossRef] [Green Version]
- Soudani, K.; Hmimina, G.; Dufrêne, E.; Berveiller, D.; Delpierre, N.; Ourcival, J.-M.; Rambal, S.; Joffre, R. Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests. Remote Sens. Environ. 2014, 144, 73–84. [Google Scholar] [CrossRef]
- Cornelissen, G.; Martinsen, V.; Shitumbanuma, V.; Alling, V.K.G.; Breedveld, G.D.; Rutherford, D.W.; Sparrevik, L.M.; Hale, S.E.; Obia, A.; Mulder, J. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia. Agronomy 2013, 3, 256–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 2012, 351, 263–275. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Dehkordi, R.H.; Denis, A.; Fouche, J.; Burgeon, V.; Cornelis, J.T.; Tychon, B.; Gomez, E.P.; Meersmans, J. Remotely-sensed assessment of the impact of century-old biochar on chicory crop growth using high-resolution UAV-based imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102147. [Google Scholar] [CrossRef]
- Ronga, D.; Caradonia, F.; Parisi, M.; Bezzi, G.; Parisi, B.; Allesina, G.; Pedrazzi, S.; Francia, E. Using Digestate and Biochar as Fertilizers to Improve Processing Tomato Production Sustainability. Agronomy 2020, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Duncan, W.C. Cultural Manipulation for Higher Yields. In Physiological Aspects of Crop Yield; University of Nebraska—Lincoln: Madison, WI, USA, 1969; pp. 327–339. [Google Scholar]
- Vitkova, J.; Surda, P.; Kondrlova, E.; Horak, J.; Rodny, M. Analysis of soil water content and crop yield after biochar application in field conditions. Plant Soil Environ. 2017, 63, 569–573. [Google Scholar]
- Fidel, R.B.; Laird, D.A.; Parkin, T.B. Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales. Soil Syst. 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Soil Biol. Biochem. 2010, 42, 2345–2347. [Google Scholar] [CrossRef]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E. CO2 Emissions from Soil Under Fodder Maize Cultivation. Agronomy 2020, 10, 1087. [Google Scholar] [CrossRef]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J.; Liu, S.; Han, J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Amos, B.; Arkebauer, T.J.; Doran, J.W. Soil Surface Fluxes of Greenhouse Gases in an Irrigated Maize-Based Agroecosystem. Soil Sci. Soc. Am. J. 2005, 69, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Liu, X.-R.; Du, Z.-L.; Wang, Y.-D.; Zhang, Q.-Z. Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Soil Res. 2014, 52, 505. [Google Scholar] [CrossRef]
- Richardson, D.; Felgate, H.; Watmough, N.; Thomson, A.; Baggs, E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—Could enzymic regulation hold the key? Trends Biotechnol. 2009, 27, 388–397. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.W.L.; Morris, S.G.; Downie, A.; Berger, E.; Rust, J.H.; Scheer, C. Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Lévesque, V.; Rochette, P.; Hogue, R.; Jeanne, T.; Ziadi, N.; Chantigny, M.H.; Dorais, M.; Antoun, H. Greenhouse gas emissions and soil bacterial community as affected by biochar amendments after periodic mineral fertilizer applications. Biol. Fertil. Soils 2020, 56, 907–925. [Google Scholar] [CrossRef]
- Huang, R.; Wang, Y.; Liu, J.; Li, J.; Xu, G.; Luo, M.; Xu, C.; Ci, E.; Gao, M. Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils. Appl. Soil Ecol. 2019, 137, 57–68. [Google Scholar] [CrossRef]
- Harter, J.; Weigold, P.; El-Hadidi, M.; Huson, D.H.; Kappler, A.; Behrens, S. Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Sci. Total Environ. 2016, 562, 379. [Google Scholar] [CrossRef] [PubMed]
p\r | Height | Crop Yield | Root | Leaf | Stem | Tassel | NDVI | PRI | fAPAR |
---|---|---|---|---|---|---|---|---|---|
Height | 0.400 | 0.290 | −0.170 | 0.140 | 0.370 | −0.010 | 0.180 | 0.130 | |
Crop Yield | 0.000 *** | 0.030 | −0.070 | −0.300 | −0.050 | −0.010 | −0.080 | 0.040 | |
Root | 0.000 *** | 0.638 | −0.050 | 0.540 | 0.380 | 0.090 | 0.070 | 0.150 | |
Leaf | 0.577 | 0.808 | 0.868 | 0.500 | −0.210 | 0.090 | 0.080 | 0.200 | |
Stem | 0.671 | 0.351 | 0.071 | 0.097 | −0.020 | −0.130 | 0.180 | −0.290 | |
Tassel | 0.174 | 0.857 | 0.165 | 0.490 | 0.942 | −0.020 | −0.180 | 0.120 | |
NDVI | 0.840 | 0.843 | 0.199 | 0.781 | 0.682 | 0.951 | −0.560 | 0.790 | |
PRI | 0.014 * | 0.279 | 0.329 | 0.797 | 0.572 | 0.522 | 0.000 *** | −0.390 | |
fAPAR | 0.072 | 0.620 | 0.032 * | 0.505 | 0.365 | 0.666 | 0.000 *** | 0.000 *** |
pH-H2O | SOC (%) | Ntot (%) | C/N | K2O (mg kg−1) | P2O5 (mg kg−1) | NH4+ (mg kg−1) | NO3− (mg kg−1) | |
---|---|---|---|---|---|---|---|---|
Initial | 7.83 ± 0.1 | 1.45 ± 0.16 | 0.19 ± 0.03 | 7.89 ± 0.67 | 475.3 ± 162.6 | 623.0 ± 166.4 | 6.63 ± 0.29 | 9.73 ± 1.9 |
EC17 | 7.70 ± 0.05 c | 1.72 ± 0.08 a | 0.20 ± 0 a | 8.56 ± 0.32 a | 543.9 ± 51.6 a | 528.0 ± 68.7 a | 7.10 ± 1.41 a | 63.2 ± 18 a |
MC17 | 7.73 ± 0.04 c | 1.37 ± 0.1 c | 0.18 ± 0.02 b | 7.67 ± 0.42 a | 502.5 ± 108.9 b | 468.1 ± 60.7 ab | 6.10 ± 0.44 a | 60.3 ± 8.76 a |
EBC17 | 7.88 ± 0.02 b | 1.62 ± 0.02 ab | 0.19 ± 0.01 b | 8.54 ± 0.45 a | 613.3 ± 130.7 a | 524.6 ± 39.1 a | 5.90 ± 0.99 a | 43. ±8.98 b |
MBC17 | 7.81 ± 0.04 c | 1.41 ± 0.12 b c | 0.18 ± 0 b | 8.03 ± 0.82 a | 478.5 ± 6.0 b | 468.4 ± 56.4 b | 6.00 ± 1.73 a | 59.6 ± 3.4 a |
EC18 | 7.99 ± 0.01 a | 1.26 ± 0.02 c | 0.15 ± 0.01d | 8.48 ± 0.13 a | 228.5 ± 13.7 b | 301.2 ± 11.2d | 2.98 ± 0.03 b | 18.9 ± 3.0 c |
MC18 | 7.89 ± 0.06 b | 1.35 ± 0.06 c | 0.17 ± 0 b | 8.00 ± 0.21 a | 258.4 ± 10.7 b | 395.6 ± 28.6 c | 2.13 ± 0.73 b | 21.3 ± 6.1 c |
EBC18 | 7.93 ± 0.01 a | 1.33 ± 0.02 c | 0.15 ± 0 cd | 8.64 ± 0.02 a | 259.2 ± 13.1 b | 393.5 ± 0.3 c | 3.22 ± 0.32 b | 17.1 ± 0.5 c |
MBC18 | 7.85 ± 0.13 c | 1.52 ± 0.1 c | 0.17 ± 0.01 c | 9.08 ± 0.54 a | 301.1 ± 13.9 a | 393.7 ± 18.4 c | 2.97 ± 0.84 b | 19.3 ±1.8 c |
r | pH | SOC | K2O | P2O5 | NTot | NH4+ | NO3− |
---|---|---|---|---|---|---|---|
Empty_CO2 | −0.65 | 0.05 | 0.58 | 0.42 | −0.57 | 0.59 | 0.61 |
Maize_CO2 | −0.62 | 0.33 | 0.59 | 0.54 | −0.62 | 0.51 | 0.59 |
Empty_N2O | −0.54 | 0.10 | 0.69 | 0.67 | −0.63 | 0.67 | 0.39 |
Maize_N2O | −0.44 | 0.10 | 0.59 | 0.62 | −0.50 | 0.54 | 0.26 |
p | pH | SOC | K2O | P2O5 | NTot | NH4+ | NO3− |
Empty_CO2 | 0.0004 *** | 0.7935 | 0.0019 ** | 0.0325 * | 0.0024 ** | 0.0016 ** | 0.001 *** |
Maize_CO2 | 0.0008 *** | 0.0983 | 0.0014 ** | 0.0045 ** | 0.0007 *** | 0.0075 ** | 0.0014 ** |
Empty_N2O | 0.0068 ** | 0.6436 | 0.0002 *** | 0.0003 *** | 0.0009 *** | 0.0003 *** | 0.0613 |
Maize_N2O | 0.0331 * | 0.6275 | 0.0022 ** | 0.0012 ** | 0.0125 * | 0.006 ** | 0.2189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horel, Á.; Tóth, E. Changes in the Soil–Plant–Water System Due to Biochar Amendment. Water 2021, 13, 1216. https://doi.org/10.3390/w13091216
Horel Á, Tóth E. Changes in the Soil–Plant–Water System Due to Biochar Amendment. Water. 2021; 13(9):1216. https://doi.org/10.3390/w13091216
Chicago/Turabian StyleHorel, Ágota, and Eszter Tóth. 2021. "Changes in the Soil–Plant–Water System Due to Biochar Amendment" Water 13, no. 9: 1216. https://doi.org/10.3390/w13091216
APA StyleHorel, Á., & Tóth, E. (2021). Changes in the Soil–Plant–Water System Due to Biochar Amendment. Water, 13(9), 1216. https://doi.org/10.3390/w13091216