Effect of Salinity on UVA-Vis Light Driven Photo-Fenton Process at Acidic and Circumneutral pH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Target Solution and Water Matrices
2.3. Experimental Set-Up
2.4. Analytical Measurements
3. Results
3.1. Interference of Chlorides and pH on the Photo-Fenton Process
3.2. Evolution of pH, Dissolved Iron and Hydrogen Peroxide in Photo-Fenton Reactions
3.3. Experiments with Real/Natural Aqueous Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolfram, J.; Stehle, S.; Bub, S.; Petschick, L.L.; Schulz, R. Water quality and ecological risks in European surface waters—Monitoring improves while water quality decreases. Environ. Int. 2021, 152, 106479. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water 2020, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Santos-Juanes, L.; Amat, A.M.; Arques, A. Strategies to drive photo-Fenton process at mild conditions for the removal of xenobiotics from aqueous systems. Curr. Org. Chem. 2017, 21, 1074–1083. [Google Scholar] [CrossRef]
- Soler, J.; García-Ripoll, A.; Hayek, N.; Miró, P.; Vicente, R.; Arques, A.; Amat, A.M. Effect of inorganic ions on the solar detoxification of water polluted with pesticides. Water Res. 2009, 43, 4441–4450. [Google Scholar] [CrossRef]
- Micó, M.M.; Zapata, A.; Maldonado, M.I.; Bacardit, J.; Malfeito, J.; Sans, C. Fosetyl-Al photo-Fenton degradation and its endogenous catalyst inhibition. J. Hazard. Mater. 2014, 265, 177–184. [Google Scholar] [CrossRef] [PubMed]
- De, L.J.; Giang, L.T. Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Appl. Catal. B Environ. 2006, 66, 137–146. [Google Scholar]
- Santos da Silva, S.; Chiavone-Filho, O.; Neto, E.L.B.; Foletto, E.L.; Mota, A.L.N. Effect of inorganic salt mixtures on phenol mineralization by photo-Fenton-Analysis via an experimental design. Water Air Soil Pollut. 2014, 225, 1784. [Google Scholar] [CrossRef]
- Patra, S.G.; Mizrahi, A.; Meyerstein, D. The role of carbonate in catalytic oxidations. Acc. Chem. Res. 2020, 53, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Souza, B.M.; Dezotti, M.W.C.; Boaventura, R.A.R.; Vilar, V.J.P. Intensification of a solar photo-Fenton reaction at near neutral pH with ferrioxalate complexes: A case study on diclofenac removal from aqueous solutions. Chem. Eng. J. 2014, 256, 448–457. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, H.; He, Y.; Huang, B.; Zhou, C.; Yao, G.; Lai, B. Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. Appl. Catal. B Environ. 2021, 286, 119900. [Google Scholar] [CrossRef]
- Huang, W.; Brigante, M.; Wu, F.; Hanna, K.; Mailhot, G. Development of a new homogenous photo-Fenton process using Fe(III)-EDDS complexes. J. Photochem. Photobiol. A 2012, 239, 17–23. [Google Scholar] [CrossRef]
- Klamerth, N.; Malato, S.; Aguera, A.; Fernandez-Alba, A.; Mailhot, G. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection. Environ. Sci. Technol. 2012, 46, 2885–2892. [Google Scholar] [CrossRef]
- Gomis, J.; Bianco Prevot, A.; Montoneri, E.; González, M.C.; Amat, A.M.; Mártire, D.O.; Arques, A.; Carlos, L. Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chem. Eng. J. 2014, 235, 236–243. [Google Scholar] [CrossRef]
- García-Ballesteros, S.; Mora, M.; Vicente, R.; Sabater, C.; Castillo, M.A.; Arques, A.; Amat, A.M. Gaining further insight into photo-Fenton treatment of phenolic compounds commonly found in food processing industry. Chem Eng. J. 2016, 288, 126–136. [Google Scholar] [CrossRef]
- Maciel, R.; Sant’Anna, G.L., Jr.; Dezotti, M. Phenol removal from high salinity effluents using Fenton’s reagent and photo-Fenton reactions. Chemosphere 2004, 57, 711–719. [Google Scholar] [CrossRef]
- Moraes, J.E.F.; Quina, F.H.; Nascimento, C.A.O.; Silva, D.N.; Chiavone-Filho, O. Treatment of saline wastewater contaminated with hydrocarbons by the photo-Fenton process. Environ. Sci. Technol. 2004, 38, 1183–1187. [Google Scholar] [CrossRef]
- Bacardit, J.; Sto1tzner, J.; Chamarro, E.; Esplugas, S. Effect of salinity on the photo-Fenton process. Ind. Eng. Chem. Res. 2007, 46, 7615–7619. [Google Scholar] [CrossRef]
- Deemter, D.; Oller, I.; Amat, A.M.; Malato, S. Effect of salinity on preconcentration of contaminants of emerging concern by nanofiltration: Application of solar photo-Fenton as a tertiary treatment. Sci. Total Environ. 2021, 756, 143593. [Google Scholar] [CrossRef]
- Sciscenko, I.; Garcia-Ballesteros, S.; Sabater, C.; Castillo, M.A.; Escudero-Oñate, C.; Oller, I.; Arques, A. Monitoring photolysis and (solar photo)-Fenton of enrofloxacin by a methodology involving EEM-PARAFAC and bioassays: Role of pH and water matrix. Sci. Total Environ. 2020, 719, 137331. [Google Scholar] [CrossRef] [PubMed]
- Carlos, L.; Mártire, D.O.; Gonzalez, M.C.; Gomis, J.; Bernabeu, A.; Amat, A.M.; Arques, A. Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res. 2012, 46, 4732–4740. [Google Scholar] [CrossRef]
- Gomis, J.; Gonçalves, M.G.; Vercher, R.F.; Sabater, C.; Castillo, M.A.; Bianco Prevot, A.; Amat, A.M.; Arques, A. Determination of photostability, biocompatibility and efficiency as photo-Fenton auxiliaries of three different types of soluble bio-based substances (SBO). Catal. Today 2015, 252, 177–183. [Google Scholar] [CrossRef]
- Moreno-Andrés, J.; Vallés, I.; García-Negueroles, P.; Santos-Juanes, L.; Arques, A. Enhancement of iron-based photo-driven processes by the presence of catechol moieties. Catalysts 2021, 11, 372. [Google Scholar] [CrossRef]
- Brumovský, M.; Bečanová, J.; Kohoutek, J.; Borghini, M.; Nizzetto, L. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environ. Pollut. 2017, 229, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Gomis, J.; Carlos, L.; Bianco Prevot, A.; Teixeira, A.C.S.C.; Mora, M.; Amat, A.M.; Vicente, R.; Arques, A. Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: Optimization of operational variables. Catal. Today 2015, 240, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, R.F.P.; Oliveira, M.C.; Paterlini, W.C. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 2005, 66, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Machulek, A.J.; Moraes, J.E.; Vautier-Giongo, C.; Silverio, C.A.; Friedrich, L.C.; Nascimento, C.A.; Gonzalez, M.C.; Quina, F.H. Abatement of the inhibitory effect of chloride anions on the photo-Fenton process. Environ. Sci. Technol. 2007, 41, 8459–8463. [Google Scholar] [CrossRef]
- Rommozzi, E.; Giannakis, S.; Giovannetti, R.; Vione, D.; Pulgarin, C. Detrimental vs. beneficial influence of ions during solar (SODIS) and photo-Fenton disinfection of E. coli in water: (bi)carbonate, chloride, nitrate and nitrite effects. Appl. Catal. B Environ. 2020, 270, 118877. [Google Scholar] [CrossRef]
- Machulek, A., Jr.; Vautier-Giongo, C.; Moraes, J.E.F.; Nascimento, C.A.O.; Quina, F.H. Laser flash photolysis study of the photocatalytic step of the photo-Fenton reaction in saline solution. Photochem. Photobiol. 2006, 82, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Caregnato, P.; Rosso, J.A.; Soler, J.M.; Arques, A.; Martire, D.O.; González, M.C. Chloride anion effect on the advanced oxidation process of methidathion and dimethoate: Role of Cl2•− radical. Water Res. 2013, 47, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Millero, F.J. Solubility of Fe III in seawater. Earth Planet. Sci. Lett. 1999, 154, 323–329. [Google Scholar] [CrossRef]
t = 15 min | t = 60 min | ||||
---|---|---|---|---|---|
Remaining H2O2 (%) | Remaining Fe (%) | Remaining H2O2 (%) | Remaining Fe (%) | ||
pH = 5 | DW | 51 | 76 | 11 | 16 |
LSW | 55 | 73 | 11 | 22 | |
HSW | 77 | 95 | 42 | 77 | |
pH = 2.8 | DW | 35 | 99 | 0 | 99 |
LSW | 57 | 98 | 4 | 97 | |
HSW | 69 | 100 | 10 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallés, I.; Santos-Juanes, L.; Amat, A.M.; Moreno-Andrés, J.; Arques, A. Effect of Salinity on UVA-Vis Light Driven Photo-Fenton Process at Acidic and Circumneutral pH. Water 2021, 13, 1315. https://doi.org/10.3390/w13091315
Vallés I, Santos-Juanes L, Amat AM, Moreno-Andrés J, Arques A. Effect of Salinity on UVA-Vis Light Driven Photo-Fenton Process at Acidic and Circumneutral pH. Water. 2021; 13(9):1315. https://doi.org/10.3390/w13091315
Chicago/Turabian StyleVallés, Iván, Lucas Santos-Juanes, Ana M. Amat, Javier Moreno-Andrés, and Antonio Arques. 2021. "Effect of Salinity on UVA-Vis Light Driven Photo-Fenton Process at Acidic and Circumneutral pH" Water 13, no. 9: 1315. https://doi.org/10.3390/w13091315
APA StyleVallés, I., Santos-Juanes, L., Amat, A. M., Moreno-Andrés, J., & Arques, A. (2021). Effect of Salinity on UVA-Vis Light Driven Photo-Fenton Process at Acidic and Circumneutral pH. Water, 13(9), 1315. https://doi.org/10.3390/w13091315