Characteristics of Ultrasonically Enhanced Low-Temperature Thermal Regeneration of Powdered Activated Carbon: A Case Study of Acetone and Aniline
Abstract
:1. Introduction
2. Materials and Methods
2.1. PAC Characteristics and Preparation of Saturated PAC
2.2. Regeneration Processes
2.2.1. Ultrasonic Regeneration Process
2.2.2. Low-Temperature Thermal Regeneration
2.2.3. Ultrasonic Pretreatment in Organic Solvent with Low-Temperature Thermal Regeneration
2.2.4. Degradation of Aniline by Ultrasound in Pure Water
2.3. Analysis Methods
3. Results and Discussion
3.1. Effect of Ultrasonic Regeneration
3.2. Effect of Ultrasonic Treatment in Organic Solvent on Regeneration
3.3. Effect of Low-Temperature Heating Regeneration
3.4. Effect of a Combination of an Ultrasonic Pretreatment in Organic Solvent Followed by Low-Temperature Regeneration
3.5. Regeneration Mechanism (Using Aniline as an Example)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillossou, R.; Le Roux, J.; Brosillon, S.; Mailler, R.; Vulliet, E.; Morlay, C.; Nauleau, F.; Rocher, V.; Gaspéri, J. Benefits of Ozonation Before Activated Carbon Adsorption for the Removal of Organic Micropollutants From Wastewater Effluents. Chemosphere 2020, 245, 125530. [Google Scholar] [CrossRef]
- Kurtoglu, A.E.; Atun, G. Competitive Adsorption of 2,4-Dichlorophenoxyacetic Acid Herbicide and Humic Acid Onto Activated Carbon for Agricultural Water Management. Desalin. Water Treat. 2016, 57, 25653–25666. [Google Scholar] [CrossRef]
- Feng, C.; Jin, J.; Sun, L.; Zhang, Y.; Chen, X.; Zhang, X. Study On the Organics Adsorption Capacities of Powdered Activated Carbon and Activated Coke in Reclaimed Water. Desalin. Water Treat. 2017, 62, 200–207. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.; Liu, Y.; Xing, B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci. Total Environ. 2021, 757, 143910. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhong, L.; Wang, H.; Zou, Z.; Chen, D.; Yang, K. Odor Removal by Powdered Activated Carbon (Pac) in Low Turbidity Drinking Water. Water Supply 2016, 16, 1017–1023. [Google Scholar] [CrossRef]
- Zheng, T.; Du, Z.; Cao, H.; Jiang, J.; Zheng, W.; Tang, S.; Wang, N.; Wang, P. Development of a Novel Mobile Industrial-Scale Fluidized Adsorption Process for Emergency Treatment of Water Polluted by Aniline: CFD Simulation and Experiments. Adv. Powder Technol. 2016, 27, 1576–1587. [Google Scholar] [CrossRef] [Green Version]
- Gürses, A.; Yalvaç, D.; Güneş, K.; Şahin, E.; Açıkyıldız, M. The Adsorption-Desorption Mechanisms on the Powdered Activated Carbon (Pac) of an Anionic Textile Dye (Rby 3Gl). Desalin. Water Treat. 2017, 70, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, A.; Hale, S.; Cornelissen, G.; Sjöholm, E.; Gunnarsson, J.S. Activated carbon from kraft lignin: A sorbent for in situ remediation of contaminated sediments. Environ. Technol. Innov. 2017, 7, 160–168. [Google Scholar] [CrossRef]
- Shen, L.; Wang, W.; Li, T.; Cui, Y.; Wang, B.; Yu, G.; Wang, X.; Wei, D.; Xiao, J.; Deng, S. Powdered activated coke for COD removal in the advanced treatment of mixed chemical wastewaters and regeneration by Fenton oxidation. Chem. Eng. J. 2019, 371, 631–638. [Google Scholar] [CrossRef]
- Ledesma, B.; Román, S.; Álvarez-Murillo, A.; Sabio, E.; González-García, C.M. Fundamental Study on the Thermal Regeneration Stages of Exhausted Activated Carbons: Kinetics. J. Therm. Anal. Calorim. 2014, 115, 537–543. [Google Scholar] [CrossRef]
- Shah, I.K.; Pre, P.L.; Alappat, B.J. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances. J. Taiwan Inst. Chem. Eng. 2014, 45, 1733–1738. [Google Scholar] [CrossRef]
- Chiang, P.C.; Wu, J.S. Evaluation of Chemical and Thermal Regeneration of Activated Carbon. Water Sci. Technol. 1989, 21, 1697–1700. [Google Scholar] [CrossRef]
- Zhang, T.T.; Yang, Y.L.; Li, X.; Wang, N.; Zhou, Z. Regeneration of 4-Chlorophenol from Spent Powdered Activated Carbon by Ultrasound. Environ. Sci. Pollut. Res. 2019, 26, 9161–9173. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Li, X.; Yang, Y.; Zhang, T.; Zhou, Z. Enhanced Desorption Performance of Aniline-Saturated Powdered Activated Carbon Using Ultrasound Assisted with Ethanol. Desalin. Water Treat. 2020, 190, 267–278. [Google Scholar] [CrossRef]
- Zhang, T.T.; Yang, Y.L.; Li, X.; Jiang, Y.; Fan, X.; Du, P.; Li, H.; Wang, N.; Zhou, Z. Adsorption Characteristics of Chloramphenicol onto Powdered Activated Aarbon and Its Desorption Performance by Ultrasound. Environ. Technol. 2021, 42, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Plakas, K.V.; Karabelas, A.J. A Study on Heterogeneous Fenton Regeneration of Powdered Activated Carbon Impregnated with Iron Oxide Nanoparticles. Global NEST Int. J. 2016, 18, 259–268. [Google Scholar]
- Hu, L.; Zhao, D.; Yang, H.; Ma, J. The Application of Powdered Activated Carbon in Advanced Treatment of Coking Wastewater and Its Regeneration. Environ. Protec. Technol. 2016, 22, 41–44. [Google Scholar]
- Pokhrel, N.; Vabbina, P.K.; Pala, N. Sonochemistry: Science and Engineering. Ultrason. Sonochem. 2016, 29, 104–128. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.J.; Tiehm, A. Advanced in Sonochemistry Volume 6-Ultrasound in Environmental Protection; Lightning Source UK Ltd.: Milton Keynes, UK, 2001. [Google Scholar]
- Hamdaoui, O.; Naffrechoux, E.; Tifouti, L.; Pétrier, C. Effects of Ultrasound on Adsorption-Desorption of P-Chlorophenol on Granular Activated Carbon. Ultrason. Sonochem. 2003, 10, 109–114. [Google Scholar] [CrossRef]
- Simpson, D.R. Biofilm Processes in Biologically Active Carbon Water Purification. Water Res. 2008, 42, 2839–2848. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, Y.; Wang, D.; Sun, Z.; Chen, M.; Zhou, Z.; Chen, W. Performance and Mechanism of Low-Frequency Ultrasound to Regenerate the Biological Activated Carbon. Ultrason. Sonochem. 2017, 34, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Diaz-Rivera, D.; He, Z.; Weavers, L.K. Using Pulsed Wave Ultrasound to Evaluate the Suitability of Hydroxyl Radical Scavengers in Sonochemical Systems. Ultrason. Sonochem. 2013, 20, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Gultekin, I.; Ince, N.H. Ultrasonic Destruction of Bisphenol-a: The Operating Parameters. Ultrason. Sonochem. 2008, 15, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Huang, C. Mineralization of Aniline in Aqueous Solution by Electro-Activated Persulfate Oxidation Enhanced with Ultrasound. Chem. Eng. J. 2015, 266, 279–288. [Google Scholar] [CrossRef]
- Kumar, A.; Mathur, N. Photocatalytic Degradation of Aniline at the Interface of TiO2 Suspensions Containing Carbonate Ions. J. Colloid Interface Sci. 2006, 300, 244–252. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, L.; Xiao, S.; Chen, J. Preparation of a Novel Manganese Oxide-Modified Diatomite and its Aniline Removal Mechanism from Solution. Chem. Eng. J. 2016, 284, 609–619. [Google Scholar] [CrossRef]
PAC Type | BET Specific Surface Area (m2/g) | Total Pore Volume (cm3/g) | Micropore Volume (cm3/g) | Mesopore Volume (cm3/g) |
---|---|---|---|---|
Unused | 624 | 0.44 | 0.10 | 0.34 |
Saturated | 506 | 0.38 | 0.04 | 0.34 |
US regeneration | 537 | 0.41 | 0.04 | 0.37 |
US/EtOH regeneration | 582 | 0.46 | 0.03 | 0.43 |
Thermal regeneration | 627 | 0.49 | 0.09 | 0.41 |
US/EtOH-thermal regeneration | 602 | 0.44 | 0.12 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, D.; Zhou, Z.; Yu, R.; Wang, M. Characteristics of Ultrasonically Enhanced Low-Temperature Thermal Regeneration of Powdered Activated Carbon: A Case Study of Acetone and Aniline. Water 2021, 13, 1298. https://doi.org/10.3390/w13091298
Zheng D, Zhou Z, Yu R, Wang M. Characteristics of Ultrasonically Enhanced Low-Temperature Thermal Regeneration of Powdered Activated Carbon: A Case Study of Acetone and Aniline. Water. 2021; 13(9):1298. https://doi.org/10.3390/w13091298
Chicago/Turabian StyleZheng, Dan, Zhiwei Zhou, Rui Yu, and Menghu Wang. 2021. "Characteristics of Ultrasonically Enhanced Low-Temperature Thermal Regeneration of Powdered Activated Carbon: A Case Study of Acetone and Aniline" Water 13, no. 9: 1298. https://doi.org/10.3390/w13091298
APA StyleZheng, D., Zhou, Z., Yu, R., & Wang, M. (2021). Characteristics of Ultrasonically Enhanced Low-Temperature Thermal Regeneration of Powdered Activated Carbon: A Case Study of Acetone and Aniline. Water, 13(9), 1298. https://doi.org/10.3390/w13091298