Sulfur Isotope and Stoichiometry–Based Source Identification of Major Ions and Risk Assessment in Chishui River Basin, Southwest China
Abstract
:1. Introduction
- (i)
- Carify the ionic compositions and S isotope compositions of river water,
- (ii)
- identify the source of major ions, and
- (iii)
- explore the water quality as well as the potential irrigation and health risks.
2. Materials and Methods
2.1. Study Region
2.2. Sample Collection and Analyses
2.3. Assessment Method
2.4. Software for Data Analyses
3. Results and Discussion
3.1. Overview of Hydrochemical Compositions
3.2. Source of Fluvial Solutes
3.2.1. Stoichiometry–Revealed Sources of Solutes
3.2.2. PCA Analysis
3.3. Sulfur Isotope–Based Source Identification of Riverine Sulfate
3.4. Water Quality and Risk Assessment
3.4.1. Irrigation and Guideline–Based Water Quality
3.4.2. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, R.T.; Raymond, P.A. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem. Geol. 2009, 266, 318–327. [Google Scholar] [CrossRef]
- Nightingale, M.; Mayer, B. Identifying sources and processes controlling the sulphur cycle in the Canyon Creek watershed, Alberta, Canada. Isot. Environ. Health Stud. 2012, 48, 89–104. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification. Ecotoxicol. Environ. Saf. 2020, 198, 110663. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, Y.; Sun, J.; She, J.; Yin, M.; Fang, F.; Xiao, T.; Song, G.; Liu, J. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicol. Environ. Saf. 2020, 196, 110529. [Google Scholar] [CrossRef] [PubMed]
- Zaric, N.M.; Deljanin, I.; Ilijević, K.; Stanisavljević, L.; Ristić, M.; Gržetić, I. Assessment of spatial and temporal variations in trace element concentrations using honeybees (Apis mellifera) as bioindicators. PeerJ 2018, 6, e5197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, L.; Wang, Y.; Tsang, D.C.W.; Yang, X.; Beiyuan, J.; Yin, M.; Xiao, T.; Jiang, Y.; Lin, W.; et al. Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environ. Int. 2021, 146, 106207. [Google Scholar] [CrossRef]
- Xu, S.; Lang, Y.; Zhong, J.; Xiao, M.; Ding, H. Coupled controls of climate, lithology and land use on dissolved trace elements in a karst river system. J. Hydrol. 2020, 591, 125328. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Zhang, Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.-r.; Hu, W.-f.; Gao, J.; Yang, J.-y. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. J. Hazard. Mater. 2021, 405, 124200. [Google Scholar] [CrossRef]
- Chetelat, B.; Liu, C.Q.; Zhao, Z.Q.; Wang, Q.L.; Li, S.L.; Li, J.; Wang, B.L. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochim. Cosmochim. Acta 2008, 72, 4254–4277. [Google Scholar] [CrossRef]
- Liu, J.; Han, G. Distributions and Source Identification of the Major Ions in Zhujiang River, Southwest China: Examining the Relationships Between Human Perturbations, Chemical Weathering, Water Quality and Health Risk. Exposure Health 2020, 12, 849–862. [Google Scholar] [CrossRef]
- Szynkiewicz, A.; Witcher, J.C.; Modelska, M.; Borrok, D.M.; Pratt, L.M. Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA). Chem. Geol. 2011, 283, 194–209. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Su, J.; Yue, F.; Zhong, J.; Chen, S. Oxidation of pyrite and reducing nitrogen fertilizer enhanced the carbon cycle by driving terrestrial chemical weathering. Sci. Total Environ. 2021, 768, 144343. [Google Scholar] [CrossRef]
- Zeng, J.; Yue, F.-J.; Wang, Z.-J.; Wu, Q.; Qin, C.-Q.; Li, S.-L. Quantifying depression trapping effect on rainwater chemical composition during the rainy season in karst agricultural area, southwestern China. Atmos. Environ. 2019, 218, 116998. [Google Scholar] [CrossRef]
- Han, G.; Tang, Y.; Liu, M.; Van Zwieten, L.; Yang, X.; Yu, C.; Wang, H.; Song, Z. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agric. Ecosyst. Environ. 2020, 301, 107027. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Li, S.-L.; Yue, F.-J.; Qin, C.-Q.; Buckerfield, S.; Zeng, J. Rainfall driven nitrate transport in agricultural karst surface river system: Insight from high resolution hydrochemistry and nitrate isotopes. Agric. Ecosyst. Environ. 2020, 291, 106787. [Google Scholar] [CrossRef]
- Yue, F.-J.; Waldron, S.; Li, S.-L.; Wang, Z.-J.; Zeng, J.; Xu, S.; Zhang, Z.-C.; Oliver, D.M. Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export. Sci. Total Environ. 2019, 696, 134062. [Google Scholar] [CrossRef]
- Liu, J.; Han, G. Major ions and δ34SSO4 in Jiulongjiang River water: Investigating the relationships between natural chemical weathering and human perturbations. Sci. Total Environ. 2020, 724, 138208. [Google Scholar] [CrossRef]
- Cao, X.; Wu, P.; Zhou, S.; Sun, J.; Han, Z. Tracing the origin and geochemical processes of dissolved sulphate in a karst-dominated wetland catchment using stable isotope indicators. J. Hydrol. 2018, 562, 210–222. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Yang, K. Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand. J. Clean. Prod. 2020, 265, 121898. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupre, B.; Allegre, C.J.; Négrel, P. Chemical and physical denudation in the Amazon River Basin. Chem. Geol. 1997, 142, 141–173. [Google Scholar] [CrossRef]
- An, Y.; Jiang, H.; Wu, Q.; Yang, R.; Lang, X.; Luo, J. Assessment of water quality in the Chishui River Basin during low water period. Resour. Environ. Yangtze Basin 2014, 23, 1472–1478. (In Chinese) [Google Scholar]
- Liu, J.; Han, G. Controlling factors of riverine CO2 partial pressure and CO2 outgassing in a large karst river under base flow condition. J. Hydrol. 2021, 593, 125638. [Google Scholar] [CrossRef]
- Tipper, E.T.; Bickle, M.J.; Galy, A.; West, A.J.; Pomiès, C.; Chapman, H.J. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochim. Cosmochim. Acta 2006, 70, 2737–2754. [Google Scholar] [CrossRef]
- Zeng, J.; Yue, F.-J.; Li, S.-L.; Wang, Z.-J.; Wu, Q.; Qin, C.-Q.; Yan, Z.-L. Determining rainwater chemistry to reveal alkaline rain trend in Southwest China: Evidence from a frequent-rainy karst area with extensive agricultural production. Environ. Pollut. 2020, 266, 115166. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, F.; Xia, X.; Zhang, L. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 2002, 187, 231–255. [Google Scholar] [CrossRef]
- Ran, X.; Yu, Z.; Yao, Q.; Chen, H.; Mi, T. Major ion geochemistry and nutrient behaviour in the mixing zone of the Changjiang (Yangtze) River and its tributaries in the Three Gorges Reservoir. Hydrol. Process. 2010, 24, 2481–2495. [Google Scholar] [CrossRef]
- Tiping, D.; Gao, J.; Tian, S.; Shi, G.; Chen, F.; Wang, C.; Luo, X.; Han, D. Chemical and Isotopic Characteristics of the Water and Suspended Particulate Materials in the Yangtze River and Their Geological and Environmental Implications. Acta Geol. Sin. Engl. Ed. 2014, 88, 276–360. [Google Scholar] [CrossRef]
- Qin, T.; Yang, P.; Groves, C.; Chen, F.; Xie, G.; Zhan, Z. Natural and anthropogenic factors affecting geochemistry of the Jialing and Yangtze Rivers in urban Chongqing, SW China. Appl. Geochem. 2018, 98, 448–458. [Google Scholar] [CrossRef]
- Li, S.-L.; Calmels, D.; Han, G.; Gaillardet, J.; Liu, C.-Q. Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: Examples from Southwest China. Earth Planet. Sci. Lett. 2008, 270, 189–199. [Google Scholar] [CrossRef]
- Liu, J.; Han, G. Tracing Riverine Particulate Black Carbon Sources in Xijiang River Basin: Insight from Stable Isotopic Composition and Bayesian Mixing Model. Water Res. 2021, 194, 116932. [Google Scholar] [CrossRef]
- Widory, D.; Petelet-Giraud, E.; Négrel, P.; Ladouche, B. Tracking the Sources of Nitrate in Groundwater Using Coupled Nitrogen and Boron Isotopes: A Synthesis. Environ. Sci. Technol. 2005, 39, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.-J.; Li, S.-L.; Waldron, S.; Wang, Z.-J.; Oliver, D.M.; Chen, X.; Liu, C.-Q. Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: Insights from stable isotope tracing and high-frequency nitrate sensing. Water Res. 2020, 186, 116388. [Google Scholar] [CrossRef]
- Divers, M.T.; Elliott, E.M.; Bain, D.J. Constraining Nitrogen Inputs to Urban Streams from Leaking Sewers Using Inverse Modeling: Implications for Dissolved Inorganic Nitrogen (DIN) Retention in Urban Environments. Environ. Sci. Technol. 2013, 47, 1816–1823. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Yue, F.-J.; Li, S.-L.; Wang, Z.-J.; Qin, C.-Q.; Wu, Q.-X.; Xu, S. Agriculture driven nitrogen wet deposition in a karst catchment in southwest China. Agric. Ecosyst. Environ. 2020, 294, 106883. [Google Scholar] [CrossRef]
- Han, G.; Song, Z.; Tang, Y.; Wu, Q.; Wang, Z. Ca and Sr isotope compositions of rainwater from Guiyang city, Southwest China: Implication for the sources of atmospheric aerosols and their seasonal variations. Atmos. Environ. 2019, 214, 116854. [Google Scholar] [CrossRef]
- Qu, R.; Han, G. A critical review of the variation in rainwater acidity in 24 Chinese cities during 1982–2018. Elem. Sci. Anthr. 2021, 9, 00142. [Google Scholar] [CrossRef]
- Zuo, Y.; An, Y.; Wu, Q.; Qu, K.; Fan, G.; Ye, Z.; Qin, L.; Qian, J.; Tu, C. Study on the hydrochemical characteristics of Duliu River basin in Guizhou Province. China Environ. Sci. 2017, 37, 2684–2690. (In Chinese) [Google Scholar]
- Luo, J.; An, Y.; Wu, Q.; Yang, R.; Jiang, H.; Peng, W.; Yu, X.; Lv, J. Spatial distribution of surface water chemical components in the middle and lower reaches of Chishui River Basin. Earth Environ. 2014, 42, 297–305. (In Chinese) [Google Scholar]
- Xu, Z.; Liu, C.-Q. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan–Guizhou Plateau, Southwest China. Chem. Geol. 2007, 239, 83–95. [Google Scholar] [CrossRef]
- Han, G.; Liu, C.-Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem. Geol. 2004, 204, 1–21. [Google Scholar] [CrossRef]
- Li, X.; Han, G.; Zhang, Q.; Miao, Z. An optimal separation method for high-precision K isotope analysis by using MC-ICP-MS with a dummy bucket. J. Anal. At. Spectrom. 2020, 35, 1330–1339. [Google Scholar] [CrossRef]
- Li, P.; He, X.; Li, Y.; Xiang, G. Occurrence and Health Implication of Fluoride in Groundwater of Loess Aquifer in the Chinese Loess Plateau: A Case Study of Tongchuan, Northwest China. Exposure Health 2019, 11, 95–107. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.-L.; Zhong, J.; Li, C. Spatial scale effects of the variable relationships between landscape pattern and water quality: Example from an agricultural karst river basin, Southwestern China. Agric. Ecosyst. Environ. 2020, 300, 106999. [Google Scholar] [CrossRef]
- Lee, K.-S.; Ryu, J.-S.; Ahn, K.-H.; Chang, H.-W.; Lee, D. Factors controlling carbon isotope ratios of dissolved inorganic carbon in two major tributaries of the Han River, Korea. Hydrol. Process. 2007, 21, 500–509. [Google Scholar] [CrossRef]
- Han, G.; Tang, Y.; Wu, Q.; Liu, M.; Wang, Z. Assessing Contamination Sources by Using Sulfur and Oxygen Isotopes of Sulfate Ions in Xijiang River Basin, Southwest China. J. Environ. Qual. 2019, 48, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bao, H.; Gan, Y.; Zhou, A.; Liu, Y. Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in a mega-city in central China. Atmos. Environ. 2013, 81, 591–599. [Google Scholar] [CrossRef]
- Li, X.-D.; Masuda, H.; Kusakabe, M.; Yanagisawa, F.; Zeng, H.-A. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan Basin, China. Geochem. J. 2006, 40, 309–332. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Han, X.; Yue, F.-J.; Zhong, J.; Wang, Z.-J.; Zeng, J.; Li, S.-L. Aquatic chemistry and sulfur isotope composition of precipitation in a karstic agricultuaral area, Southwest China. Earth Environ. 2019, 47, 811–819. (In Chinese) [Google Scholar]
- Gan, C. Geological characteristics and genetic investigation of the Maochang type pyrite deposits. Miner. Depos. 1985, 4, 51–57. (In Chinese) [Google Scholar]
- Das, A.; Pawar, N.J.; Veizer, J. Sources of sulfur in Deccan Trap rivers: A reconnaissance isotope study. Appl. Geochem. 2011, 26, 301–307. [Google Scholar] [CrossRef]
Unit | Min | Max | Mean | SD | Chinese Guideline b | WHO Guideline b | |
---|---|---|---|---|---|---|---|
Whole basin | |||||||
pH | 7.63 | 8.87 | 8.35 | 0.27 | 6.5–8.5 | 6.5–8.5 | |
EC | µS/cm | 128 | 738 | 403 | 117 | — | — |
T | °C | 8.6 | 14.7 | 10.8 | 1.4 | — | — |
DO | mg/L | 0.40 | 9.38 | 8.18 | 1.52 | — | — |
Na+ | mmol/L | 0.06 | 0.78 | 0.30 | 0.17 | — | — |
K+ | mmol/L | 0.02 | 0.19 | 0.05 | 0.03 | — | — |
Mg2+ | mmol/L | 0.08 | 1.56 | 0.48 | 0.26 | — | — |
Ca2+ | mmol/L | 0.44 | 2.79 | 1.54 | 0.46 | — | — |
F− | mmol/L | 0.00 | 0.02 | 0.01 | 0.00 | 0.05 | 0.08 |
Cl− | mmol/L | 0.04 | 0.55 | 0.18 | 0.14 | 7.05 | 7.05 |
NO3− | mmol/L | 0.002 | 0.750 | 0.193 | 0.130 | 1.428 | 3.570 |
SO42− | mmol/L | 0.20 | 2.64 | 0.85 | 0.41 | 2.60 | 2.60 |
HCO3− | mmol/L | 0.52 | 5.49 | 2.22 | 0.79 | — | — |
NH4+ a | mmol/L | 0.000 | 0.010 | 0.003 | — | 0.036 | 0.107 |
δ34S–SO42− | ‰ | −7.79 | 22.13 | 4.68 | 6.21 | — | — |
SAR | 0.04 | 0.61 | 0.21 | 0.11 | — | — | |
Na% | 1.27 | 19.02 | 6.98 | 3.41 | — | — | |
RSC | −5.26 | −0.49 | −1.81 | 0.88 | — | — | |
Main stream | |||||||
pH | 7.63 | 8.87 | 8.36 | 0.28 | |||
EC | µS/cm | 381 | 480 | 428 | 32 | ||
T | °C | 9.5 | 14.7 | 11.0 | 1.4 | ||
DO | mg/L | 6.85 | 9.35 | 8.34 | 0.67 | ||
Na+ | mmol/L | 0.06 | 0.78 | 0.30 | 0.18 | ||
K+ | mmol/L | 0.03 | 0.07 | 0.05 | 0.01 | ||
Mg2+ | mmol/L | 0.34 | 0.90 | 0.52 | 0.13 | ||
Ca2+ | mmol/L | 1.13 | 1.96 | 1.62 | 0.23 | ||
F− | mmol/L | 0.00 | 0.01 | 0.01 | 0.00 | ||
Cl− | mmol/L | 0.05 | 0.55 | 0.19 | 0.15 | ||
NO3− | mmol/L | 0.002 | 0.750 | 0.207 | 0.156 | ||
SO42− | mmol/L | 0.54 | 1.35 | 0.89 | 0.19 | ||
HCO3− | mmol/L | 1.47 | 3.09 | 2.38 | 0.38 | ||
δ34S–SO42− | ‰ | −7.79 | 14 | 2.84 | 5.36 | ||
SAR | 0.04 | 0.61 | 0.21 | 0.14 | |||
Na% | 1.27 | 19.02 | 6.53 | 4.31 | |||
RSC | −2.94 | −0.79 | −1.92 | 0.48 | |||
Tributaries | |||||||
pH | 7.75 | 8.75 | 8.34 | 0.27 | |||
EC | µS/cm | 128 | 738 | 379 | 160 | ||
T | °C | 8.6 | 13.1 | 10.5 | 1.3 | ||
DO | mg/L | 0.40 | 9.38 | 8.03 | 2.04 | ||
Na+ | mmol/L | 0.12 | 0.75 | 0.29 | 0.16 | ||
K+ | mmol/L | 0.02 | 0.19 | 0.05 | 0.04 | ||
Mg2+ | mmol/L | 0.08 | 1.56 | 0.42 | 0.35 | ||
Ca2+ | mmol/L | 0.44 | 2.79 | 1.44 | 0.61 | ||
F− | mmol/L | 0.00 | 0.02 | 0.01 | 0.00 | ||
Cl− | mmol/L | 0.04 | 0.53 | 0.17 | 0.13 | ||
NO3− | mmol/L | 0.017 | 0.422 | 0.178 | 0.094 | ||
SO42− | mmol/L | 0.20 | 2.64 | 0.82 | 0.57 | ||
HCO3− | mmol/L | 0.52 | 5.49 | 2.04 | 1.07 | ||
δ34S–SO42− | ‰ | −6.33 | 22.13 | 6.51 | 6.59 | ||
SAR | 0.11 | 0.39 | 0.21 | 0.07 | |||
Na% | 4.08 | 10.77 | 7.48 | 2.02 | |||
RSC | −5.26 | −0.49 | −1.68 | 1.18 |
Eigenvalues | 5.78 | 2.03 | 1.07 | Communalities |
Variance (%) | 33.80 | 23.90 | 23.10 | |
Cumulative (%) | 33.80 | 57.70 | 80.80 | |
Variable | PC 1 | PC 2 | PC 3 | |
EC | 0.69 | 0.19 | 0.69 | 0.97 |
Na+ | 0.27 | 0.84 | 0.33 | 0.88 |
K+ | 0.75 | 0.40 | 0.14 | 0.75 |
Mg2+ | 0.91 | 0.14 | 0.28 | 0.92 |
Ca2+ | 0.48 | 0.01 | 0.85 | 0.95 |
F− | 0.70 | 0.21 | 0.26 | 0.61 |
Cl− | 0.33 | 0.80 | 0.24 | 0.81 |
NO3− | −0.13 | −0.54 | 0.40 | 0.47 |
SO42− | 0.19 | 0.09 | 0.92 | 0.90 |
HCO3− | 0.94 | 0.14 | 0.10 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, X.; Wu, Q.; Wang, Z.; Gao, S.; Wang, T. Sulfur Isotope and Stoichiometry–Based Source Identification of Major Ions and Risk Assessment in Chishui River Basin, Southwest China. Water 2021, 13, 1231. https://doi.org/10.3390/w13091231
Ge X, Wu Q, Wang Z, Gao S, Wang T. Sulfur Isotope and Stoichiometry–Based Source Identification of Major Ions and Risk Assessment in Chishui River Basin, Southwest China. Water. 2021; 13(9):1231. https://doi.org/10.3390/w13091231
Chicago/Turabian StyleGe, Xin, Qixin Wu, Zhuhong Wang, Shilin Gao, and Tao Wang. 2021. "Sulfur Isotope and Stoichiometry–Based Source Identification of Major Ions and Risk Assessment in Chishui River Basin, Southwest China" Water 13, no. 9: 1231. https://doi.org/10.3390/w13091231
APA StyleGe, X., Wu, Q., Wang, Z., Gao, S., & Wang, T. (2021). Sulfur Isotope and Stoichiometry–Based Source Identification of Major Ions and Risk Assessment in Chishui River Basin, Southwest China. Water, 13(9), 1231. https://doi.org/10.3390/w13091231