Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Water Yield Module
2.4. Data Sources and Processing
2.4.1. LULC
2.4.2. Precipitation and Reference Evapotranspiration
2.4.3. PAWC and Soil Depth
2.4.4. Sub-Watershed and Biophysical Table
2.4.5. The Zhang Parameter
2.5. Climate Change and LULC Change Scenarios
2.6. Analysis of Spatiotemporal Variations of Research Elements
2.7. Performance Assessment
3. Results
3.1. Change Characteristics of Climatic Elements and Land Use
3.1.1. USRB Climatic Change
3.1.2. LULC Change
3.2. Model Validation
3.3. Temporal and Spatial Variation Characteristics of Water Yield
3.3.1. Temporal Variation of Water Yield
3.3.2. Spatial Distribution of Water Yield and Its Dynamic Change
3.4. Difference in Water Yield among LULC Types
3.5. Influence of LULC and Climate Changes on Water Yield
4. Discussion
4.1. Temporal Variation Characteristics of Water Yield and Its Influencing Factors
4.2. Spatial Variation Characteristics of Water Yield and Its Influencing Factors
4.3. Uncertainties in Model-Based Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems (1997); Yale University Press: London, UK, 2013. [Google Scholar]
- Lang, Y.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth Parts A/B/C 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Leemans, R.; De Groot, R. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: A framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Egoh, B.; Rouget, M.; Reyers, B.; Knight, A.T.; Cowling, R.M.; van Jaarsveld, A.S.; Welz, A. Integrating ecosystem services into conservation assessments: A review. Ecol. Econ. 2007, 63, 714–721. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Bower, K.M. Water supply and sanitation of Costa Rica. Environ. Earth Sci. 2014, 71, 107–123. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Aslam, M.R.; Malik, A.; Mehdinejadiani, B.; Srivastava, A.; Bhatia, A.S.; Deng, J. The impact of climate changes on the water footprint of wheat and maize production in the Nile Delta, Egypt. Sci. Total Environ. 2020, 743, 140770. [Google Scholar] [CrossRef]
- Lu, H.; Yan, Y.; Zhu, J.; Jin, T.; Liu, G.; Wu, G.; Stringer, L.C.; Dallimer, M. Spatiotemporal water yield variations and influencing factors in the Lhasa River Basin, Tibetan Plateau. Water 2020, 12, 1498. [Google Scholar] [CrossRef]
- Han, Z.; Song, W.; Deng, X.; Xu, X. Trade-offs and synergies in ecosystem service within the three-rivers headwater region, China. Water 2017, 9, 588. [Google Scholar] [CrossRef] [Green Version]
- Lian, X.-H.; Qi, Y.; Wang, H.-W.; Zhang, J.-L.; Yang, R. Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water 2020, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Yin, G.; Wang, X.; Zhang, X.; Fu, Y.; Hao, F.; Hu, Q. InVEST model-based estimation of water yield in North China and its sensitivities to climate variables. Water 2020, 12, 1692. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef]
- Zulkafli, Z.; Yusuf, B.; Nurhidayu, S. Assessment of Streamflow Simulation for a Tropical Forested Catchment Using Dynamic TOPMODEL—Dynamic fluxEs and ConnectIvity for Predictions of HydRology (DECIPHeR) Framework and Generalized Likelihood Uncertainty Estimation (GLUE). Water 2021, 13, 317. [Google Scholar]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological response to agricultural land use heterogeneity using variable infiltration capacity model. Water Resour. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of variable-infiltration capacity model and MODIS-terra satellite-derived grid-scale evapotranspiration estimates in a River Basin with Tropical Monsoon-Type climatology. J. Irrig. Drain. Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Paul, P.K.; Kumari, N.; Panigrahi, N.; Mishra, A.; Singh, R. Implementation of cell-to-cell routing scheme in a large scale conceptual hydrological model. Environ. Model. Softw. 2018, 101, 23–33. [Google Scholar] [CrossRef]
- Yu, J.; Yuan, Y.; Nie, Y.; Ma, E.; Li, H.; Geng, X. The temporal and spatial evolution of water yield in Dali County. Sustainability 2015, 7, 6069–6085. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Deng, X.; Yuan, Y.; Wang, Z.; Li, Z. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Aghsaei, H.; Dinan, N.M.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef]
- Boithias, L.; Acuña, V.; Vergoñós, L.; Ziv, G.; Marcé, R.; Sabater, S. Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Sci. Total Environ. 2014, 470, 567–577. [Google Scholar] [CrossRef]
- Goyal, M.K.; Khan, M. Assessment of spatially explicit annual water-balance model for Sutlej River Basin in eastern Himalayas and Tungabhadra River Basin in peninsular India. Hydrol. Res. 2017, 48, 542–558. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Rahimi, L.; Malekmohammadi, B.; Yavari, A.R. Assessing and Modeling the Impacts of Wetland Land Cover Changes on Water Provision and Habitat Quality Ecosystem Services. Nat. Resour. Res. 2020, 29, 3701–3718. [Google Scholar] [CrossRef]
- Leh, M.D.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Peng, L.-C.; Lin, Y.-P.; Chen, G.-W.; Lien, W.-Y. Climate change impact on spatiotemporal hotspots of hydrologic ecosystem services: A case study of Chinan catchment, Taiwan. Water 2019, 11, 867. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. A J. Royal Meteorol. Soc. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Xu, Z.; Gong, T.-L.; Li, J.-Y. Decadal trend of climate in the Tibetan Plateau—Regional temperature and precipitation. Hydrol. Process. An Int. J. 2008, 22, 3056–3065. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Shan, P.; Zhao, C.; Wang, C.; Deng, H. Snow cover dynamics in and around the Shangri-La County, southeast margin of the Tibetan Plateau, 1974–2012: The influence of climate change and local tourism activities. Int. J. Sustain. Dev. World Ecol. 2015, 22, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; He, R.; Cheng, G.; Wu, Q.; Wang, S.; Lü, L.; Chang, X. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts. Environ. Res. Lett. 2009, 4, 045206. [Google Scholar] [CrossRef]
- Jin, H.; Li, S.; Cheng, G.; Shaoling, W.; Li, X. Permafrost and climatic change in China. Glob. Planet. Chang. 2000, 26, 387–404. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, L.; Li, R.; Wu, X.; Sheng, Y.; Hu, G.; Zou, D.; Jin, H.; Li, X.; Wu, Q. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar]
- Lin, G.; Yang, C.; Chen, S.; Liu, W.; Chen, G.; Zhang, T. Larger-size soil animal communities of the frost soil regions in the upper reaches of Shule River. Pratacultural Sci. 2011, 28, 1864–1868. [Google Scholar]
- Xu, H.-J.; Zhao, C.Y.; Wang, X.P. Elevational differences in the net primary productivity response to climate constraints in a dryland mountain ecosystem of northwestern China. Land Degrad. Dev. 2020, 31, 2087–2103. [Google Scholar] [CrossRef]
- Lan, Y.; Hu, X.; Xiao, S.; Wen, J.; Wang, G.; Zou, S.; La, S.; Song, J. Study on climate in mountainous region of Shule River Basin in past 50 years and its effect to mountainous runoff. Plateau Meteorol. 2012, 31, 1636–1644. [Google Scholar]
- Li, H.; Zhao, Q.; Wu, J.; Ding, Y.; Qin, J.; Zeng, D. Quantitative simulation of the runoff components and its variation characteristics in the upstream of the Shule River. J. Glaciol. Geocryol. 2019, 41, 907–917. [Google Scholar]
- Zhou, Y.; Guo, X.; Guo, J.; Zeng, J.; Chen, G.; Zou, M.; Yue, D. Spatiotemporal dynamics of evapotranspiration in Shule River Basin based on SEBAL Model. Res. Soil Water Conserv. 2019, 26, 168–177. [Google Scholar]
- Xie, X.; Yang, G.; Wang, Z.; Wang, J. Landscape pattern change in mountainous areas along an altitude gradient in the upper reaches of Shule River. Chin. J. Ecol. 2010, 29, 1420–1426. [Google Scholar]
- Budyko, M.I.; Miller, D.H. Climate and Life; Academic Press: New York, NY, USA, 1974; Volume 508. [Google Scholar]
- Fu, B. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Redhead, J.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.; Bullock, J. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Xu, H.-J.; Zhao, C.-Y.; Wang, X.-P. Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China. Agric. For. Meteorol. 2019, 276, 107628. [Google Scholar] [CrossRef]
- Hu, Q.-F.; Yang, D.-W.; Wang, Y.-T.; Yang, H.-B. Global calibration of Hargreaves equation and its applicability in China. Adv. Water Sci. 2011, 22, 160–167. [Google Scholar]
- Zhou, W.-Z. A Study on Available Water Capacity of Main Soil Types in China Based on Geographic Information System. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2003. [Google Scholar]
- Pan, T.; Wu, S.; Dai, E.; Liu, Y. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model. Chin. J. Appl. Ecol. 2013, 24, 183–189. [Google Scholar]
- Wei, X. Study on Water Conservation Function of South Slope of Qilian Mountain Based on Invest Model. Master’s Thesis, Qinghai Normal University, Xining, China, 2018. [Google Scholar]
- Xu, Z.; Takeuchi, K.; Ishidaira, H. Monotonic trend and step changes in Japanese precipitation. J. Hydrol. 2003, 279, 144–150. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Cheng, F.; Hou, X.; Zhao, S. Response of grassland degradation to drought at different time-scales in Qinghai Province: Spatio-temporal characteristics, correlation, and implications. Remote Sens. 2017, 9, 1329. [Google Scholar]
- Yang, D.; Liu, W.; Xu, C.; Tao, L.; Xu, X. Integrating the InVEST and SDSM Model for Estimating Water Provision Services in Response to Future Climate Change in Monsoon Basins of South China. Water 2020, 12, 3199. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Van Liew, M.; Arnold, J.; Garbrecht, J. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539. [Google Scholar] [CrossRef]
- Lv, L.; Ren, T.; Sun, C.; Zheng, D.; Wang, H. Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016. Acta Ecol. Sin. 2020, 40, 993–1003. [Google Scholar]
- Zhang, H.; Han, W.; Song, J.; Li, M. Spatiotemporal evolution of habitat quality in Qilian Mountain National Park. Chin. J. Ecol. 2021, 1–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, J.; Lei, L.; Xiang, J.; Huang, M.; Fei, W.; Zhu, G.; Wei, W.; Wang, J. Identification of drivers for water yield in the upstream of Shiyang River based on InVEST model. Chin. J. Ecol. 2019, 38, 3789–3799. [Google Scholar]
- Zhang, F.; Li, X.; Fei, Q.; Wang, H.; Wei, Y.; Bai, H. Spatial and temporal variation of water conservation in the upper reaches of Heihe River Basin based on InVEST model. J. Desert Res. 2018, 38, 1321–1329. [Google Scholar]
- Jiang, C.; Li, D.; Wang, D.; Zhang, L. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecol. Indic. 2016, 66, 199–211. [Google Scholar] [CrossRef]
- Xie, Y.; Gong, J.; Qi, S.; Wu, J.; Hu, B. Spatiotemporal variation of water supply service in Bailong River watershed based on InVEST model. J. Nat. Resour. 2017, 32, 1337–1347. [Google Scholar]
- Li, S.; Yang, H.; Lacayo, M.; Liu, J.; Lei, G. Impacts of land-use and land-cover changes on water yield: A case study in Jing-Jin-Ji, China. Sustainability 2018, 10, 960. [Google Scholar] [CrossRef] [Green Version]
Item | Difference [48] |
---|---|
AET | actual amount of water that evaporates from the Earth back to the atmosphere |
PET | combined evaporation from the soil surface and transpiration from plants, which is the maximum value of evaporation that would occur under ideal conditions |
Data | Data Description | Data Source |
---|---|---|
Climate data | Daily precipitation data | China Meteorological Science Data Center (http://data.cma.cn (accessed on 7 October 2019))) |
Daily mean temperature data | ||
Daily maximum temperature data | ||
Daily minimum temperature data | ||
Soil data | Soil texture and root depth | National Cryosphere Desert Data Center (http://data.casnw.net/portal/ (accessed on 5 December 2020)) |
Digital elevation model | Shuttle Radar Topography Mission (SRTM) with a resolution of 90 m | Resource and Environmental Science and Data Center (http://www.resdc.cn/ (accessed on 18 November 2020)) |
LULC | 500 m spatial resolution | NASA Earth Science Data Systems (https://search.earthdata.nasa.gov/search (accessed on 16 October 2020)) |
Streamflow data | Annual water yield in 2001–2019 | Measured data of Changmapu Hydrological Station |
Actual Conditions | Conditions without Climate Change | Conditions without Land Use Change | |
---|---|---|---|
2001 | 2001 precipitation | 2001 precipitation | 2001 precipitation |
2001 ET0 | 2001 ET0 | 2001 ET0 | |
2001 land use | 2001 land use | 2001 land use | |
2019 | 2019 precipitation | 2001 precipitation | 2019 precipitation |
2019 ET0 | 2001 ET0 | 2019 ET0 | |
2019 land use | 2019 land use | 2001 land use |
LULC Type | 2001 | |||||||
---|---|---|---|---|---|---|---|---|
Grassland | Permanent Wetland | Cropland | Built–Up Land | Crops–Natural Vegetation Transition | Permanent Snow and Ice | Barren | ||
2019 | Grassland | 5141.17 | 134.46 | 108.18 | 96.00 | 80.09 | 77.03 | 432.7 |
Permanent wetland | 39.83 | 122.22 | 17.48 | 18.47 | 13.36 | 15.06 | 114.8 | |
Cropland | 25.97 | 10.16 | 107.11 | 14.06 | 10.22 | 16.68 | 109.7 | |
Built–up land | 17.45 | 9.19 | 10.35 | 105.13 | 14.36 | 11.29 | 119.4 | |
Crops–natural vegetation transition | 12.87 | 4.89 | 5.58 | 8.62 | 98.99 | 17.82 | 142.1 | |
Permanent snow and ice | 10.76 | 6.24 | 8.57 | 7.83 | 7.51 | 257.13 | 249.7 | |
Barren | 15.28 | 10.05 | 14.95 | 19.56 | 23.54 | 45.33 | 2997 |
LULC Type | Scenario | |||
---|---|---|---|---|
Actual Conditions | Conditions without Climate Change | Conditions without Land Use Change | ||
2001 | 2019 | 2019 | 2019 | |
Grassland | 0.85 | 4.21 | 1.01 | 4.57 |
Permanent wetland | 0.73 | 1.30 | 0.80 | 0.84 |
Cropland | 0.06 | 0.44 | 0.07 | 0.55 |
Built–up Land | 0.10 | 0.19 | 0.10 | 0.54 |
Crops–natural vegetation transition | 0.34 | 0.46 | 0.37 | 0.58 |
Permanent snow and ice | 1.25 | 1.18 | 1.56 | 1.37 |
Barren | 9.12 | 11.96 | 7.33 | 15.51 |
Total water yield | 12.45 | 19.74 | 11.24 | 23.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water 2021, 13, 1250. https://doi.org/10.3390/w13091250
Wei P, Chen S, Wu M, Deng Y, Xu H, Jia Y, Liu F. Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water. 2021; 13(9):1250. https://doi.org/10.3390/w13091250
Chicago/Turabian StyleWei, Peijie, Shengyun Chen, Minghui Wu, Yanfang Deng, Haojie Xu, Yinglan Jia, and Fang Liu. 2021. "Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin" Water 13, no. 9: 1250. https://doi.org/10.3390/w13091250
APA StyleWei, P., Chen, S., Wu, M., Deng, Y., Xu, H., Jia, Y., & Liu, F. (2021). Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water, 13(9), 1250. https://doi.org/10.3390/w13091250