Validation of a Swimming Direction Model for the Downstream Migration of Atlantic Salmon Smolts
Abstract
:1. Introduction
2. Materials and Methods
2.1. The River Orkla
2.2. Telemetry
2.3. Hydraulic Modeling
2.4. Combining Fish Positioning and Hydraulics
2.5. Fish Swimming Direction Models
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liermann, C.R.; Nilsson, C.; Robertson, J.; Ng, R.Y. Implications of Dam Obstruction for Global Freshwater Fish Diversity. Bioscience 2012, 62, 539–548. [Google Scholar] [CrossRef]
- Silva, A.T.; Lucas, M.C.; Castro-Santos, T.; Katopodis, C.; Baumgartner, L.J.; Thiem, J.D.; Aarestrup, K.; Pompeu, P.S.; O’Brien, G.C.; Braun, D.C.; et al. The future of fish passage science, engineering, and practice. Fish Fish. 2018, 19, 340–362. [Google Scholar] [CrossRef] [Green Version]
- Fjeldstad, H.-P.; Pulg, U.; Forseth, T. Safe two-way migration for salmonids and eel past hydropower structures in Europe: A review and recommendations for best-practice solutions. Mar. Freshw. Res. 2018, 69, 1834–1847. [Google Scholar] [CrossRef] [Green Version]
- Taft, E.; Hofmann, P.; Eisle, P.; Horst, T. An experimental approach to the design of systems for alleviating fish impingement at existing and proposed power plant intake structures. In Proceedings of the 3rd National Workshop on Entrainment and Impingement, New York, NY, USA, 24 February 1976; pp. 343–365. [Google Scholar]
- Williams, J.G.; Armstrong, G.; Katopodis, C.; Lariniere, M.; Travade, F. Thinking Like a Fish: A Key Ingredient for Development of Effective Fish Passage Facilities at River Obstructions. River Res. Appl. 2012, 28, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Coutant, C.C. Integrated, multi-sensory, behavioral guidance systems for fish diversions. In Behavioral Technologies for Fish Guidance; Coutant, C.C., Ed.; American Fisheries Society: Bethesda, MD, USA, 2001; Volume 26, pp. 105–113. [Google Scholar]
- Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of Water Velocity and Turbulence on the Behaviour of Iberian Barbel (Luciobarbus Bocagei, Steindachner 1864) in an Experimental Pool-Type Fishway. River Res. Appl. 2011, 27, 360–373. [Google Scholar] [CrossRef]
- Tritico, H.M.; Cotel, A.J. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 2010, 213, 2284–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The Ipos Framework: Linking Fish Swimming Performance in Altered Flows from Laboratory Experiments to Rivers. River Res. Appl. 2012, 28, 429–443. [Google Scholar] [CrossRef]
- Goodwin, R.A.; Politano, M.; Garvin, J.W.; Nestler, J.M.; Hay, D.; Anderson, J.J.; Weber, L.J.; Dimperio, E.; Smith, D.L.; Timko, M. Fish navigation of large dams emerges from their modulation of flow field experience. Prod. Nat. Acad. Sci. USA 2014, 111, 5277–5282. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.T.; Bærum, K.M.; Hedger, R.D.; Baktoft, H.; Fjeldstad, H.-P.; Gjelland, K.Ø.; Økland, F.; Forseth, T. The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Sci. Total Environ. 2020, 705, 135773. [Google Scholar] [CrossRef]
- Baktoft, H.; Gjelland, K.O.; Szabo-Meszaros, M.; Silva, A.T.; Riha, M.; Okland, F.; Alfredsen, K.; Forseth, T. Can Energy Depletion of Wild Atlantic Salmon Kelts Negotiating Hydropower Facilities Lead to Reduced Survival? Sustainability 2020, 12, 7341. [Google Scholar] [CrossRef]
- Baktoft, H.; Gjelland, K.Ø.; Økland, F.; Thygesen, U.H. Positioning of aquatic animals based on time-of-arrival and random walk models using YAPS (Yet Another Positioning Solver). Sci. Rep. UK 2017, 7, 14294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenshields, C.J.O.F.L. The Open Source CFD Toolbox (Version 4.1.0). 2015. Available online: https://openfoam.org/ (accessed on 28 April 2021).
- Higuera, P.; Lara, J.L.; Losada, I.J. Realistic wave generation and active wave absorption for Navier-Stokes models Application to OpenFOAM (R). Coast. Eng. 2013, 71, 102–118. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Szabo-Meszaros, M.; Forseth, T.; Baktoft, H.; Fjeldstad, H.-P.; Silva, A.T.; Gjelland, K.Ø.; Økland, F.; Uglem, I.; Alfredsen, K. Modelling mitigation measures for smolt migration at dammed river sections. Ecohydrology 2019, 12, e2131. [Google Scholar] [CrossRef]
- Thorstad, E.B.; Whoriskey, F.; Rikardsen, A.H.; Aarestrup, K.J.A. Aquatic nomads: The Life and Migrations of the Atlantic Salmon, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. New Look at Statistical-Model Identification. IEEE T. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Bolker, B. Tools for General Maximum Likelihood Estimation. R Development Core Team. 2017. Available online: https://CRAN.R-project.org/package=bbmle (accessed on 28 April 2021).
- Taugbol, A.; Olstad, K.; Baerum, K.M.; Museth, J. Swimming performance of brown trout and grayling show species-specific responses to changes in temperature. Ecol. Freshw. Fish 2019, 28, 241–246. [Google Scholar] [CrossRef]
- Quintella, B.R.; Mateus, C.S.; Costa, J.L.; Domingos, I.; Almeida, P.R. Critical swimming speed of yellow- and silver-phase European eel (Anguilla anguilla, L.). J. Appl. Ichthyol. 2010, 26, 432–435. [Google Scholar] [CrossRef]
- Tytell, E.D.; Borazjani, I.; Sotiropoulos, F.; Baker, T.V.; Anderson, E.J.; Lauder, G.V. Disentangling the Functional Roles of Morphology and Motion in the Swimming of Fish. Integr. Comp. Biol. 2010, 50, 1140–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SID | Welev | Qin | Qdam | Qintake | Qdam/Qintake | G1 | G2 | G3 | G4 | Nrfish |
---|---|---|---|---|---|---|---|---|---|---|
[m a.s.l.] | [m3s−1] | [m3s−1] | [m3s−1] | [-] | [%] | [%] | [%] | [%] | ||
A | 129.12 | 55.5 | 21.3 | 34.2 | 0.62 | 69.36 | 0.03 | 0.03 | 0.03 | 8 |
B | 129.12 | 51.9 | 22.0 | 29.9 | 0.73 | 69.36 | 0.03 | 0.03 | 0.03 | 11 |
C | 129.12 | 47.4 | 21.6 | 25.8 | 0.84 | 69.36 | 0.03 | 0.03 | 0.03 | 4 |
D | 129.22 | 82.4 | 36.9 | 45.4 | 0.81 | 69.97 | 15.54 | 0.03 | 0.03 | 14 |
E | 129.34 | 84.8 | 39.4 | 45.4 | 0.87 | 69.97 | 15.54 | 0.03 | 0.03 | 5 |
F | 129.44 | 112.1 | 66.6 | 45.5 | 1.46 | 96.76 | 15.54 | 0.03 | 0.03 | 5 |
G | 129.42 | 148.4 | 111.3 | 37.0 | 3.01 | 97.05 | 79.40 | 0.03 | 0.03 | 23 |
H | 129.50 | 124.8 | 74.9 | 49.9 | 1.50 | 99.68 | 31.66 | 0.03 | 0.03 | 5 |
I | 129.50 | 130.8 | 81.5 | 49.3 | 1.65 | 99.68 | 42.82 | 0.03 | 0.03 | 14 |
J | 129.40 | 211.0 | 175.4 | 35.6 | 4.93 | 97.02 | 95.63 | 94.94 | 0.03 | 2 |
Candidates | Parameter Set up for Fixed Effect | AIC | ΔAIC | df |
---|---|---|---|---|
M.org | TKE × SwimSpeed + v × SwimSpeed + u × v + TKE × v | −59008.4 | 0 | 16 |
M.1 | v × SwimSpeed + u × v + TKE × v | −58885.2 | 123.3 | 15 |
M.2 | v × SwimSpeed + u × v + TKE | −58873.5 | 134.9 | 14 |
M.3 | v × SwimSpeed + u × v + u | −58852.4 | 156 | 13 |
M.4 | u × SwimSpeed + u × v + TKE | −58807.4 | 201 | 14 |
M.5 | u × SwimSpeed + u × v + TKE × v | −58805.9 | 202.6 | 15 |
M.6 | u × SwimSpeed + u × v + u | −58794.8 | 213.6 | 13 |
M.7 | v × SwimSpeed + u + TKE × v | −58615.8 | 392.7 | 14 |
M.8 | v × SwimSpeed + u + TKE | −58594.5 | 414 | 13 |
M.9 | v× SwimSpeed + u | −58550.1 | 458.3 | 12 |
M.10 | TKE × SwimSpeed + u × v + TKE × v | −58469.7 | 538.7 | 15 |
M.11 | u × SwimSpeed + v + TKE | −58444.8 | 563.6 | 13 |
M.12 | u × SwimSpeed + v + TKE × v | −58443.5 | 565 | 14 |
M.13 | TKE × SwimSpeed + u × v + v | −58431.7 | 576.7 | 14 |
M.14 | u× SwimSpeed + v | −58407.0 | 601.5 | 12 |
M.15 | TKE × SwimSpeed + u + TKE × v | −58370.2 | 638.3 | 14 |
M.16 | v × u + SwimSpeed + TKE | −58100.0 | 908.4 | 13 |
M.17 | v× u + SwimSpeed | −58079.3 | 929.1 | 12 |
M.18 | v + SwimSpeed + u + TKE | −58003.6 | 1004.8 | 12 |
M.19 | v + SwimSpeed + u | −57969.9 | 1038.5 | 11 |
M.20 | v × SwimSpeed + TKE × v | −57227.3 | 1781.2 | 13 |
M.21 | v× SwimSpeed + TKE | −57181.2 | 1827.2 | 12 |
M.22 | v× SwimSpeed + v | −57179.2 | 1829.2 | 11 |
M.23 | v× SwimSpeed | −57179.2 | 1829.2 | 11 |
M.24 | TKE × SwimSpeed + TKE × v | −57075.3 | 1933.1 | 13 |
M.25 | TKE × SwimSpeed + v + TKE | −56994.1 | 2014.3 | 12 |
M.26 | v + SwimSpeed + TKE | −56708.9 | 2299.5 | 11 |
M.27 | v + SwimSpeed | −56706.8 | 2301.6 | 10 |
M.28 | u× SwimSpeed + TKE | −56227.3 | 2781.1 | 12 |
M.29 | TKE × SwimSpeed + u + TKE | −56197.1 | 2811.3 | 12 |
M.30 | TKE × SwimSpeed + TKE × u | −56196.4 | 2812.1 | 13 |
M.31 | u× SwimSpeed + u | −56018.2 | 2990.3 | 11 |
M.32 | u + SwimSpeed + TKE | −55980.7 | 3027.7 | 11 |
M.33 | u + SwimSpeed | −55778.1 | 3230.3 | 10 |
M.34 | v× u | −44189.9 | 14818.6 | 11 |
M.35 | v× u + TKE | −44189.2 | 14819.3 | 12 |
M.36 | v + u | −44179.8 | 14828.6 | 10 |
Dependent Variables per Sites: | ||
---|---|---|
Orkla | Mandalselva | |
Intercept | −1.79 *** (0.06) | −3.59 *** (0.22) |
u | 3.09 *** (0.11) | 7.41 *** (0.78) |
v | −3.95 *** (0.11) | −9.48 *** (0.74) |
TKE | −14.47 (15.09) | 391.75 *** (103.66) |
Swimspeed | 8.164 *** (0.10) | 25.63 *** (0.51) |
Swimspeed×TKE | −273.85 *** (24.44) | −5486.81 *** (190.10) |
Swimspeed× u | 3.40 *** (0.15) | 21.48 *** (1.25) |
TKE× u | −187.06 *** (27.47) | −3194.79 *** (384.44) |
u× v | −3.45 *** (0.22) | −18.04 *** (2.58) |
Observations | 21,062 | 12,072 |
R2own | 0.84 | 0.84 |
R2own70% | 0.60 (0.07) | 0.40 (0.08) |
R2cross | 0.26 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabo-Meszaros, M.; Silva, A.T.; Bærum, K.M.; Baktoft, H.; Alfredsen, K.; Hedger, R.D.; Økland, F.; Gjelland, K.Ø.; Fjeldstad, H.-P.; Calles, O.; et al. Validation of a Swimming Direction Model for the Downstream Migration of Atlantic Salmon Smolts. Water 2021, 13, 1230. https://doi.org/10.3390/w13091230
Szabo-Meszaros M, Silva AT, Bærum KM, Baktoft H, Alfredsen K, Hedger RD, Økland F, Gjelland KØ, Fjeldstad H-P, Calles O, et al. Validation of a Swimming Direction Model for the Downstream Migration of Atlantic Salmon Smolts. Water. 2021; 13(9):1230. https://doi.org/10.3390/w13091230
Chicago/Turabian StyleSzabo-Meszaros, Marcell, Ana T. Silva, Kim M. Bærum, Henrik Baktoft, Knut Alfredsen, Richard D. Hedger, Finn Økland, Karl Ø. Gjelland, Hans-Petter Fjeldstad, Olle Calles, and et al. 2021. "Validation of a Swimming Direction Model for the Downstream Migration of Atlantic Salmon Smolts" Water 13, no. 9: 1230. https://doi.org/10.3390/w13091230
APA StyleSzabo-Meszaros, M., Silva, A. T., Bærum, K. M., Baktoft, H., Alfredsen, K., Hedger, R. D., Økland, F., Gjelland, K. Ø., Fjeldstad, H. -P., Calles, O., & Forseth, T. (2021). Validation of a Swimming Direction Model for the Downstream Migration of Atlantic Salmon Smolts. Water, 13(9), 1230. https://doi.org/10.3390/w13091230