An Improved Inexact Two-Stage Stochastic with Downside Risk-Control Programming Model for Water Resource Allocation under the Dual Constraints of Water Pollution and Water Scarcity in Northern China
Abstract
:1. Introduction
2. The Study Area
3. Method and Data
3.1. Model Development
3.2. Datasets
4. Results and Discussions
4.1. Downside Risks
4.2. Water Resource Allocation
4.3. Policy Interventions and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Edda, K.; Thomas, K.; Olaf, K.; Elisabeth, K.; Jörg, S.; Gunda, R.; Georg, T.; Dietrich, B.; Peter, K. Integrated Water Resources Management under different hydrological, climatic and socio-economic conditions. Environ. Earth Sci. 2012, 65, 1363–1366. [Google Scholar]
- Tang, L.; Yang, D.; Hu, H.; Gao, B. Detecting the effect of land-use change on streamflow, sediment and nutrient losses by distributed hydrological simulation. J. Hydrol. 2011, 409, 172–182. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, P.; Zhang, D.; Kou, S.; Mao, Y. Watershed-scale assessment of surface water-related risks from shale gas development in mountainous areas, China. J. Environ. Manag. 2020, 279, 111589. [Google Scholar] [CrossRef]
- Liu, L.; Ma, J.; Hao, X.; Li, Q. Limitations of Water Resources to Crop Water Requirement in the Irrigation Districts along the Lower Reach of the Yellow River in China. Sustainability 2019, 11, 4680. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Zhang, X.; Xu, J.; Bing, J.; Pan, G. Simulation of water resource allocation for sustainable urban development: An integrated optimization approach. J. Clean. Prod. 2020, 273, 122537. [Google Scholar] [CrossRef]
- Su, D.; Zhang, Q.H.; Ngo, H.H.; Dzakpasu, M.; Guo, W.S.; Wang, X.C. Development of a water cycle management approach to Sponge City construction in Xi’an, China. Sci. Total Environ. 2019, 685, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; See, K.F.; Chi, J. Water resources and water pollution emissions in China’s industrial sector: A green-biased technological progress analysis. J. Clean. Prod. 2019, 229, 1412–1426. [Google Scholar] [CrossRef]
- Choi, I.-C.; Shin, H.-J.; Nguyen, T.T.; Tenhunen, J. Water Policy Reforms in South Korea: A Historical Review and Ongoing Challenges for Sustainable Water Governance and Management. Water 2017, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Guo, S.; Liu, D.; Pan, Z.; Hong, X. A Fair Approach for Multi-Objective Water Resources Allocation. Water Resour. Manag. 2019, 33, 3633–3653. [Google Scholar] [CrossRef]
- Qin, J.; Fu, X.; Peng, S.; Huang, S. An Integrated Decision Support Framework for Incorporating Fairness and Stability Concerns into River Water Allocation. Water Resour. Manag. 2020, 34, 211–230. [Google Scholar] [CrossRef]
- Wilby, R.L. Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Process. 2010, 19, 3201–3219. [Google Scholar] [CrossRef]
- Hart, O.E.; Halden, R.U. On the need to integrate uncertainty into U.S. water resource planning. Sci. Total Environ. 2019, 691, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Xu, Z.; Chen, X. Sustainable Water Allocation Strategies under Various Climate Scenarios: A Case Study in China. J. Hydrol. 2019, 574, 529–543. [Google Scholar] [CrossRef]
- Karmakar, S.; Mujumdar, P.P. An inexact optimization approach for river water-quality management. J. Environ. Manag. 2006, 81, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Huang, G.H.; Nie, S.L. An interval-parameters multi-stage stochastic programming model for water resources management under uncertainty. Adv. Water. Resour. 2006, 29, 776–789. [Google Scholar] [CrossRef]
- Qin, X.; Huang, G.; Chen, B.; Zhang, B. An interval-parameter waste-load-allocation model for river water quality management under uncertainty. Environ. Manag. 2009, 43, 999. [Google Scholar] [CrossRef]
- Xie, Y.L.; Li, Y.P.; Huang, G.H.; Li, Y.F.; Chen, L.R. An inexact chance-constrained programming model for water quality management in Binhai New Area of Tianjin, China. Sci. Total Environ. 2011, 409, 1757–1773. [Google Scholar] [CrossRef]
- Huang, G.H.; Loucks, D.P. An inexact two stage stochastic programming model for water resources management under uncertainty. Civ. Eng. Environ. Syst. 2000, 17, 95–118. [Google Scholar] [CrossRef]
- Maqsood, I.; Huang, G.H.; Huang, Y.F.; Chen, B. ITOM: An interval parameter two-stage optimization model for stochastic planning of water resources systems. Stoch. Environ. Res. Risk Assess. 2005, 19, 125–133. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, G.H.; Qin, X.S. Inexact two-stage stochastic robust optimization model for water resources management under uncertainty. Environ. Eng. Sci. 2009, 26, 1765–1776. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.P.; Li, C.H.; Huang, G.H. An inexact two-stage water management model for planning agricultural irrigation under uncertainty. Agric. Water Manag. 2010, 97, 1905–1914. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.H. Interactive two-stage stochastic fuzzy programming for water resources management. J. Environ. Manag. 2011, 92, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.L.; Huang, G.H.; Li, W.; Li, J.B.; Li, Y.F. An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China. J. Environ. Manag. 2013, 127, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qiao, Y.; Lei, X.; Kang, A.; Wang, M.; Liao, W.; Wang, H.; Ma, Y. A two-stage water allocation strategy for developing regional economic-environment sustainability. J. Environ. Manag. 2019, 244, 189–198. [Google Scholar] [CrossRef]
- Sarband, E.M.; Araghinejad, S.; Attari, J. Developing an Interactive Spatial Multi-Attribute Decision Support System for Assessing Water Resources Allocation Scenarios. Water Resour. Manag. 2020, 34, 447–462. [Google Scholar] [CrossRef]
- Xie, Y.L.; Huang, G.H. Development of an inexact two-stage stochastic model with downside risk control for water quality management and decision analysis under uncertainty. Stoch. Environ. Res. Risk Assess. 2014, 28, 1555–1575. [Google Scholar] [CrossRef]
- Harlow, W.V. Asset Allocation in a Downside-Risk Framework. Financ. Anal. J. 1991, 47, 28–40. [Google Scholar] [CrossRef]
- Park, J.; Park, S.; Yun, C.; Kim, Y. Integrated model for financial risk management in refinery planning. Ind. Eng. Chem. Res. 2009, 49, 129. [Google Scholar] [CrossRef]
- Finger, R. Expanding risk consideration in integrated models-the role of downside risk aversion in irrigation decisions. Environ. Model. Softw. 2013, 43, 169–172. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, I.B.; Han, J. Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference. Appl. Energy 2019, 238, 34–44. [Google Scholar] [CrossRef]
Water Resources | Periods | Scenarios | ||
---|---|---|---|---|
h = 1 | h = 2 | h = 3 | ||
Surface water | t = 1 | [14,716, 18,395] | [22,640, 28,300] | [41,163, 51,454] |
t = 2 | [14,872, 18,590] | [22,880, 28,600] | [41,600, 52,000] | |
t = 3 | [15,028, 18,785] | [23,120, 28,900] | [42,036, 52,545] | |
Groundwater | t = 1 | [2560, 3200] | [2560, 3200] | [2560, 3200] |
t = 2 | [2560, 3200] | [2560, 3200] | [2560, 3200] | |
t = 3 | [2560, 3200] | [2560, 3200] | [2560, 3200] | |
Transferred water | t = 1 | [1800, 2250] | [1800, 2250] | [1800, 2250] |
t = 2 | [2400, 3000] | [2400, 3000] | [2400, 3000] | |
t = 3 | [3000, 3750] | [3000, 3750] | [3000, 3750] | |
Surface water | t = 1 | [38,480, 48,100] | [59,200, 74,000] | [107,636, 134,545] |
t = 2 | [39,988, 49,985] | [61,520, 76,900] | [111,854, 139,818] | |
t = 3 | [41,496, 51,870] | [63,840, 79,800] | [116,072, 145,090] | |
Groundwater | t = 1 | [49,600, 62,000] | [49,600, 62,000] | [49,600, 62,000] |
t = 2 | [47,120, 58,900] | [47,120, 58,900] | [47,120, 58,900] | |
t = 3 | [44,640, 55,800] | [44,640, 55,800] | [44,640, 55,800] | |
Transferred water | t = 1 | [76,800, 96,000] | [76,800, 96,000] | [76,800, 96,000] |
t = 2 | [86,400, 108,000] | [86,400, 108,000] | [86,400, 108,000] | |
t = 3 | [96,000, 120,000] | [96,000, 120,000] | [96,000, 120,000] | |
Surface water | t = 1 | [18,096, 22,620] | [27,840, 34,800] | [50,618, 63,272] |
t = 2 | [18,096, 22,620] | [27,840, 34,800] | [50,618, 63,272] | |
t = 3 | [18,096, 22,620] | [27,840, 34,800] | [50,618, 63,272] | |
Groundwater | t = 1 | [24,600, 30,750] | [24,600, 30,750] | [24,600, 30,750] |
t = 2 | [22,880, 28,600] | [22,880, 28,600] | [22,880, 28,600] | |
t = 3 | [21,160, 26,450] | [21,160, 26,450] | [21,160, 26,450] | |
Transferred water | t = 1 | [54,840, 68,550] | [54,840, 68,550] | [54,840, 68,550] |
t = 2 | [59,920, 74,900] | [59,920, 74,900] | [59,920, 74,900] | |
t = 3 | [65,000, 81,250] | [65,000, 81,250] | [65,000, 81,250] |
Units | Periods and Sectors | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
t = 1 | t = 2 | t = 3 | ||||||||||
Industry | Domestic | Agriculture | The Environment | Industry | Domestic | Agriculture | The Environment | Industry | Domestic | Agriculture | The Environment | |
Unit1 | [196, 221] | [715, 869] | [10,351, 10,778] | [870, 937] | [200, 246] | [698, 977] | [11,234, 12,042] | [1132, 1313] | [204, 274] | [683, 1099] | [11,940, 13,175] | [1471, 1838] |
Unit2 | [181, 213] | [314, 377] | [4623, 4817] | [282, 303] | [179, 237] | [310, 423] | [4584, 4918] | [366, 425] | [177, 264] | [305, 474] | [4568, 5047] | [476, 595] |
Unit3 | [695, 799] | [267, 343] | [2883, 3004] | [60, 64] | [735, 933] | [258, 395] | [2938, 3152] | [78, 90] | [777, 1089] | [249, 457] | [2931, 3238] | [101, 126] |
Unit4 | [1973, 2310] | [1708, 2132] | [1378, 1435] | [379, 408] | [2010, 2634] | [1661, 2431] | [1399, 1501] | [493, 572] | [2049, 3004] | [1616, 2772] | [1398, 1545] | [641, 801] |
Unit5 | [5356, 6947] | [2844, 3646] | [5650, 5886] | [778, 803] | [4598, 7179] | [2705, 4140] | [5716, 6133] | [1206, 1285] | [3946, 7420] | [2572, 4701] | [5723, 6322] | [1869, 2056] |
Unit6 | [2104, 2738] | [26,940, 32,755] | [6210, 6470] | [7213, 7445] | [1807, 2839] | [26,015, 36,369] | [6131, 6578] | [11,180, 11,913] | [1552, 2943] | [25,122, 40,383] | [6214, 6865] | [17,329, 19,061] |
Unit7 | [898, 1023] | [5213, 6336] | [18,921, 19,440] | [3681, 3800] | [889, 1113] | [5045, 7049] | [19,946, 20,893] | [5707, 6081] | [881, 1210] | [4882, 7841] | [21,356, 22,806] | [8845, 9729] |
Unit8 | [905, 1050] | [387, 476] | [1951, 2033] | [425, 438] | [885, 1143] | [374, 534] | [1942, 2083] | [658, 702] | [866, 1244] | [361, 598] | [1932, 2134] | [1021, 1123] |
Unit9 | [553, 657] | [583, 738] | [1361, 1418] | [650, 670] | [558, 749] | [558, 834] | [1340, 1438] | [1007, 1073] | [562, 855] | [533, 943] | [1340, 1481] | [1561, 1717] |
Unit10 | [3751, 4497] | [2072, 2587] | [15,084, 15,716] | [2298, 2372] | [3758, 5129] | [1986, 2906] | [14,852, 15,936] | [3562, 3796] | [3766, 5851] | [1903, 3264] | [14,853, 16,412] | [5522, 6074] |
Unit11 | [4064, 4743] | [3127, 3801] | [33,468, 34,386] | [2210, 2281] | [4148, 5406] | [3025, 4226] | [35,777, 37,475] | [3426, 3650] | [4235, 6162] | [2926, 4699] | [38,039, 40,622] | [5310, 5841] |
Unit12 | [3882, 4532] | [5591, 7453] | [34,208, 35,393] | [3415, 3605] | [3868, 5044] | [5189, 8492] | [35,295, 37,418] | [6148, 6850] | [3854, 5615] | [4815, 9676] | [36,034, 39,142] | [11,067, 13,016] |
Unit13 | [3403, 3842] | [1003, 1302] | [24,856, 25,718] | [603, 636] | [3474, 4276] | [941, 1473] | [25,824, 27,377] | [1085, 1209] | [3546, 4759] | [883, 1667] | [26,274, 28,540] | [1954, 2298] |
Unit14 | [502, 567] | [1912, 2355] | [14,062, 14,550] | [1119, 1182] | [500, 616] | [1828, 2615] | [14,209, 15,064] | [2015, 2245] | [499, 670] | [1748, 2903] | [14,659, 15,923] | [3628, 4267] |
Unit15 | [1920, 2207] | [715, 978] | [15,135, 15,655] | [137, 144] | [1983, 2517] | [656, 1123] | [16,235, 17,204] | [247, 275] | [2048, 2871] | [602, 1289] | [17,232, 18,706] | [444, 523] |
Unit16 | [6176, 7469] | [1624, 2082] | [18,600, 19,239] | [301, 318] | [6293, 8718] | [1524, 2334] | [20,021, 21,215] | [543, 605] | [6412, 10,175] | [1431, 2616] | [21,213, 23,028] | [978, 1150] |
Risk Levels | Periods | ||
---|---|---|---|
t = 1 | t = 2 | t = 3 | |
= 0 | [5.97, 6.74] | [8.46, 10.53] | [10.96, 15.49] |
= 5 | [5.97, 6.73] | [8.45, 10.52] | [10.88, 15.42] |
= 10 | [5.95, 6.73] | [8.41, 10.52] | [10.82, 15.23] |
= 20 | [5.92, 6.70] | [8.39, 10.47] | [10.72, 14.98] |
= 30 | [5.89, 6.62] | [8.32, 10.37] | [10.71, 14.83] |
Periods | Scenarios | Risk Control Levels | ||||
---|---|---|---|---|---|---|
ω = 0 | ω = 5 | ω = 15 | ω = 30 | ω = 50 | ||
t = 1 | h = 1 | [47,269.97, 58,799.61] | [46,747.57, 58,926.27] | [45,908.44, 58,926.27] | [45,728.61, 58,907.33] | [45,400.36, 57,794.33] |
h = 2 | [46,082.49, 49,339.46] | [46,086.85, 49,148.65] | [46,037.42, 49,142.83] | [45,431.45, 49,068.19] | [45,192.69, 48,222.94] | |
h = 3 | [29,090.81, 32,107.98] | [29,015.05, 32,015.54] | [29,015.05, 32,015.54] | [29,015.05, 32,015.54] | [29,015.05, 31,993.50] | |
t = 2 | h = 1 | [43,125.79, 56,352.63] | [42,926.20, 56,463.97] | [41,948.42, 56,463.97] | [41,931.07, 56,437.83] | [41,717.47, 55,641.02] |
h = 2 | [38,890.91, 46,190.99] | [38,994.84, 46,433.57] | [38,064.14, 46,424.53] | [37,789.90, 46,354.70] | [37,038.71, 46,126.27] | |
h = 3 | [27,892.07, 30,590.55] | [27,695.09, 30,477.29] | [27,695.09, 30,477.29] | [27,695.09, 30,446.99] | [27,695.09, 30,049.19] | |
t = 3 | h = 1 | [53,122.47, 76,779.17] | [53,137.32, 75,701.38] | [53,467.22, 72,236.61] | [53,636.18, 72,058.48] | [53,714.90, 70,143.08] |
h = 2 | [64,159.80, 77,143.92] | [64,601.49, 76,199.71] | [63,690.30, 72,770.01] | [63,823.77, 72,600.84] | [63,847.15, 72,525.75] | |
h = 3 | [68,971.33, 71,230.94] | [65,884.16, 70,614.86] | [62,650.05, 67,134.40] | [61,506.59, 66,346.23] | [61,444.22, 66,287.66] |
Periods | Scenarios | ||
---|---|---|---|
S1 | S2 | ||
Benefits | t = 1 | [5.89, 6.68] | [5.91, 6.69] |
t = 2 | [8.23, 10.46] | [8.25, 10.51] | |
t = 3 | [10.22, 14.67] | [10.36, 14.77] | |
Risks | t = 1 | [0.09, 0.18] | [0.08, 0.16] |
t = 2 | [0.08, 0.39] | [0.05, 0.37] | |
t = 3 | [0.54, 2.07] | [0.51, 1.94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, C.; Li, W.; Cheng, R.; Zhou, S. An Improved Inexact Two-Stage Stochastic with Downside Risk-Control Programming Model for Water Resource Allocation under the Dual Constraints of Water Pollution and Water Scarcity in Northern China. Water 2021, 13, 1318. https://doi.org/10.3390/w13091318
Meng C, Li W, Cheng R, Zhou S. An Improved Inexact Two-Stage Stochastic with Downside Risk-Control Programming Model for Water Resource Allocation under the Dual Constraints of Water Pollution and Water Scarcity in Northern China. Water. 2021; 13(9):1318. https://doi.org/10.3390/w13091318
Chicago/Turabian StyleMeng, Chong, Wei Li, Runhe Cheng, and Siyang Zhou. 2021. "An Improved Inexact Two-Stage Stochastic with Downside Risk-Control Programming Model for Water Resource Allocation under the Dual Constraints of Water Pollution and Water Scarcity in Northern China" Water 13, no. 9: 1318. https://doi.org/10.3390/w13091318
APA StyleMeng, C., Li, W., Cheng, R., & Zhou, S. (2021). An Improved Inexact Two-Stage Stochastic with Downside Risk-Control Programming Model for Water Resource Allocation under the Dual Constraints of Water Pollution and Water Scarcity in Northern China. Water, 13(9), 1318. https://doi.org/10.3390/w13091318