Design, Scaling, and Development of Biofilters with E crassipes for Treatment of Water Contaminated with Cr (VI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Use of (EC)
2.2. Obtaining Cellulose Modified with Iron
2.3. Chromium Measurement
2.4. Batch Adsorption Experiment
2.5. Continuous Experimentation
3. Results
3.1. Mass Balance Process
3.2. Batch Experimentation
Adsorption Isotherms
3.3. Continuous Experimentation
3.4. Design and Construction of the Biofilter at the Pilot Scale
Experimental Process
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sayago, U.F.C.; Castro, Y.P.; Rivera, L.R.C.; Mariaca, A.G. Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes. Environ. Monit. Assess. 2020, 192, 141. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Cao, X.; Zheng, W.; Scott, J.W.; Sharma, B.K.; Chen, X. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustain. Chem. Eng. 2016, 4, 1630–1636. [Google Scholar] [CrossRef]
- Sidhu, G.P.S. Heavy metal toxicity in soils: Sources, remediation technologies and challenges. Adv. Plants Agric. Res. 2016, 5, 1–2. [Google Scholar]
- Corral-Bobadilla, M.; González-Marcos, A.; Vergara-González, E.P.; Alba-Elías, F. Bioremediation of waste water to remove heavy metals using the spent mushroom substrate of Agaricus bisporus. Water 2019, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- Corral Bobadilla, M.; Lostado Lorza, R.; Somovilla Gomez, F.; Escribano Garcia, R. Adsorptive of Nickel in wastewater by olive stone waste: Optimization through multi-response surface methodology using desirability functions. Water 2020, 12, 1320. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; González-Marcos, A.; Alba-Elías, F.; de Santo Domingo, E.D. Valorization of bio-waste for the removal of aluminum from industrial wastewater. J. Clean. Prod. 2020, 264, 121608. [Google Scholar] [CrossRef]
- Carreño-Sayago, U.F. Development of microspheres using water hyacinth (Eichhornia crassipes) for treatment of contaminated water with Cr (VI). Environ. Dev. Sustain. 2021, 23, 4735–4746. [Google Scholar] [CrossRef]
- El-Zawahry, M.M.; Abdelghaffar, F.; Abdelghaffar, R.A.; Hassabo, A.G. Equilibrium and kinetic models on the adsorption of Reactive Black 5 from aqueous solution using Eichhornia crassipes/chitosan composite. Carbohydr. Polym. 2016, 136, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ma, H.; Venkateswaran, S.; Hsiao, B.S. Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chem. Eng. J. 2020, 389, 123458. [Google Scholar] [CrossRef]
- Garba, Z.N.; Lawan, I.; Zhou, W.; Zhang, M.; Wang, L.; Yuan, Z. Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals—A review. Sci. Total Environ. 2020, 717, 135070. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Wang, Z.; Liu, Y.; Yang, G.; Chen, J. Preparation of dialdehyde cellulose graftead graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution. Carbohydr. Polym. 2019, 212, 345–351. [Google Scholar] [CrossRef]
- Emam, A.A.; Faraha, S.A.A.; Kamal, F.H.; Gamal, A.M.; Basseem, M. Modification and characterization of Nano cellulose crystalline from Eichhornia Crassipes using citric acid: An adsorption study. Carbohydr. Polym. 2020, 33, 116202. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Zhang, X.; Liu, X.; Li, B.; Wang, C. Cellulose-based aerogel from Eichhornia crassipes as an oil superabsorbent. RSC Adv. 2016, 6, 98563–98570. [Google Scholar] [CrossRef]
- Pratama, J.H.; Amalia, A.; Rohmah, R.L.; Saraswati, T.E. The extraction of cellulose powder of water hyacinth (Eichhornia crassipes) as reinforcing agents in bioplastic. In Proceedings of the AIP Publishing Conference, Zurich, Switzerland; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2219, p. 100003. [Google Scholar]
- Feng, W.; Xiao, K.; Zhou, W.; Zhu, D.; Zhou, Y.; Yuan, Y.; Xiao, N.; Wan, X.; Hua, Y.; Zhao, J. Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour. Technol. 2017, 223, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Sayago, U.F.C. Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Environ. Monit. Assess. 2019, 191, 221. [Google Scholar] [CrossRef] [PubMed]
- Módenes, A.N.; Espinoza-Quiñones, F.R.; Trigueros, D.E.; Lavarda, F.L.; Colombo, A.; Mora, N.D. Kinetic and equilibrium adsorption of Cu (II) and Cd (II) ions on Eichhornia crassipes in single and binary systems. Chem. Eng. J. 2017, 168, 44–51. [Google Scholar] [CrossRef]
- Chen, L.; Li, F.; Wei, Y.; Li, G.; Shen, K.; He, H.J. High cadmium adsorption on nanoscale zero-valent iron coated Eichhornia crassipes biochar. Environ. Chem. Lett. 2019, 17, 589–594. [Google Scholar] [CrossRef]
- Cao, X.; Huang, Y.; Tang, C.; Wang, J.; Jonson, D.; Fang, Y. Preliminary study on the electrocatalytic performance of an iron biochar catalyst prepared from iron-enriched plants. J. Environ. Sci. 2020, 88, 81–89. [Google Scholar] [CrossRef]
- Pereira, A.R.; Soares, L.C.; Teodoro, F.S.; Elias, M.M.C.; Ferreira, G.M.D.; Savedra, R.M.L.; Siqueira, M.F.; Martineau-Corcos, C.; da Silva, L.H.M.; Prim, D.; et al. Aminated cellulose as a versatile adsorbent for batch removal of As (V) and Cu (II) from mono-and multicomponent aqueous solutions. J. Colloid Interface Sci. 2020, 576, 55–99. [Google Scholar] [CrossRef]
- Rápó, E.; Posta, K.; Csavdári, A.; Vincze, B.É.; Mara, G.; Kovács, G.; Haddidi, I.; Tonk, S. Performance Comparison of Eichhornia crassipes and Salvinia natans on Azo-Dye (Eriochrome Black T) Phytoremediation. Crystals 2020, 10, 565. [Google Scholar] [CrossRef]
- Rigueto, C.V.T.; Piccin, J.S.; Dettmer, A.; Rosseto, M.; Dotto, G.L.; de Oliveira Schmitz, A.P.; Perondi, D.; de Freitas, T.S.M.; Loss, R.A.; Geraldi, C.A.Q. Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecol. Eng. 2020, 150, 105817. [Google Scholar] [CrossRef]
- Lin, S.; Yang, H.; Na, Z.; Lin, K. A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere 2018, 192, 258–266. [Google Scholar] [CrossRef]
- Baldikova, E.; Pospiskova, K.; Ladakis, D.; Kookos, I.K.; Koutinas, A.A.; Safarikova, M.; Safarik, I. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells. Mat. Sci. Eng. 2017, 71, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Xiang, Z.; Liu, Q.; Chen, Y.; Lu, F. Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Bioresour. Technol. 2017, 244, 844–849. [Google Scholar] [CrossRef]
- Mpouras, T.; Polydera, A.; Dermatas, D.; Verdone, N.; Vilardi, G. Multi wall carbon nanotubes application for treatment of Cr (VI)-contaminated groundwater; Modeling of batch & column experiments. Chemosphere 2021, 269, 128749. [Google Scholar]
- Sarkar, M.; Rahman, A.K.M.L.; Bhoumik, N.C. Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder. Water Resour. Ind. 2017, 17, 1–6. [Google Scholar] [CrossRef]
- Sukumar, C.; Janaki, V.; Vijayaraghavan, K.; Kamala-Kannan, S.; Shanthi, K. Removal of Cr (VI) using co-immobilized activated carbon and Bacillus subtilis: Fixed-bed column study. Clean Technol. Environ. Policy 2017, 19, 251–258. [Google Scholar] [CrossRef]
- Vilardi, G.; Rodriguez-Rodriguez, J.; Ochando-Pulido, J.M.; Di Palma, L.; Ver-done, N. Fixed-bed reactor scale-up and modelling for Cr (VI) removal using nano iron-based coated biomass as packing material. Chem. Eng. J. 2018, 361, 990–998. [Google Scholar] [CrossRef]
- Adornado, A.P.; Soriano, A.N.; Orfiana, O.N.; Pangon, M.B.J.; Nieva, A.D. Simulated biosorption of Cd (II) and Cu (II) in single and binary metal systems by water hyacinth (Eichhornia crassipes) using Aspen adsorption. ASEAN J. Chem. Eng. 2017, 16, 21–43. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling; Walter de Gruyter: Berlin, Germany, 2012; p. 344. [Google Scholar]
- Iváñez, M. Diseño de un Sistema de Adsorción para la Eliminación de Fenol Presente en Disolución Acuosa. Ph.D. Dissertation, Universitat Politècnica de València, Valencia, Spain, 2017. [Google Scholar]
- Qiao, L.; Li, S.; Li, Y.; Liu, Y.; Du, K. Fabrication of superporous cellulose beads via enhanced inner cross-linked linkages for high efficient adsorption of heavy metal ions. J. Clean. Prod. 2020, 253, 120017. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Wang, X.; Li, M.; Lei, H.; Xu, H. Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. Int. J. Biol. Macromol. 2019, 140, 225–233. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Na, Z.; Lu, D.; y Liu, Z. La adsorción, la concentración, y la recuperación de iones de metales pesados acuosas con el polvo de raíz de Eichhornia crassipes. Ingeniería Ecológica 2013, 60, 160–166. [Google Scholar]
- Yi, Z.J.; Yao, J.; Chen, H.L.; Wang, F.; Yuan, Z.M.; Liu, X. Uranium biosorption from aqueous solution onto Eichhornia crassipes. J. Environ. Radioact. 2016, 154, 43–51. [Google Scholar] [CrossRef]
- Tejada-Tovar, C.; Paz, I.; Acevedo-Correa, D.; Espinosa-Fortich, M.; López-Badel, C. Adsorption of chrome (VI) and mercury (II) in solution using hyacinth (Eichhornia crassipes). Biotecnología en el Sector Agropecuario y Agroindustrial 2017, 19, 54–65. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Adi, V.S.K.; Huang, H.L.; Lin, H.P.; Huang, Z.H. Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. J. Ind. Eng. Chem. 2020, 76, 240–244. [Google Scholar] [CrossRef]
- de Freitas, G.R.; Vieira, M.G.A.; da Silva, M.G.C. Batch and fixed bed biosorption of copper by acidified algae waste biomass. Ind. Eng. Chem. Res. 2018, 57, 11767–11777. [Google Scholar] [CrossRef]
- Barquilha, C.E.R.; Cossich, E.S.; Tavares, C.R.G.; Silva, E.A. Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J. Clean. Prod. 2017, 150, 58–64. [Google Scholar] [CrossRef]
- Yahya, M.D.; Abubakar, H.; Obayomi, K.S.; Iyaka, Y.A.; Suleiman, B. Simultaneous and continuous biosorption of Cr and Cu (II) ions from industrial tannery effluent using almond shell in a fixed bed column. RINENG 2020, 6, 100113. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Y.; Cao, N.; Sun, D.; Zhang, Z.; Wang, Y.; Wen, Y.; Yang, Y.; Lyu, T. Sustainable Chromium (VI) Removal from Contaminated Groundwater Using Nano-Magnetite-Modified Biochar via Rapid Microwave Synthesis. Molecules 2021, 26, 103. [Google Scholar] [CrossRef]
Reference | Biomass | Initial Concentration mg/L | Removal Efficiency (%) | Heavy Metal Removed |
---|---|---|---|---|
Present article | EC | 100 | 85 | Cr (VI) |
Present article | EC + Fe | 100 | 98 | Cr (VI) |
[37] | EC | 100 | 73 | Cr (VI) |
[25] | EC | 100 | 85 | Cr (VI) |
[30] | EC | 100 | 85 | Cr (VI) |
[18] | EC + Biochar | 200 | 95 | Cd (II) |
[38] | Biochar | 200 | 90 | Cr (VI) |
[39] | Algae | 200 | 90 | Cu (II) |
[40] | Algae | 300 | 85 | Cu (II) |
[41] | Almond shell | 100 | 95 | Cr (VI) |
[42] | Biomass + Fe | 100 | 96 | Cr (VI) |
[28] | Bacillus + Biochar | 100 | 95 | Cr (VI) |
[42] | Biochar + Fe | 100 | 98 | Cr (VI) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreño Sayago, U.F. Design, Scaling, and Development of Biofilters with E crassipes for Treatment of Water Contaminated with Cr (VI). Water 2021, 13, 1317. https://doi.org/10.3390/w13091317
Carreño Sayago UF. Design, Scaling, and Development of Biofilters with E crassipes for Treatment of Water Contaminated with Cr (VI). Water. 2021; 13(9):1317. https://doi.org/10.3390/w13091317
Chicago/Turabian StyleCarreño Sayago, Uriel Fernando. 2021. "Design, Scaling, and Development of Biofilters with E crassipes for Treatment of Water Contaminated with Cr (VI)" Water 13, no. 9: 1317. https://doi.org/10.3390/w13091317
APA StyleCarreño Sayago, U. F. (2021). Design, Scaling, and Development of Biofilters with E crassipes for Treatment of Water Contaminated with Cr (VI). Water, 13(9), 1317. https://doi.org/10.3390/w13091317